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Abstract

Recent work in the psychological literature has indicated that attractive faces are in some ways “average” [J.H. Langlois, L.A. Roggman,
Attractive faces are only average, Psychological Science, 1(2) (1990) 115–121] and that the apparent age of a face can be related to its
proximity to the average of a computationally derived “face space” [A.J. O’Toole, T. Vetter, H. Volz, E.M. Salter, Three-dimensional
caricatures of human heads: distinctiveness and the perception of facial age, Perception, 26 (1997) 719–732]. We examined the relationship
between facial attractiveness, age, and “averageness”, using laser scans of faces that were put into complete correspondence with the average
face [T. Vetter, V. Blanz, Estimating coloured 3D face models from single images: an example based approach, in: H. Burkhardt, B.
Neumann (Eds.), Proceedings of the Fifth European Conference on Computer Vision, Freiburg, Germany, 1998, pp. 499–513]. This
representation enabled selective normalization of the 3D shape versus the surface texture map of the faces.Shape-normalizedfaces, created
by morphing the texture maps from individual faces onto the average head shape, andtexture-normalized faces, created by morphing the
average texture onto the shape of each individual face, were judged by human subjects to be both more attractive and younger than the
original faces. The study shows that relatively global, psychologically meaningful attributes of faces can be modeled very simply in face
spaces of this sort.q 1999 Elsevier Science B.V. All rights reserved.
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1. Introduction

The relationship between human image perception and
artificial image manipulations is a central problem for
many image processing applications. One aspect of this
problem concerns the relationship between some relatively
global, but psychologically meaningful perceptual descrip-
tors of objects, and the image properties that underlie these
percepts. For example, human faces can be described in a
number of global ways that are likely to be the result of a
combination orconfigurationof image based features: e.g.
“attractive”, “generous”, “mean-looking” or “thirty-some-
thing”. In the present study, we focus on understanding two
of these dimensions in ways that will allow us to change
images selectively along specific perceptual dimensions
while keeping other dimensions constant (e.g. to beautify

or age a face image without changing the identity of the
person). One application of this approach is to the problem
of image search in databases, for which the mapping of
human image descriptions onto formal image representa-
tions can substantially increase the efficiency of the search.

There is good evidence in the literature that at least one
component of being “attractive” is related to being “aver-
age” [1]. The primary psychological evidence for this claim
comes from a study showing that “composite images” made
by averaging together the faces of several individuals are
judged by human subjects to be more attractive than the
original unaveraged faces. Although controversial for a
number of technical [4–7], and theoretical [8,9] reasons,
which we discuss below, the attractiveness of “average”
faces is an interesting result both for psychological and
computational models of face recognition.

As has been discussed in great detail elsewhere, the attrac-
tiveness of averages versus extremes has important implica-
tions for theories of mate selection based on evolutionary
biology [1,4,8,10–13]. Much less considered, however, are
the implications of this finding for human memory or more
precisely for understanding the “recognizability” of average
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faces. By recognizability we mean simply the accuracy with
which a face can be correctly recognized when seen before,
and correctly judged “novel” when it has not been seen
before. In fact, psychological work has indicated, somewhat
counterintuitively, that attractive faces are recognized by
human subjects less accurately than are unattractive faces
[14]. These findings [5,11,14] link facial attractiveness to
very well established findings relating the perceived typi-
cality/distinctiveness of a face and its recognizability, e.g.
[15,16]. People recognize typical or “average” faces less
accurately than distinctive faces. This phenomenon has
important implications for the expected accuracy of eye-
witness identifications forindividual faces. Simply put,
some faces are more likely to be falsely recognized than
others, and so, the credibility of eyewitness identifications
will vary systematically with the typicality and attractive-
ness of the face to be identified.

One unexplored application of computational models of
face recognition concerns the ability to predict the accuracy
with which human subjects will recognizeindividual faces,
i.e. predict which faces humans will identify correctly and
which faces may generate identification errors. Quantifying
the information that makes a face attractive or typical, thus,
has possible applications to this problem. The problem,
however, poses challenges for computational models of
face recognition for two reasons. First, it is likely that the
information that makes a face either typical or (non-equiva-
lently) attractive is related, at least in part, to the configura-
tion of features in a face, rather than exclusively to any
single feature [9]. Second, both of these facial attributes
make implicit reference to a population of faces. For exam-
ple, faces are likely to be considered typical or attractive
relative to a reference group that may involve the sex, race,
and age of a face [17].

A computational model for manipulating the attractive-
ness or distinctiveness of a face in ways that are percep-
tually salient for human subjects should, therefore, be
sensitive to the statistical structure of a set of faces. Such
a model should also be based on a representation in which
the configural structure of a face can be manipulated in a
global and relatively natural way. A “face space” represen-
tation, commonly used in both the psychological [18] and
the computational literatures [2,19–22] meets these require-
ments. In its generic form a face space entails the following
notions: (1) faces can be thought of as points in a multi-
dimensional space; (2) the axes of this space represent a set
of features on which the faces are encoded; and (3) the
distance between any two faces in this space is a measure
of the similarity between the faces [18,23].

In the more quantitative literature, face spaces are typi-
cally implemented by using principal components analysis
(PCA) [19–22] of a covariance matrix made using a set of
face images. This yields a set of feature axes (principal
components, PCs), which are derived directly from the
statistical structure of the set of faces. Individual faces are
points/vectors in this space and thus can be described by

their coordinates in the space, or in other words, by their
values on each “feature axis” or PC. Finally, it is worth
noting that when PCA is applied to a physical measure of
faces, such as pixels, surface values, or fiducial point loca-
tion codes,2 the resultant PCs are of the same form and the
faces can be expressed as weighted linear combinations of
these “features”/PCs. As such, alterations to faces that are
made by operating on their coordinates in this space can be
viewed (if they are image-based), constructed (if they are
surface based), or synthesized (if they are derived from a
fiducial code, or other code in which the faces are repre-
sented in a comparable, corresponded/aligned coordinate
system, [3,24]). A primary question in the psychological
literature over the past few years concerns the kind of repre-
sentation (e.g. image, surface or some combination) that is
best for modeling human perception and memory for objects
and faces (cf. [25,26]).

It has been posited in the psychological literature that the
distinctiveness of a face is related to its distance from
the average face in a generic face space [18]. In fact,
his is the primary manipulation used by most automatic
caricature generators that operate in quantitatively-based
face spaces. The goal of a caricature generator is to increase
the “distinctiveness” of a face by exaggerating features that
help to differentiate the face from other faces, e.g. Refs.
[27,28]. More formally, automatic caricatures usually
work as follows. First, a measure of the average value of a
set of “features” across a large number of faces is computed.
These features are defined, usually, as a set of facial land-
mark locations or “fiducial points” (e.g. corners of the eye
and other points that are reasonably easy to localize/match
on all faces). It is worth noting that this is a representation of
the 2D configural structure of the face because it captures
the spatial layout of the facial features in the projected 2D
facial image. Next, to create a caricature of an individual
face, a measure of the deviation of the face from the average
2D configuration is computed. Finally, “distinctive” or
unusual features of the face are exaggerated and the face
is redrawn with the exaggerated features to produce the
caricature. The basic manipulation of an automatic carica-
ture-generator, therefore, is to “move” the face away from
the center of a face space based on the 2D (projected)
configural stucture of a face.

In recent years, computational face spaces have been used
by psychologists to ask questions about the nature of human
representations of faces. The logic behind this approach is
straightforward. Computational face spaces derived from
different kinds of face representations (2D pixel-based
images [19–22], 3D surfaces from laser scans [24]) may
make different predictions about the similarity/confusability
of faces. More formally, the distance between two faces in a
face space based on 2D pixel-based images may be very
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different than the distance between faces in a three-dimen-
sionally based face space. It is possible then to test hypoth-
eses about human representations of faces by varying the
nature of the features used to create computational face
spaces and by using psychological data to evaluate the
adequacy of different face space representations as models
for human perception and memory.

Before proceeding, it is worth illustrating briefly that
computationally derived face spaces can differ both quanta-
tively and qualitatively in the predictions they make about
perceptual variations in facial appearance. For example,
recent work illustrates that the application of an automatic
caricature algorithm to faces represented by their 3D struc-
ture alters the age of a face more than its distinctiveness [2]
(see Fig. 1).3 In that study, faces were represented as vectors
in a PCA-based face space derived from a low level encod-
ing of the 3D head structure. The caricature algorithm oper-
ated as follows: (a) a face vector in this space was multiplied
by a scalar,x (x . 1 yields a caricature;x , 1 yields an anti-
caricature)4; and (b) the caricature was created by recom-
bining the PCs/eigenheads according to their new coordi-
nates. Using this representation, it is clear that the direction
of the face (vector) in this space represents the identity of
the face. All of the faces pictured in Fig. 1 are actually on
the line that connects the average face to the veridical face
(and continues). As can be seen, all the faces retain the
identity of the original. The face in the first row is the actual

head scan of a 26-year-old male. The three faces in row 2 are
increasing levels of caricature. Here it can be seen that the
distance from the average, i.e. the length of the vector,
represents its distinctinctiveness, and in this particular
case, its age as well [2].

A generic caricature applied to a computationally derived
face space based on a 3D representation of faces produced a
very salient change in the age of faces. Applied to a 2D
configural representation of faces, a similar trajectory in
the face space produced more salient changes in the distinc-
tiveness of faces. Thus, when implementing simple algo-
rithms for manipulating the appearance of faces, the
nature of the features underlying the face space has impor-
tant perceptual consequences.

In the present study, we explored the question of quanti-
fying and manipulating facial attractiveness and age in the
context of the average(s) of a physical face space. Addition-
ally, we have based the face space on a more complete
representation of faces than has been used previously. The
representation combines both the 3D stucture of the faces
and the overlying two-dimensionally based texture map. An
example laser scan stimulus appears in Fig. 2, with the
combined surface and texture map rendered from the
front, the pure surface map in the center, and the texture
map on the right. Further, in our representation, the faces are
in complete correspondence with each other, i.e. are aligned
so that the positions of the discrete features overlap [3]. We
describe this procedure shortly. For present purposes, this
approach overcomes two shortcomings of the averaging
manipulation used to make composite faces [4–7]. These
shortcomings confound the nature of the information being
manipulated.
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Fig. 1. 3D caricatures of a 26-year-old male (row 1). Increasing the level of exaggeration, i.e. distance from the mean in the face space, increases theapparent
age of the face (row 2: left to right).

3 It is worth noting also that the averaged faces in Ref. [6] appeared
younger than the veridicals.

4 Note that because the face space was based on 3D deformation fields,
which we discuss shortly, the origin of this space was the average face.



The first shortcoming is that the composite procedure
allows for the possibility of blurring out facial blemishes
and other small imperfections in the face when averaging
faces. This might provide an alternative explanation for the
results reported in Ref. [1], (though see also Refs. [5,6,11]).
The second shortcoming relates to the first but concerns the
more general problem of blurring as it affects the alignment
of facial features prior to the averaging. Specifically, in
simple arithmetic averaging, the exact positions of the
features (eyes, etc.) are not aligned prior to the averaging
procedure, and hence, may be blurred in the final averaged
face image.

In the present study, we used an automated “correspon-
dence” algorithm applied simultaneously to both the 2D and

3D information from laser scans of human faces [3]. Using
this representation we were able to ask more precise ques-
tions about the relationship between “averageness” and the
perceived attractiveness of human faces. The purpose of a
correspondence algorithm in this context is to put all faces
into a comparable coordinate system before “moving them”
toward the average. Finding a common coordinate system in
morphing and automated caricature generator procedures
[27,29] is done usually by a human operator who hand-
locates between 50 and 300 fiducial (and supplemental)
points on the face, prior to warping and interpolating. For
example, the lower lip of a face might be represented by the
locations of 12 points, the left and right corners of the mouth
and 10 equally spaced intervening points.
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Fig. 3. Original face (left), 3D, shape-normalized (middle) and texture-normalized (right), female and male faces.

Fig. 2. Laser scan data, 3D structure and texture combined and rendered from the front (left), 3D head surface data (middle) and texture map (right).



The automated correspondence algorithm used in this
study casts the matching problem into its more general
computer vision form in which one attempts to match all
of the data points in two images/surfaces, rather than just a
subset of the fiducial points. This is the approach taken most
commonly in solving the classical correspondence problems
in stereopsis and motion analyses. Although this problem is
far from solved in a perfectly general form, a great deal of
progress has been made recently on the problem with faces.
Specifically, several methods based on elaborated optic flow
algorithms [30] have been applied successfully to the task of
automating a correspondence finding procedure for images
of human faces [31–33]. These approaches have been
extended successfully to laser scan data for human heads
[3]. Full details of how the correspondence algorithm works
can be found in Refs. [3,34] and an outline of the implementa-
tion details for this paper are summarized in Appendix A.

For present purposes, each face is represented as a “defor-
mation field” from the average, which can be divided into
the parts/subspaces based on: (a) the 3D head structure from
the laser scan; and (b) the overlying 2D surface texture,
which is mapped point-for-point onto the head surface
[3,34].5 In short, what is represented from each individual
face is how it differs from the average in terms of its 2D
texture and 3D shape.

This fully corresponded representation of the combined
surface and texture information enables us to address the
shortcomings of the composite approach in a straightfor-
ward and complementary way. A face can be moved toward
the average by simply drawing a line between the face and
the average and then “moving” the face toward the average,
reconstructing it at its new coordinates (i.e. combining the
PCs linearly using the new coordinates as weights). Thus,
the problem of blurring blemishes and small imperfections
can be solved by moving the face within the subspace
defined only by the face shapes, leaving the original texture
in tact.6 Likewise, the shape can be retained and the surface
image texture can be moved toward the average.

More formally, we created shape-normalized faces by
morphing the texture maps from individual faces onto the
average head shape and texture-normalized faces by morph-
ing the average texture onto the shape of each individual
face. In a face space model based on the shape and texture
deformation fields of faces, the average face lies at the origin
of the space. These normalization procedures, therefore,
amount to a simple operation of zeroing out the face’s coor-
dinates in the subspace corresponding to either the texture or

shape of the face. Samples of these stimuli appear in Fig. 3.
The left column contains two normal faces, the middle
column contains the shape-normalized versions of the
faces and the right column shows the texture-normalized
versions of the faces.

A final question we considered in the present study
concerns whether the perceived age of a face decreases as
the face is moved toward the average/center of the face
space. Suggestions to this effect have been reported
previously [6] for the composite procedure. In that study,
averaged faces appeared younger than their originals. The
authors, however, did not find a correlation between the
attractiveness and estimated age of theunaveraged faces.7

The work with 3D representations has also indicated that
moving faces toward the center of a face space has a rather
dramatic effect on the apparent age of a face [2].

The purpose of the present study was very straightfor-
ward. We wished to measure the relative contributions of
3D shape averaging versus 2D texture averaging to the find-
ings that one component of attractive faces is related to
being average. We also wished to examine explicitly, the
contribution of “de-aging” to the effect. In the first experi-
ment, we asked human subjects to judge the attractiveness
of the original, shape-normalized, and texture-normalized
faces. These judgments were supplemented in Experiment
2 with estimates of the ages of the original and altered faces.
Finally, we applied partial correlation techniques to the
problem of assessing the independence of the effects of
shape- and texture normalization on the age and attractive-
ness of faces.

2. The stimuli

2.1. Description of laser-scanned heads

Laser scans (Cyberwaree) of 100 heads of young adults
(50 male and 50 female) comprised the stimulus data base.
The mean age of faces in the database was 26.9 years (stan-
dard deviation� 4.7 years). The subjects were scanned
wearing bathing caps, which were removed digitally. The
laser scans provided surface map data consisting of the
lengths of 512× 512 radii from a vertical axis centered in
the middle of the subject’s head to “sample” points on the
surface of the head. This is a cylindrical representation of
the head surface, with surface points sampled at 512 equally
spaced angles around the circular slices of the cylinder, and
at 512 equally spaced vertical distances along the long axis
of the cylinder. Additionally, further pre-processing of the
heads was done by making a vertical cut behind the ears,
and a horizontal cut to remove the shoulders. A subset of 48
(24 males and 24 females) was selected randomly from this
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5 We wish to note here that the use of the term “2D” with the surface
texture should be qualified somewhat. Although the information captured in
the texture is inherently 2D, due to the fact that the laser scanner uses
ambient light, the texture is normally viewed wrapped around a head
surface, from a specific viewpoint, and under specific lighting conditions.

6 Although previous work [11] has suggested that these blemishes cannot
provide a full account of the effects reported in Ref. [1], that study used line
drawings as the control for blurring and so a number of additional features
of the image may also have altered.

7 Though it should be noted that there was only minimal age variability in
the faces used there and hence it may not have been possible with such a
small range to detect a correlation.



data base to serve as stimuli in the experiments reported
here.

2.2. The correspondence problem

The procedures applied to solving the correspondence
problem for this particular set of laser scan stimuli are
complex but the basic principles have been described in
detail elsewhere [3,34]. Additionally, to make this manu-
script self-contained, we describe the implementation
details of the algorithm in Appendix A.8 For present
purposes, the basic idea is to match the data points in each
individual face with the corresponding feature points in the
average face, with the goal of representing each face as a
“deformation” field from the average. Thus each data point
in the face representation contains a pointer to the analogous
data point in the average. This was done by applying optic
flow algorithms optimized in this case to deal with the
continuous surface and texture data found in faces [34].

2.3. 3D shape and 2D texture normalization

Three sets of faces were made from these original laser
scans. Two sets of stimuli were made from the original surface
and texture maps of 48 faces. Texture-normalized faces were
created by wrapping the average texture map onto the surface
map of each individual face. Shape-normalized faces were

made by mapping the texture maps of each individual face
onto the average shape. Each resulting face was rendered
from the frontal viewpoint (Fig. 3).

3. Experiment 1—facial attractiveness

3.1. Procedure

Thirty-six volunteers (17 males and 19 females) from the
University of Texas at Dallas (UTD) participated in this
experiment. Most of these volunteers were undergraduate
students compensated with a research credit for a core
course in the psychology curriculum. Observers read
instructions which indicated the purpose of the experiment
and were told to rate the attractiveness of each face
presented to them on a scale of 1–5, with 1 being least
attractive and 5 being most attractive. Each subject viewed
the full set of 144 (normal, shape-normalized, and texture-
normalized versions of each of the 48 individual faces). The
face remained visible until an attractiveness rating was
given. The experiment was conducted on a Macintosh
computer programmed using PsyScope [36].

3.2. Results

The mean attractiveness ratings for each subject on each
type of face were computed. These data appear in Fig. 4.
As indicated by the figure, attractiveness ratings were
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Fig. 4. Attractiveness ratings for the normal (left), shape-normalized (middle) and texture-normalized (right) faces.



highest for the shape-normalized faces, followed by the
texture-normalized faces and then the normal faces. These
data were submitted to a three-factor analysis of variance
with face type and face gender as within-subjects indepen-
dent variables and subject sex as a between-subjects vari-
ables. We found a main effect of face type,F(2,68) �
134.24, p , 0.0001. No other factors or interactions
approached significance.

3.3. Discussion

These results indicate clearly that normalizing the faces
with respect both to their 3D structure and their 2D texture
increased the attractiveness of faces. This replicates the
principal findings of Ref. [1] and extends them in several
ways. First, the shape-normalization affected the attractive-
ness more than did the texture-normalization. The fact that
the shape-normalized faces, which retain their image-based
blemishes and imperfections, were considered more attrac-
tive than the originals indicates that the “blurring” of small
imperfections in the face images cannot account entirely, or
even primarily, for the previous results. In fact, the shape-
normalized faces which retained their image-based
imperfections were considered more attractive than the
texture-normalized faces.

Next, both our human subjects and ourselves noticed
spontaneously that the normalized faces seemed to appear
younger than the originals (cf. also Ref. [6]). In Experiment
2, we examined this question formally by collecting age

estimates on the normal, shape- and texture-normalized
faces which we could then relate to the attractiveness ratings
collected in Experiment 1.

4. Experiment 2—age estimation

4.1. Procedure

Twenty-eight volunteers (15 females and 13 males) parti-
cipated in this phase of the experiment. Observers were
assigned to one of three groups to estimate the ages of
normal, shape-normalized or texture-normalized faces.
They did this by typing in an age estimate on the computer
keyboard. The face remained visible until the estimate was
made. Due to the more demanding and time consuming
nature of this phase of the experiment we counterbalanced
the testing such that each subject saw only one group of
faces (normal, texture-normalized, or shape-normalalized)
and judged the age for each face in that particular set.

4.2. Results

The mean age estimate ratings for each subject on each
face were computed and divided according to the face type
rated. These data appear in Fig. 5 and indicate that age
estimates for both the shape- and texture-normalization
were younger than for the normal faces. Shape-normaliza-
tion decreased the apparent age of the face by about 4 years
and texture-normalization decreased the apparent age by
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Fig. 5. Age estimates for the normal (left), shape-normalized (middle) and texture-normalized (right) faces.



about 3 years. The pattern of effect is similar to that seen for
the attractiveness ratings, with the shape-normalized faces
judged youngest, the texture-normalized next, and the origi-
nals judged oldest. More formally, these data were
submitted to a three-factor analysis of variance with face
sex as a within-subjects independent variable and face type
and subject sex as between-subjects variables. We found a
main effect of face type,F(2,22)� 3.38,p , 0.05, with age
estimations decreasing from normal to texture-normalized
to shape-normalized. The sex of the face was also signifi-
cant,F(1,22)� 45.41,p , 0.0001, however, this could be
due to the actual age variation between males and females in
the group of faces presented. No other factors or interactions
proved significant.

5. Combined analysis—attractiveness and age

The results of Experiment 2 indicated that both the shape
and texture normalization manipulations decreased the
apparent age of the faces. Given that these manipulations
also increased the attractiveness of the faces, and that the
pattern of these effects were similar, we were interested in
assessing the extent to which the de-aging effect could
account for the increased attractiveness.

To determine this we applied a partial correlation techni-
que to the combined data from Experiments 1 and 2. This
worked as follows. For each face, we used the age estimates
supplied by the human subjects for individual faces in
Experiment 2 as a predictor for the attractiveness judgments
supplied by the subjects in Experiment 1. The error of these
estimates (the residuals) were then analyzed with an
ANOVA, using face rather than subject as the unit of
measure. The pattern of means for the residuals, with the
age component partialed out, was the same as that seen for
the raw data, with the shape-normalized faces judged most
attractive, the texture-normalized faces next, and finally the
original faces. Face type was again statistically significant,
F(2,92)� 47.42,p , 0.0001, indicating that even taking
into account the de-ageing effects of the manipulations, the
attractiveness of the faces was increased by moving them
toward the average.

6. General discussion

The relationship between human image perception and
artificial image manipulations is a central problem for
many image processing applications. An understanding of
this will allow us to change images selectively along even
relatively abstract specific perceptual dimensions. For the
problem of image search in databases, the mapping of
human image descriptions onto formal image representa-
tions can increase the efficiency of the search.

In the present study, we used a computationally defined
face space based on a representation of how the faces differ
in their 3D shape and 2D texture from the average face. Our

primary manipulation consisted of altering the length of the
face vectors in a selected subspace of the general face space.
This manipulation is opposite to that carried out normally in
automated caricature generators. Faces increased in attrac-
tiveness and decreased in apparent age with shape- or
texture normalization. Additionally, we showed that
although the normalization procedure simultaneously affects
both the age and attractiveness of the faces, the perception
of these two facial attributes was not synonymous.

We think these results are important for three reasons.
First, although there is much data in the psychological
literature to suggest that humans process faces configurally
rather than as a set of features, computational models have
not always considered representational systems in this light.
Altering the global information in faces in ways that change
psychologically meaningful facial attributes like attractive-
ness and typicality/distinctiveness can be done very simply
using an appropriate face space representation. In this work,
increasing the attractiveness of faces can be seen as a kind of
inverse operation to caricaturing, instead of increasing the
distance of an individual face to the average we replace
parts of the face representation by average values.

Second, the present results help to clarify the relationship
between some relatively abstract attributes of faces that are
of some consequence for understanding human memory for
faces. To recognize a face, one needs to encode the informa-
tion that makes it different from all other faces in the world.
Faces vary, however, in the extent to which they differ from
other faces in the world. The present results indicate that
there is a relationship between the attractiveness of faces
and their closeness to the average face. Previous work has
indicated that these shape- and texture-normalized faces are
recognized by human subjects less accurately than are the
original faces [35].

Third, where age is concerned, the results further clarify
the importance of paying careful attention to the nature of
the underlying face space representation. In a purely three-
dimensionally based face space, age was the primary
perceptual correlate for face vector length [2]. Using a
combination of the texture and shape, both attractiveness
and age related to vector length, with the age component
being far less potent here than it was for a purely 3D repre-
sentation of faces [2].

Finally, we wish to note clearly that although “average” is
in some ways attractive, the present results do not suggest
that it is the only source of attractiveness. Many previous
studies have shown convincingly that atypical aspects of
faces can be perceived as attractive, most notably [8]. The
present work shows only that at least some aspects of the
averageness of faces can be linked reliably to the attractive-
ness and age of faces. Combined with other data on the
recognizability of these shape and texture-normalized
faces [35], it links a global face descriptor that humans
use quite comfortably, i.e. attractiveness, to the accuracy
of human memory for faces. It would be of great interest
to see if this kind of global measure would be equally useful
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for predicting the performance of computational models of
face recognition at the level of individual faces.
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Appendix A. 3D correspondence algorithm

In order to construct a general flexible 3D face model that
allows for computing an average face as well as for exchan-
ging shape and texture between different faces, it is crucial
to establish correspondence between a reference face and
each individual face example. For all vertices of the refer-
ence face, we have to find the corresponding vertex location
on each face in the dataset. If, for example, vertexj in the
reference face is located on the tip of the nose, with a 3D
position described by the vector componentsXj, Yj, Zj in Sref,
then we have to store the position of the tip of the nose of
facei in the vector componentsXj, Yj, Zj of Si. In general, this
is a hard problem, and it is difficult to formally specify what
correct correspondence is supposed to be. However, assum-
ing that all face data sets are roughly aligned and that there
are no categorical differences such as some faces having
beards and others not, an automatic method is feasible for
computing the correspondence (the algorithm is described
in more detail in Refs. [3,34]).

For matching points on the surfaces of two 3D objects we
modified an existing optical flow algorithm developed for
2D images.

A.1. Optical flow algorithm

In video sequences, in order to estimate the velocities of
scene elements with respect to the camera, it is necessary to
compute the vector field of optical flow, which defines the
displacements (dx,dy) � (x2 2 x1,y2 2 y1) between points
p1� (x1,y1) in the first image and corresponding pointsp2�
(x2,y2) in the second image. A variety of different optical
flow algorithms have been designed to solve this problem
(for a review see Ref. [37]). Unlike temporal sequences
taken from one scene, a comparison of images of comple-
tely different scenes or faces may violate a number of
important assumptions made in optical flow estimation.
However, some optical flow algorithms can still cope with
this more difficult matching problem, opening up a wide
range of applications in image analysis and synthesis [31].

In a previous study [33], we computed correspondence
between face images using a coarse-to-fine gradient-based
method [38] applied to the Laplacians of the images and
followed an implementation described in Ref. [30]. The
Laplacian of the images were computed from the Gaussian
pyramid adopting the algorithm proposed by [39]. For every

point x,y in an imageI(x,y), the algorithm attempts to mini-
mize the error termE � P�Ixdx 1 Iydy 2 1�2 for dx, dy,
with Ix,Iy being the spatial image derivatives of the Lapla-
cians andd I the difference of the Laplacians of the two
compared images. The coarse-to-fine strategy starts with
low resolution images and refines the computed displace-
ments when finer levels are processed. The final result of
this computation (dx,dy) is used as an approximation of the
spatial displacement of each pixel between two images.

A.2. 3D face representations

The extension of this optical flow algorithm to the 3D
head data is straightforward due to the fact that the cylind-
rical representation of a head surface is analogous to
images: Instead of grey-level values in image coordinates
x,y, here we store the radius values and the color values for
each anglef and heighth. A parameterization of a 3D head
in cylindrical coordinates, therefore, consists of two
‘images’, one representing the geometry of the head and
the other containing the texture information. In order to
compute the correspondence between different heads, both
texture and geometry were considered simultaneously. The
optical flow algorithm as described earlier had to be modi-
fied in the following way. Instead of comparing a scalar
grey-level functionI(x,y), our modification of the algorithm
attempts to find the best fit for the vector function

~F�h;f� �

radius�h;f�
red�h;f�

green�h;f�
blue�h;f�

0BBBBBB@

1CCCCCCA
in a norm

i

radius

red

green

blue

0BBBBBB@

1CCCCCCAi2

� w1radius2 1 w2red2 1 w3green2 1 w4blue2
:

The coefficientsw1,…,w4 correct for the different contrasts
in range and color values, assigning approximately the same
weight to variations in shape as to variations in all color
channels taken together.

For representing the geometry, radius values can be
replaced by other surface properties such as Gaussian curva-
ture or surface normals.

The displacement between corresponding surface points
is captured by a correspondence function

C�h;f� �
dh�h;f�
df�h;f�

 !
:
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A.3. Interpolation in low-contrast areas

It is well known that in areas with no contrast or with
strongly oriented intensity gradients, the problem of optical
flow computation cannot be uniquely solved based on local
image properties only (aperture problem). In our extension
of the algorithm to surfaces of human faces, there is no
structure to define correct correspondence on the cheeks,
along the eyebrows and in many other areas, and indeed
the method described so far yields spurious results there.

The ambiguities of correspondence caused by the aper-
ture problem can be resolved if the flow field is required to
be smooth.

In our algorithm, smoothing is performed as a separate
process after the estimation of flow on each level of the
coarse-to-fine approach. For the smoothed flow field
�dh0�h;f�; df 0�h;f��, an energy function is minimized
using conjugate gradient descent such that on the one
hand, flow vectors are kept as close to constant as possible
over the whole domain, and on the other hand as close as
possible to the flow field�dh�h;f�; df�h;f�� from the
computation described above. The first condition is
enforced by quadratic potentials that increase with the
square distances between each individual flow vector and
its four neighbors. These interconnections have equal
strength over the whole domain. The second condition is
enforced by quadratic potentials that depend on the square
distance between�dh0�h;f�; df 0�h;f�� and �dh�h;f�;
df�h;f�� in every position (x,y). These potentials vary
over the parameter domain. If the gradient of color and
radius values, weighted in the way described above, is
above a given threshold, the coupling factor is set to a
fixed, high value in the direction along the gradient, and
zero in the orthogonal direction. This allows the flow vector
to move along an edge during the relaxation process. In
areas with gradients below threshold, the potential is vanish-
ing, so the flow vector depends on its neighbors only.

After all individual faces of the training set have been
matched to a reference face, the average 3D shape as well
as the average surface texture map can be computed. Addi-
tionally, correponding values of surface texture of different
faces can be exchanged.
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