

Coastal Acid Sulfate Soils:

^{1,3}Rob Fitzpatrick, ^{2, 3}Bernie Powell and ¹Steve Marvanek

¹CSIRO Land and Water / CRC Landscape Environments and Mineral Exploration (CRC LEME)

²Queensland Department of Natural Resources and Mines

³National Committee for Acid Sulfate Soils (NatCASS)

Outline

What are Acid Sulfate Soils (ASS)?

- Mechanisms, formation and types
- Impacts of coastal Acid Sulfate Soils

National Atlas of Acid Sulfate Soils Completed work – coastal outcomes Stage 1: Co-ordination via NatCASS

- Project team, state, territory and federal partners
- Consistent format/ approach across the nation
- Data delivery via ASRIS website

Future work – next stages (in progress)

Stage 2: Refinement of National Atlas of coastal ASS

- via representative case studies and databases
- NHT funding via NatCASS (CSIRO, DPI and SCU)

Stage 3: National ASS Atlas adding inland ASS

Summary and Future Scenarios

What are Acid Sulfate Soils?

Soils and sediments that contain iron sulfides (mostly pyrite),

When drained or disturbed (exposed to oxygen)

They form sulfuric acid

FeS₂ +
$$^{15}/_4$$
O₂ + $^{7}/_2$ H₂O \Rightarrow Fe(OH)₃ + $^{2SO_4^{2-}}$ + $^{4H^+}$
pyrite + oxygen + water \Rightarrow iron (aq) + sulfuric acid (aq)

Horizons, materials and layers in ASS

Sulfuric horizon

(Has become acidic after disturbance) pH <3.5
Oxidised iron sulfides

- with yellow mottles
- jarosites

Sulfidic material

(If disturbed becomes acidic) pH 6.5-7.5
Unoxidised iron sulfides

- black

Three types of ASS

1 Coastal or seawater settings (below 5 m)

- Tidal
- Estuarine
- Mangroves

2 Inland/upland or freshwater settings

- Non-tidal
- Saline sulfate-rich groundwater
- Dryland salinity
- Drains and irrigation channel

3 Mine spoil settings

e.g. coal or base metals

Negative impacts – East Trinity Drained and scalded areas Dead mangroves from acid drainage

Negative impacts

- environmental

Economic impacts Some examples:

NSW fish and oyster death

>\$2 million pa

Corrosion cost Tweed Heads Shire Council

\$4 million infrastructure replacement

ASS treatment /management cost in Qld

\$180 million/year

National Atlas of Acid Sulfate Soils

Previously: No consistent national format

Now: ASS Project - National Atlas in progress

- Consistent national map partnership with states and territories
- Where ASS data inadequate
 - other data was used(e.g. coastal vegetation, Digital Elevation Maps)
- Result Standardised national map (including computer formats e.g. Internet and GIS)

Outcome of Stage 1: Coastal ASS

Originally ~40,000km²

Now - Stage 1 Coastal ASS ~ 95 000 km² = two billion tonnes of sulfidic material

(Potentially 3 billion tonnes sulfuric acid)

Revised map shows:

- Consistent national classification of ASS
- Various different types of coastal ASS e.g. high and low probability, disturbed (acidic), bottom sediments, intertidal flats (mangroves), non-tidal (sandplains & dunes)

Distribution of coastal Acid Sulfate Soils

~95,000km² of coastal ASS

Of which:

21,000 km² as bottom sediments below low tide

and

74,000 km² on coastal land,

- over **1,000 km**² already disturbed and acidified

Coastal ASS estimate doubled! WHY?

Due to:

- Improved ASS data interpretation using advanced electronic mapping (GIS)
- Inclusion of submerged ASS sediments below the low tidal mark
 - - has potential impact on water quality

Web-based Map via ASRIS

(Australian Soil Resource Information System)

Web accessible map www.asris.csiro.au

ASS Management Options

- Avoid or minimise disturbance
- Reflood to curtail oxidation
- Neutralise acidity
- Bury ASS under clean fill
- Manage or contain discharge of acid and toxic waters

Strategies to avoid ASS problems

- Education
- Extension
- Regulation
- Knowledge from previous NHT and NLWRA funded work contributed to ASS management options/strategies and Stage 1 ASS map
- ASS map defines areas that are at risk

Low cost treatment

Use seawater to flood below the crop root zone to curtail oxidation and neutralise some acidity

High Cost - Chemical Neutralisation

Applying lime - Very expensive!

- (e.g. 600 tonnes of lime per hectare incorporated to 2.5 m depth) -
- restricted to high value sites

Stage 2: Refinement of maps

15 representative case studies with management options

Example:-

Example case study to refine ASS maps & ASS database

Soil acidity (ASS risk map)

Soil categories

NAPG (Net Acid Generating Potential) (kg H2SO4 /tonne of soil)

Depositional facies, location of pyrite oxidation and the movement of acidic and contaminants

520,000 tonnes H₂SO₄ has been produced

Stage 3: Adds inland ASS to map

CRCLEME

Cooperative Research Centre for Landscape Environments and Mineral Exploration

via CRC LEME, State and Industry funding

Changes:

- pH $7.0 \to 3.5$
- Soils aerated
- Unhealthy vegetation
- Soil unstable, churned, eroded
- Heavy metals released to waterways
- Heavy metal halo left around wetland CSIRO www.csiro.au

Summary: National Atlas of ASS – the potential problem is getting bigger!

National Atlas of ASS is an approach to develop:

- a standard classification of all types of ASS
- Australia-wide ASS risk coverage in a single map

There is a dramatic upward revision of

- extent
- potential severity

Estimated area has more than doubled Management policy not fully developed

(- each state has particular strengths and weaknesses)

Future Scenarios

National Atlas of ASS:

- is a tool to support the National ASS Strategy, aims to avoid disturbance of <u>all</u> types of ASS
- provides database and knowledge of ASS distribution, which is critical to successful:
 - nationally consistent policy development
 - adoption of land & water management options
- is an example of Australian governments working together for betterment of communities