
MANAGING A DESIGNER/2000 PROJECT

Leslie M. Tierstein,
W R Systems, Ltd.

NYOUG Fall ’97 Conference Page 1

INTRODUCTION
Congratulations! W R Systems has just been awarded
a multi-million dollar contract to do full life cycle
development of a mission-critical system for a major
government agency. And you’ve been named the
technical project manager. The new system will
replace numerous “stove-pipe” application systems as
well as the aging, obsolete hardware that hosts the
applications at not one, but three, divisions of the
agency. And, oh, by the way, although the divisions
will have one management and management structure
very soon, right now, they still have different ways of
doing business which somehow have to be accommo-
dated by one, totally integrated application -- the one
you’re responsible for building.

After the initial joy of being awarded the contract,
reality swiftly set in. We were faced with many
management and technical decisions to be made in a
relatively short period of time, followed by more than
a year of specifying the hardware and developing the
software following the methodology we’d said we
would use. This paper explains some of the decisions
we made, and the methodology we ended up using,
and, hopefully, offers some pointers for people em-
barking on similar projects.

RE-ENGINEER OR RE-IMPLEMENT?
The decision whether to re-engineer business
processes or re-implement existing procedures was, in
principle, made for us by the contract: our mandate
was to re-implement existing systems, so we could
move the users off of hardware which was no longer
being manufactured, for which spare parts and
maintenance were almost impossible to get, and which
would run out of disk space within a year.

Although this mandate limited the scope of re-
engineering, it didn’t eliminate it. Three organi-
zations, with divergent processes, were being merged
into one. Some divergent processes would still be
needed, to support different businesses at the
organizations; however, in most cases we needed to
come up with one common practice with one computer
implementation.

Re-engineering was also required by virtue of re-
implementing in a different hardware-software
environment. We were going from a batch-system
with 24-hour turnaround on transaction processing,

almost no on-line editing and verification, and reports
as the primary way to view data, to an on-line system.
This de facto re-engineering will have a profound
effect on the way the users do business, and had a pro-
found effect on some of the analysis and design
decisions we had to make and methodologies we had
to use during development.

SELECTING ORACLE
Like the decision to re-implement in general and re-
engineer when required, the requirement to use the
Oracle design and development toolset was specified
in the contract. As part of a previous contract, W. R.
Systems had studied the commercially available
products which supported doing integrated CASE
development. The candidate product set had to
support full life cycle development, from requirements
gathering, through analysis, design, implementation,
deployment, and maintenance, in a client/server
development, but with deployment on both character-
based terminals and GUI workstations. The Oracle
product suite was a clear winner, both in terms of
functionality and cost-benefit analysis, although it was
far from perfect. We recognized that we would have
to supplement the Oracle-provided tools with others,
either developed in-house, or purchased from another
vendor and integrated, via procedures or custom
software, to the Oracle tools.

So, although we didn’t 100 percent agree with the
Oracle methodology, we bought it. In the version we
benchmarked (CASE 5.1), the user interface scored
low, but it was the best methodological framework --
and robust, working toolset that went with that
framework -- for our mission-critical, database-
intensive software project.

LIFE CYCLE DEVELOPMENT METHODOLOGY
One of the most attractive features of the Oracle
design and development tools was that they provide a
framework which lets implementors combine top-
down analysis and design with bottom-up rapid
prototyping. I like to call this a “middle-out”
approach. A certain amount of top-down analysis and
design is required. But some of the traditional top-
level development phases can be worked in parallel
with more detailed design and implementation. So,
roughly in chronological order, but with some overlap

NYOUG Fall ’97 Conference Page 2

between the tasks, our development effort consisted of
the phases discussed below.

Plan, Plan, Plan
This being a government contract, we had lots of plans
to write before we could get to designing and
developing software. These included a Software
Development Plan, Software Test Plan, Configuration
Management Plan, Quality Assurance Plan, and more.
Although there was some groaning during this phase,
especially when people got their plans back from
editorial and management review, in retrospect, I’d
say that preparing the plans was worthwhile, because:

? ? The Software Engineering Institute likes them.
? ? Your users and sponsors like them.
? ? The developers can even grow to, if not like

them, at least rely on them.

First of all, we didn’t have to prepare the plans from
scratch. Existence of such plans is required if your
organization’s development methodology is going to
rank anywhere above level 1 (chaotic) on the Software
Engineering Institute’s Capability Maturity Model.
W R Systems is a software development contractor; in
order to get contracts, we have to go through Software
Capability Evaluations (SCE’s), where a team of
independent auditors reviews your procedures and
methodologies. So, for this contract, we mostly
reviewed and enhanced existing documents, to
incorporate the new methodologies and/or standards
embodied by the Oracle development tools.

Second, these plans are the first things your users and
sponsors can see that makes your methodology
explicit. As such, they start the process of user
education. And, you’ll need lots of user education,
starting with the way the system will be developed,
and the role you expect them to play in this process,
going through them learning how to use the software.

As for the sponsors, if your sponsor is the U. S.
government, the plan should give concrete examples of
the sorts of specification documents that will be
produced. MILSTD specifications, while evolving,
have not kept pace with evolution of CASE tools. We
had to make sure that the sponsor understood that we
would not be producing specifications which exactly
matched MILSTD, but the nearest thing that the
development tools could produce automatically.

The plans are also the first step in developer
education. Developers can get an ideal of what will be
expected from them at each stage of the project. These
plans didn’t go into excruciating detail -- we got to

that soon enough, in our standards and procedures
manuals. But, they did formulate methodological
guidelines and establish expectations.

Principles Applicable to all
Development Phases
Some principles of our methodology apply to all
phases of the development life cycle. I’d like to thank
Dai Clegg, of the Designer/2000 development
(marketing) team for talking about the concept of the
“Time-box”.

A project is defined by the three dimensions of the
box:

? ? Time How much time do you have to
complete development and
deployment?

? ? Functions What functions does the system
have to include?

? ? Money How much money can you spend -
- on staff and other resources -- to
get the job done?

Determine which of these can be adjusted if the project
runs into difficulty. Have a risk management plan in
place, for when you do run into difficulty. You will
never have flexibility in all three dimensions -- most
managers and users won’t put up with it, and the
uncertainty can be unnerving to project teams, too.
Having no flexibility at all is a recipe for disaster,
especially if this is your first project using a particular
methodology and/or toolset. At a minimum, it will
result in burn-out; I don’t even want to suggest the
maximums, but all scenarios include varying degrees
of mayhem and employment instability.

Another useful technique suggested by Dai Clegg was
“MoSCoW”. It stands for the four categories - “must
have”, “should have”, “could have”, and “won’t have”
-- that you can use to prioritize features and functions
which are candidates for inclusion in the new
application.

NYOUG Fall ’97 Conference Page 3

Must have An supply management system ab-
solutely MUST have an inventory
replenishment algorithm.

Should have The provisioning screen SHOULD
look and act like this, for maximum
efficiency; but, a slightly different
user interface could do in a pinch.

Could have Well, if we have time, we COULD
make the report accessible from both
screens, as well as from the menu.

Won’t have Sorry, that’s not in the requirements,
so you WON’T have it.

The MoSCoW categories and criteria are easy to
apply, and easily understood by users. Get the users to
help you classify their own requirements and, later in
the project cycle, their requests for changes and
enhancements.

Requirements Gathering
Requirements gathering is one high-level task that has
to be performed before you get too deep into other
analysis and design tasks. You need well written,
understandable requirements, that all prospective users
have agreed on. These requirements have to be
understandable to functional users, so they can see that
their system is taken care of; to implementors, who
have to write the code implementing the requirements,
and, don’t forget -- to testers, who have to test the
software and make sure it meets the requirements.

Our project refined the requirements which had
previously been gathered through extensive user
interviews and workshops. Gathering and distributing
the requirements is essential for user buy-in. And it’s
a vital weapon for analysts in stopping “creeping fea-
turism”: “Sorry, it’s not on the requirements list.” Of
course, in conjunction with the requirements list, we
developed a means to change the requirements list,
and, also, a way to track the requirements, and to trace
them to functions, and later, to modules.
Unfortunately, requirements traceability is one of the
incomplete pieces in the current Oracle toolset.

Analysis
Somewhere towards the end of the analysis phase, I
came across a book by Richard A. Moran: Cancel the
Meetings, Keep the Doughnuts: And Other New
Morsels of Business Wisdom. It’s a collection of pithy
sayings. Almost immediately, one of them became
applicable:

The fastest way to turn the aircraft carrier around
in the proverbial lagoon is to blow it up and
reassemble it facing in the right direction.

In other words, once problems with a design become
apparent, examine them, and their implications,
carefully. Most analysts will probably try to make first
one band-aid fix, then another. They might need
outside help -- in the form of a formal technical or QA
review -- to realize that they should redesign
immediately. Yes, they’ll have to throw out part of
their beautiful ERD or function descriptions, but it will
be less work in the long run than making multiple
band-aid fixes, and finding out, eventually, that you
have to redesign anyway.

This principle is also true if the “mistake” is not the
result of a bad design, but, say, learning more about
the toolset, and/or figuring out a better way to do
something. Here’s where two of Tierstein’s rules for
system development come into play:

? ? Let the system do the work for you.
? ? Don’t fight the system.

The Oracle toolset, like most modern tools, is built on
a processing paradigm that may be more or less
explicit. Working with the paradigm is almost always
more productive than not taking advantage of it or
even actively fighting it. Have you ever seen PL/SQL
code that was written as if it was COBOL? It’s not a
pretty sight.

Design
Taking advantage of the Oracle tools’ methodology,
we started design and implementation (code
generation) before analysis was 100 percent complete.
However, standards and guidelines were already
formulated: The project teams never developed a
screen -- or showed it to the users -- before the
corresponding requirement and function had been
approved. And, changes were not applied to the
screens before “Action Items” could be written up, to
document what changes the users had requested,
when, and why. In doing this, we avoided one of the
worst dangers in doing Rapid Application
Development (RAD). If you do too much instant
coding, without design infra-structure or development
standards in place, you risk ending up with what Dai
Clegg called “instant legacy code” - the code only took
one day to develop, but it’s as unmaintainable as code
that has been patched for many years.

When you are going from a primarily batch to on-line
requirement, you have to expect lots of design changes

NYOUG Fall ’97 Conference Page 4

in the format of output provided to the users. Your
requirements probably include alot of printed output,
including proof and reconciliation reports, which are
required for batch systems, but not at all applicable to
on-line systems with field-level data and referential in-
tegrity checks built in. However, until the users see
your screens -- with the query ability automatically
provided, by virtue of the Oracle Forms paradigm, and
additional query-only forms, it may be hard to
convince them that they don’t need printed reports.
Persevere. If you design the forms so they provide all
or most of the output previously only available in
printed form, you may not have to provide all the re-
ports previously specified.

STANDARDS
There’s an old saying that goes, “If you have four
rabbis in a room, you’ll have five opinions.” The
same principle applies to project teams and standards:
if you fail to document a standard for a particular
design or implementation issue, and you have four
project teams, you will end up with five different
designs or implementations.

We tried to develop standards for all aspects of design
and development. In fact, the project has three books
(not “white papers”, but full-size books, with many
chapters in each) on standards.

Design and Development Standards
The Oracle Development Standards cover every
applicable option in the Designer/2000 toolset. For
every tab or property sheet to be filled in, the standards
specify which fields are required, which are optional,
and which are not used, and give instructions for sup-
plying valid field values.

At a more conceptual level, the standards cover topics
such as:

? ? naming data elements;
? ? specifying the appearance of screens, via the use

of templates, groups, and other capabilities;
? ? how an entity relationship diagram should be

drawn;
? ? which preferences are set at the application

level, which can be modified on a module-by-
module basis, under what circumstances they
can be modified, and acceptable variations.

Development Standards and Proce-
dures.
The Development Standards and Procedures give
instructions on how to do everything not directly tied

to using the design and development tools. These
include guidelines for writing procedural code (in our
case, PL/SQL); for writing SQL*Loader control files;
for preparing a module for presentation at a prototype;
and reporting on the outcome of that prototype and
tracking resultant specification and code changes.
These standards also include several checklists, lists of
all the activities that must be completed, on a module-
by-module or table-by-table basis, for the object to be
considered complete.

Testing Standards and Procedures
Unit and unit integration testing are largely covered by
the standards promulgated for module development,
since this is, after all, a CASE environment. The
Testing Standards and Procedures apply to subsystem
and system integration testing, as well as all phases of
system and acceptance testing. We needed to
supplement the Oracle toolset with testing tools, so us-
age of those tools is explained here, too.

Using the Standards
All these standards were not in place by the start of the
project. They were enhanced as the proj??ect
proceeded and we discovered new things about the
tools. It was particularly gratifying to the technical
director when team leaders, and even team members,
suggested additions or enhancements to the standards.
I think we’ve been living up to another of Moran’s
axioms:

“Having both standards and flexibility can be
done. It’s just not easy.”

USER EDUCATION
User education must be an on-going activity. It starts
as soon as the contract is awarded (or management
gives the project the go-ahead), and continues
throughout the project life cycle. The trade presses
have paid some, but not alot of, attention, to the re-
training of end-users and their management. It should
be receiving just as much attention as re-training
COBOL developers to do client-server development,
since it’s at least as critical to the project’s success.
The customers for the system have to be aware not
only of the ways in which the end-product will differ
from their current systems, but also of the differences
in the way the product will be developed, and what
their roles will be in the development cycle.

For example, our users were accustomed to large-scale
COBOL developments. They were initially scared
that, after the design reviews, we would vanish into

NYOUG Fall ’97 Conference Page 5

our offices for 6 months and emerge with finished
code, which would be near impossible to change. We
pointed to our plans, which said we would have
periodic design reviews. We showed them our
Guidelines, which said we would be doing prototypes,
keeping track of action items, and showing them
revised modules at the next convenient opportunity.
We gave the users CASE-generated reports (most of
them customized to include only the information the
users were most interested in), and instructions on
how to read the reports. With every prototype, we
distributed preliminary versions of the user
documentation -- it consisted mostly of a screen print
and the module description text, cut and pasted from
the CASE repository -- but it was enough to help them
visualize their new processing paradigm.

DATA CLEANSING AND CONVERSION
Conversion of legacy data into the new system is not
sexy -- programmers generally don’t get to use high-
tech GUI tools. But it has to be started early: to
convert data from the old format to the new, someone
has to know the structure and semantics of the old
data. With legacy systems, some of which have been
in place for twenty years, the original designers have
probably long since vanished. Be prepared for some
arduous work.

A good place to start is with an “attribute cross-walk”,
showing the mapping between the old data and the
new. Not only will this form the basis of your data
conversion design, it also let’s you verify the database
design, to ensure you’re capturing all the data you
need to. Plus, it reassures the users that none of their
data will be lost. In order to do our attribute cross-
walks (one for each of five subsystems), we had to
extend the development repository to include the
definition of the old files and fields, and their
relationships to the new tables and columns.

Users will probably have to do some work - so let them
get it on their schedules. Their work will be both in
reviewing your mappings, and in data cleansing.

You’ll have to start work early in order to do data
cleansing. Our data cleansing reports, based on
samples of the legacy data, indicated all the “dirty”
data we found -- from invalid dates, to violated check
and domain constraints, through missing data items
and missing records. We also suggested fixes, and
who had to do the fixing -- the developers, by writing
more sophisticated conversion software than originally
envisioned, or the users, who had to research what the
missing data was, and provide it to us.

An interesting side effect of involving the users in the
data cleansing process was getting good feedback from
them on other aspects of the proposed system. We’d
been distributing reports on domains and their values
since the analysis phase, with some, but, limited
comments. When the users reviewed the data
cleansing reports, they realized, “Oops, if the value’s
not in the domain, I’ll lose my data.” We got accurate
feedback on required domain values in a hurry.

STAFFING
The number of people assigned to any development
project will, of course, depend on the size of the
project. However, the skill sets of each of these
people, and their levels of expertise, remain fairly
constant for any project developed using Oracle’s
development tools and RDBMS.

Project Management
The project manager does the usual stuff - reports to
management; acts as the official liaison with
management of the user organization; and keeps track
of financials and project costs. The project manager
also protects his technical staff from too many non-
project related interruptions.

The technical manager manages technical aspects of
project development. The technical manager needs to
be able to communicate (both verbally and in written
form) effectively; you have to lead your team, write
the project standards documents, and write numerous
reports to users - both regularly scheduled status
reports, as well as impromptu position papers, explain-
ing yet another aspect of the development process. For
example, I’ve written papers on data cleansing
methodology and prototyping techniques and status
reports.

It goes without saying, the technical manager needs
expertise in the development and database
methodologies you’re using -- maybe not enough to do
the most complex implementation work, but enough to
pitch in if needed, and to double check designs and
code and verify that design and implementation
decisions are correct. In another development
methodology, the technical manager might be thought
of as the product architect.

Administration
The repository administrator is a relatively new
position, absolutely vital for repository-based
developed. This position really entails two sets of
skills. On the one hand, the repository administrator
needs to know how to add new users, extract

NYOUG Fall ’97 Conference Page 6

applications, and manage the CASE environment. In
addition, the repository administrator is the person
who knows the dictionary views and APIs inside out.
You’ll probably need someone who can provide cus-
tomized reports; extend the repository to incorporate
additional information, such as requirements tracking
and attribute cross-walks; and maybe write an
interface to a non-Oracle product which provides
missing functionality.

The position of database administrator is probably
not full time, even in a large project. But high-level
expertise is required to set up the repository database.
And, throughout the proj??ect, the administrator must
be available to offer advice on the structure of user
database, and do performance tuning for the
development environment. The database
administrator and the repository administrator have to
like each other very much, or finger-pointing will
occur when things do not run smoothly.

Both database and repository administrators have to
talk to the system administrator, who is in charge of
installing software and, in general, making sure you
have a reliable system to develop your software on,
with all the required support tools.

The Designers and Developers
Team leaders have to be both people-people and
technical people. They have to be able to manage
people; coordinate designs and schedules with fellow
team leaders, especially in complex, multiple
application development efforts; and follow the
methodological guidelines of the project. Plus, they
need technical skills to run their project team. Don’t
skimp on team leaders.

Most of the analysts will be working with the design
and development tools - writing functional
specifications, designing the database, generating code
based on the module and database definitions, and
then enhancing the generated code. You’ll need a mix
of senior and junior people doing these tasks. Since
we’re no longer using a waterfall model of
development, you can’t have senior “designers” start
to design a module, then throw it over the waterfall to
junior “programmers” to finish. Everyone is a
designer; you just might hire the senior designers
before you find the more junior staff members.

Additional analysts will need a different skill set, in
order to use the tools to write the data conversion
software. You’ll need SQL*Loader expertise, but,
probably more important, SQL and PL/SQL hard-
hitters, if the data requires any type of more complex

massaging than SQL*Loader can handle. And since
we were going from non-normalized ISAM and other
sources, extensive massaging was in order.

Quality Assurance
The SEI model prescribes an independent quality
assurance organization - or, at least, individual. Our
QA person (“Q”) monitors compliance with standards,
and performs periodic audits on designs and code, as
well as regularly scheduled reviews. QA can take
some of the heat off the technical manager, by
monitoring standards compliance, so the technical
manager is not perceived as the “Standards Czar”.

Support Personnel
The documentation specialist and testing co-
ordinator also reported to the QA organization. For
documentation, this was a convenience, since there
was only one documentation person. But it’s critical
for testing, where an independent evaluator is
required.

The configuration manager reported directly to the
project manager. Configuration management and
related disciplines, such as version control, have
consistently been, and continue to be a problem, given
the nature of repository-, as opposed to ASCII code-
based source. We’re still on the lookout for a
satisfactory solution.

Finding the People
What people did we have to work on the proj??ect?
Unfortunately, not enough, and not senior enough. As
we probably all know, experienced Oracle developers
and in big demand, and hard to find. Start hiring
early. I would rather hire smart people with limited,
but applicable experience, but the right mindset
(“Wow, this generated-code is great!”) than someone
with experience but a BAAAD attitude (“It would be
faster to write it in C++ -- or pro-C.”) Just be pre-
pared for a longer learning curve. (Increase the time
dimension in that time-box.)

CONCLUSION
This is a work in progress, so there’s no conclusion,
yet. The project, which WILL finish on time and on
budget, has another four months to go. I’d like
another Oracle development project, so I can use
everything I’ve learned. But not too soon.

