

Design and Operation of Power Systems with Large Amounts of Wind Power - first results of IEA collaboration -

H. Holttinen, P. Meibom, A. Orths, F. Van Hulle, C. Ensslin,
L. Hofmann, J. McCann, J. Pierik, J. O. Tande, A. Estanqueiro,
L. Söder, G. Strbac, B. Parsons, J. C. Smith, B. Lemström

Background

- Wind power penetration increasing: system integration costs is becoming an issue for many countries.
- ^t Ongoing work in many countries and organisations. Difficult to compare the results.
- t Task 25 for IEA WIND Implementing Agreement:

"Design and operation of power systems with large amounts of wind power" was started in 2006, duration 3 years

Participation as of 1.9.2006: Denmark, EWEA, Finland, Germany, Ireland, Norway, Netherlands, Portugal, Spain (unconfirmed), Sweden, UK, USA www.ieawind.org

http://www.ieawind.org/

√VII

VTT TECHNICAL RESEARCH CENTRE OF FINLAND

Integration costs

- ^t Extra costs for power system for accommodating wind power, not included in wind power investment costs
- t Policymakers
 - make sure that increasing renewable energy will not be offset by negative impacts.
- t System operators, regulators
 - market design / rules and tariffs, allocation of costs

VTT TECHNICAL RESEARCH CENTRE OF FINLAND

Experience from regions with large wind power NWPC conference paper results

- t Gotland, Sweden: 90 MW wind power, 160 MW peak load (19 % of energy)
 - Maximal wind power share 40 % (max wind /(min load + transmission))
 - Balancing solved outside region: control enhanced to enable around 0 MW operation of HVDC link to mainland
- t West Denmark: 2380 MW wind power, 3700 MW peak load (24 % of energy)
 - Maximal wind power share 58 % (max wind /(min load + transmission))
 - Balancing solved both inside and outside region. Wind power regulation has been used in rare occasions.
- t North Germany: 2275 MW wind power, 2000 MW peak load (33 % of energy)
 - Maximal wind power share 18 % (max wind /(min load + transmission))
 - Balancing solved both inside and outside region. Wind power regulation has been used since 2003 in occasions with high wind and congested transmission. Fault-ride-through needed to avoid wind power becoming a dimensioning fault (> 3000 MW tripping off)

VTT TECHNICAL RESEARCH CENTRE OF FINI AND

Recent studies in USA

- t Minnesota: 1500 MW of wind in 10 GW peak load system (=15 %)
 - Balancing, capacity credit
- t New York: 3300 MW of wind in 33 GW peak load system (=10 %)
 - Balancing, stability, grid reinforcement needs, capacity credit
- t Colorado 700 and 1050 MW in 7 GW peak load system (=10-15 %)
 - Balancing
- t California: existing wind power, 4 % of peak load
 - Balancing, capacity credit

VTT TECHNICAL RESEARCH CENTRE OF FINLAND

Summary grid reinforcements

t UK : £50-100 / kW (70-140 €/kW).

t Netherlands : 60-110 €/kW for 6000 MW offshore

t Portugal: 53 €/kW

t The German dena study:100 €/kW

t Problems in comparisons:

- grid reinforcement costs are not continuous, there can be single very high cost reinforcements
- the way that grid costs are allocated to wind can differ

VTT TECHNICAL RESEARCH CENTRE OF FINLAND

Conclusions from the studies

- t Integration costs 0.5-4 €/MWh for balancing
 - Small compared to production cost of wind power (~ 40-60 €/MWh) or to avoided fuel costs (~ 20-30 €/MWh with 2001 price level)
 - In some countries wind power producers pay imbalance payments that are greater than the actual extra cost incurred to the power system
- t Integration costs 50-100 €/kW for grid reinforcements
 - Depending on wind resource location versus load centres

VTT TECHNICAL RESEARCH CENTRE OF FINLAND

10

Recommended practise (so far)

- Capture the smoothed out variability of wind power production time series for the geographic diversity assumed:
 - Actual data from tens of wind farms and/or met towers or synchronized weather simulation
 - Wind forecasting best practice for the uncertainty of wind power production.
- t Examine wind variation in combination with load variations
- t Capture system response through operational simulations
- t Examine actual costs independent of tariff design structure

VTT TECHNICAL RESEARCH CENTRE OF FINLAND

Further work of the IEA Task 25

OBJECTIVE:

to analyse and further develop the methodology to assess the impact of wind on power systems

GOALS:

- t Provide an international forum for exchange of knowledge
- t State-of-the-art: review and analyse the studies and results so far
 - methodologies and input data, system operation practices, planning methodologies and modifications that have been necessary with high penetration, concepts and technologies enabling enhanced penetration
- t Formulate guidelines:
 - recommended methodologies and input data when estimating impacts and costs of wind power integration
- $_{\scriptscriptstyle \rm t}$ Quantify the impacts of WP on power systems
 - range of impacts/costs; rules of thumb

www.ieawind.org

VTT TECHNICAL RESEARCH CENTRE OF FINLANI

11