A-B-Cs of Sun-Synchronous Orbit Mission Design

Ronald J. Boain
Jet Propulsion Laboratory
California Institute of Technology
AAS/AIAA Space Flight Mechanics Conference
Maui, Hawaii
8-12 February 2004

The Perturbation due to a Non-Spherical Earth

- The equation for the precession/regression of the line of nodes of an earth orbiter is common known and given as:
- It describes the rate and direction the orbit plane moves along the earth's equator
- It's derived in many standard astrodynamics/celestial mechanics textbooks
- Battin, Danby, Escobal
- It is described and applied in many other books as well
- Brown, Wertz, Bate
- This paper is about a unique and

$$
\dot{\Omega}=-\frac{3}{2} J_{2}\left(\frac{a_{e}}{p}\right)^{2} n * \cos (i)
$$

Eq. 1 special application of this equation

Earth-Sun Geometry Schematic

Defining a Sun-Synchronous Orbit

- A SS-O is characterized as a polar earth orbit that provides a consistent sun-lighting condition along the orbit's groundtrack (GT)
- E.G., a satellite in a 01:30 p.m. SS-O making observations along the daylight side of the orbit will see lighting/shadowing conditions corresponding to an hour and a half pass the noon hour
- For 10:30 a.m. SS-O, the lighting corresponds to an hour and a half before the noon hour
- The correct definition of a SS-O is an orbit where the node precesses at a rate equal to the earth's Mean Motion around the sun
- I.E., $\dot{\Omega}=360^{\circ} / 365.242199=0.9856$ deg/day
- Assuming a circular orbit, this implies through Eq. 1 that by selecting the altitude, the inclination is automatically implied
- With this choice for $\dot{\Omega}$, the position of the node remains fixed with respect to the mean solar meridian and sun-lighting conditions as described above will result
9 February 2004

Sun-Synchronous Condition: Inclination vs. Altitude ($\mathrm{e}=0$)

Reckoning Time

- Understanding how time is reckoned is a complex subject
- Sidereal time
- Apparent solar time
- Mean solar time
- Sidereal time is based on the earth's rotation rate relative to the stars/vernal equinox and is not useful for reckoning time since it loses approximately 4 minutes per day measured in mean solar time
- Apparent solar time is inconvenient since the sun's motion is not regular with respect to the background stars and can vary >16 min per day
- Obliquity of the ecliptic, i.e., sun's change in declination
- Elliptic earth orbit, i.e., The Equation of Time
- Only mean solar time based on the mean sun crossing the mean solar meridian is consistent with 86400 seconds per day
- The MLT for SS-Os is also based on the mean solar meridian

9 February 2004

System Engineering the Mission Design

Stated Science Requirements/ Desires	Motivating Objective or Instrument Characteristic	Traceable Orbit Characteristic/Parameter
Limitation on the range to a target; viewing angle constraints	Instrument sensitivity, resolution, field of view/swath-width, allowable elongation/ distortion over a footprint, etc.	Orbit altitude
Number and distribution of targets to be observed (for discrete targets)	Unique geographic targets to be measured	Orbit altitude, inclination; groundtrack grid density; groundtrack tied point to achieve over-flight of specific lat/lon
Area coverage to be provided (for continuous targets)	Percentage of earth's surface to be accessible for observation	Orbit inclination, altitude
Frequency with which targets/areas are to be sampled	Allowable time interval before a repeat observation is possible	Orbit altitude
Sun-lighting conditions to be provided (for optical measurements)	Consistent sun shadows for targets	Orbit nodal position and/or nodal Mean Local Time; orbit inclination
Seasonal considerations of observations	Visual access to Antarctica (for example) during Antarctic summer	Orbit nodal position and/or nodal Mean Local Time; orbit inclination
Overall duration/period of time necessary to measure some phenomenon through it life-cycle	Life expectancy for instruments, system, mission life	Orbit altitude

Delta ELV Performance to SS-O Altitude

> NASA ELV Performance Estimation Curve(s)
> LEO Circular with inclination Sun-Synchronous
> Please note ground rules and assumptions below.

9 February 2004

Orbit Parameters for SS-Os with an Integer Number of Revs in One-Day

- Five solutions, corresponding to $12,13,14,15, \& 16$ revs per day, exist over a range of altitudes desired for low earth SS-Os
- The equatorial altitude for these solutions ranges between 250 and 1680 km
- These solutions have coarse GT grids, i.e., >2500 km between adjacent groundtracks
- η is the angle subtended from the nadir direction to the adjacent groundtrack
- Although interesting orbits, they provide only localized coverage

Revs per Day, \#	Orbital Period, sec	Equator Altitude, km	Dist betw/ Adj GTs, km
12	7200.00	1680.86	3339.59 $\left(\eta=51.5^{\circ}\right)$
13	6646.15	1262.09	3082.69 $\left(\eta=56.1^{\circ}\right)$
14	6171.43	893.79	2862.50 $\left(\eta=61.1^{\circ}\right)$
15	5760.00	566.89	2671.67 $\left(\eta=66.7^{\circ}\right)$
16	5400.00	274.42	2504.69 $\left(\eta=72.7^{\circ}\right)$

9 February 2004

SS-Os with Finer GT Grids

- Next consider SS-Os which repeat their GT in two-days:
- If solutions exist for all integers between 12 and 16 for the oneday repeat, then solutions exist for integers between 24 and 32 for the two-day repeat:

$$
24,25,26,27,28,29,30,31,32
$$

- Apparently 9 possible solutions
- A quick calculation shows that solutions for $24,26,28,30$, and 32 are degenerate with $12, \ldots 16$ for one-day repeats, i.e., they have identically the same periods, with the integer solutions for the oneday repeat
- Therefore, there are only four new solutions for the two-day repeat, but these have $25,27,29$, and 31 revs, thereby decreasing the spacing between nodes at the expense of increasing the re-visit time ("access")

Notation for Solutions with R Revs in D Days

- Extending the previous reasoning, repeat GT orbits can be found for $3,4,5,6,7, \ldots$ and so forth days
- Example: Thee-day repeat orbits

$$
36,37,38,39,40,41,42,43,44,45,46,47,48
$$

- Removing the degenerate solutions yields 8 unique solutions which repeat their GT in three-days:
$37,38,40,41,43,44,46,47$
- A convenient notation for one of these solutions is:

3D43R = 3-day repeat in exactly 43 revs or
3D47R $=3$-day repeat in exactly 47 revs and so forth

- Another example: Seven-day repeat orbit solutions =>

7D85R, 7D86R, 7D87R, ... 7D109R, 7D111R

9 February 2004

Discrete Sun-Synchronous Repeat Groundtrack Orbits vs. Altitude

9 February 2004

Analemma in Declination - Equation of Time Space

9 February 2004

Aqua Solar Beta-Angle Prediction

9 February 2004

Orbit Plane Geometry for Computing the Time Spent in Shadow

Given Spherical Triangle A-B-C, the Law of Cosines gives:

Summary

- SS-Os are defined as low earth orbits which have a nodal precession rate equal to the earth's Mean Motion
- There is a unique coupling between orbit altitude and inclination to achieve this precession rate as implied by Eq. 1
- This precession has the effect of making the position of the nodes with respect to the mean sun remain fixed (to first order)
- SS-O altitudes can be selected to provide a repeat groundtracks in an integer number of revs in an integer number of days
- Sun-lighting conditions on the orbit and for observations made from the orbit can be determined by selecting the MLT
- The paper provides several simple algorithms that enable the calculation of altitude (hence inclination) and MLT to satisfy common mission requirements

9 February 2004

References

- Richard H. Battin, An Introduction to the Mathematics and Methods of Astrodynamics, American Institute of Aeronautics and Astronautics, Inc., 1987
- J.M.A. Danby, Fundamentals of Celestial Mechanics, Willmann-Bell, Inc., 1989
- Pedro R. Escobal, Methods of Orbit Determination, John Wiley \& Sons, Inc., 1965
- Charles C. Brown, Spacecraft Mission Design/Second Edition, American Institute of Aeronautics and Astronautics, Inc., 1998
- Roger R. Bate, et al, Fundamentals of Astrodynamics, Dover Publications, Inc., 1971

