
5. Faraday’s Law—Electromagnetic Induction

5.1 Electromotive Force

Faraday’s Law

Michael Faraday’s law of electromagnetic induction can be stated as follows:

• When the magnetic flux Φ =

∫

B ·dS through a circuit is changing, an electromotive

force is induced in the circuit.

• The magnitude of the e.m.f. is proportional to the rate of change of magnetic flux.

Faraday deduced his law in 1831-2, after performing a number of experiments that showed:

• If the current in a coil changes, a current is induced in a neighbouring coil, because
the amount of the first coil’s magnetic flux that links (i.e., crosses) the second coil
changes.

• If a coil moves relative to a source of flux (of whatever type), such that the flux linked
changes, then a current is induced in the coil.

• If part of a conducting circuit moves, and therefore cuts magnetic flux, then a current
is induced in the circuit.

• The current induced is proportional to the conductance of the wire, so the change
in flux gives a definite electromotive force (voltage) rather than a current. This
e.m.f. is also called the electromotance.

• Faraday did not initially note that the e.m.f. was proportional to the rate of change
of flux, only that one increased with the other. Neumann was the first to assume this
(in 1845) and Faraday proved it in 1851-2.

• In 1832, Joseph Henry was the first to discover self-inductance, whereby a change in
current in a coil induces an e.m.f. in its own circuit.

We will show that these observations lead to the law as stated at the start, namely that
the e.m.f. is equal to the rate of change of magnetic flux, whether it be the magnetic field
that is changing, or the circuit that is moving, or a combination of the two.

Lenz’s Law

Faraday was vague about the direction of the induced e.m.f. in each case, and it was Emil
Lenz in 1834 who first made a clear statement.

• The induced e.m.f. is always in such a direction as to promote a current flow that
creates a magnetic field that opposes the change in flux.
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5.2. EXPLANATION OF FARADAY’S LAW

5.2 Explanation of Faraday’s Law

• Consider the force on a charge +q in a wire moving at velocity v through a field B

F = q (v×××××B) (5.1)

• In the rest frame of the charge, this force appears to be due to an electric field

E = F /q = v×××××B (5.2)

• The contribution to the e.m.f., for an element of length dl, is

dE ≡ E · dl = (v×××××B) .dl (5.3)

• Now consider a loop of wire moving through a (constant) magnetic field B:

The total e.m.f. around the circuit

E =

∮

dE = −

∮

(B×××××v)·dl = −

∮

B·(v×××××dl). (5.4)

• Let the loop move a distance dx in time dt.

• Then
v×××××dl =

dx

dt
×××××dl =

dS

dt
(5.5)

and so

∮

B · (v×××××dl) =

∫

strip
B ·

dS

dt

=
1

dt

∫

strip
B · dS =

d

dt

∫

loop
B · dS (5.6)

(The new area after time dt is the old area plus that of
the strip around the edge.)

⇒ E = −

∮

B·(v×××××dl) = −
d

dt

∫

B · dS = −
dΦ

dt
. (5.7)

• The formula E = −dΦ/dt works for both the following cases:

1. Moving a loop, cutting stationary B field lines (as here);

2. A stationary loop with a changing B field through it.
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5.3. FARADAY’S LAW AND MAXWELL’S EQUATIONS

This formula for Faraday’s law was derived above for the case of a rigid circuit moving
in a static magnetic field. However, Faraday showed that it was only the relative
motion of the circuit and the source of magnetic field that mattered. Thus the law
also applies to the case of a stationary circuit where the flux linked changes with time
because the source is moving.

However, we cannot tell how a magnetic field was produced just by measuring it at
a point. Thus Faraday’s law should hold when the flux varies for whatever reason,
such as a varying current in another coil, and not just when the source is moving.

In some cases, the circuit may move while the field is changing. The law still holds.

5.3 Faraday’s Law and Maxwell’s Equations

• Faraday’s law states that
∮

dl·E = −
dΦ

dt
= −

d

dt

∫

dS·B. (5.8)

• We can write Faraday’s law in integral or differential form.

• To get the Maxwell equation we consider a fixed loop so that the only time variation
comes from the time dependence of B at each position. Thus we change the full
derivative to a partial derivative:

Integral form:

∮

dl·E = −

∫

dS·
∂B

∂t
. (5.9)

• Apply Stokes’ theorem to the left-hand side to get the differential form:
∮

dl·E =

∫

dS·∇×××××E. (5.10)

• These are equal for all loops, so

∇×××××E = −
∂B

∂t
(Maxwell 2) (5.11)

• This reduces, as expected, to ∇×××××E = 0 for electrostatics.

5.4 Self-Inductance

Faraday’s law requires us to know the flux linked by a circuit. We will now calculate
the flux for a number of important cases. The inductance of a circuit element is the flux
that links it per unit current, flowing either in the same circuit element (for the self-

inductance) or in another circuit element (for the mutual inductance). We consider
first the self-inductance.
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5.5. SELF-INDUCTANCE OF A LONG SOLENOID

• A circuit carrying current I is linked by the magnetic field lines produced by its own
current.

• Let Φ = the total self-linked magnetic flux.

Linearity ⇒ Φ ∝ I.

• Define the self-inductance:
L ≡ Φ/I (5.12)

• The unit of inductance (in SI) is the Henry:

1 H ≡ 1 Wb A−1, where 1 Wb ≡ 1 T m2. (5.13)

• L is determined by the geometry of the circuit: current loops have a larger L than
straight wires, as we will show below.

5.5 Self-Inductance of a Long Solenoid

As a first example, we calculate the self-inductance of a long solenoid, of length l and
cross-sectional area S; we ignore end effects.

Let there be n turns per unit length.

B = 0 outside the solenoid.

Inside the solenoid, B ≡ Bi.

Ampère:

∮

dl·H = Hil = nlI ⇒ Bi = µ0nI (5.14)

since nl is the total number of loops, each of which contributes to the field.

The total flux linked is
Φ = nlBiS = n2lIµ0S (5.15)

⇒ The self-inductance L ≡ Φ/I = µ0n
2Sl.

⇒ Self-inductance per unit length = µ0n
2S. (5.16)
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5.6. SELF-INDUCTANCE OF COAXIAL CYLINDERS

5.6 Self-Inductance of Coaxial Cylinders

The next example is a coaxial cable, which consists of a pair of coaxial cylinders, of length
l, and inner and outer radii a and b. There is no magnetic field outside the outer wire, since
no net current threads a loop of constant radius outside the outer cylinder. In between the
cylinders, consider a loop of radius r, and apply Ampère’s law:

∮

dl·H = I (5.17)

⇒ B(r) =
µ0I

2πr
. (5.18)

Now,

Φ = l

∫ b

a

dr B(r) (5.19)

⇒ LI = Φ =
µ0Il

2π
log

(

b

a

)

(5.20)

⇒ The self-inductance per unit length =
µ0

2π
log

(

b

a

)

. (5.21)

5.7 Self-Inductance of a Pair of Wires

The third example is a pair of parallel wires (such as twin-pair cables, and transmission
lines), of length l, and radius a ≪ D, where 2D is the distance between the centres of the
wires, as shown.

Assume the currents are uniformly distributed.
⇒ The magnetic field due to one wire

B(r) =
µ0I

2πr
. (5.22)

⇒ The flux due to one wire

Φ =
µ0Il

2π

∫

2D−a

a

dr

r
≈

µ0Il

2π
log

(

2D

a

)

(a ≪ D) (5.23)

The flux due to both wires is twice this.

⇒ The self-inductance per unit length =
µ0

π
log

(

2D

a

)

. (5.24)
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5.8. ENERGY STORED IN INDUCTANCE

Note that the integral does not include the field inside each wire. This is negligible at
high frequencies, because of the “skin effect”, whereby high-frequency current flows only
in the surface of conductors. At low frequencies, this self-inductance of each wire can also
be shown to be small—0.05µH m−1 (see e.g., Duffin pp225–6).

5.8 Energy Stored in Inductance

• If L is constant (rigid circuits) and I increases with time,

Faraday ⇒ E = −
∂Φ

∂t
= −

∂

∂t
(LI) = −L

∂I

∂t
(5.25)

since Φ = LI.

• Consider an LR circuit + a voltage source:

V = RI + L
∂I

∂t
↑

“back e.m.f”

(5.26)

• The rate of energy loss in the voltage source = V I.

V I = I2R + LI
∂I

∂t
= I2R +

∂

∂t

(

1

2
LI2

)

↑ ↑
Dissipation in resistor Rate of gain of magnetic

energy in inductance

(5.27)

⇒ Energy stored in LR circuit:

UL = 1

2
LI2 (5.28)

(c.f. capacitance UC = 1

2
CV 2).

78



5.9. MUTUAL INDUCTANCE

5.9 Mutual Inductance

• We now consider two circuits near each other:

• The current I1 produces a flux linkage Φ2 in
circuit #2.

• Linearity ⇒ Φ2 ∝ I1.

• Define the mutual inductance:

M12 ≡
Φ2

I1

. (5.29)

This is similar to L1 = Φ1/I1 for the self-inductance.

• Similarly, we can define M21 ≡ Φ1/I2.

• We will show that the mutual inductance is symmetric:

M21 = M12. (5.30)

• This is an example of a very general reciprocity theorem, which is applicable whenever
there is a quadratic stored energy (see the Dynamics course).

5.10 Symmetry of Mutual Inductance

We will prove that the mutual inductance is symmetric in two ways, firstly by imagining
how the currents are set up, and secondly by finding the flux enclosed directly from the
Biot-Savart law.

• Suppose I1 = I2 = 0 and I1 is gradually
turned on.

There is a back e.m.f.

∂Φ1

∂t
= L1

∂I1

∂t
. (5.31)

I1 does work against the e.m.f. at a rate

I1L1

∂I1

∂t
. (5.32)
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5.11. MUTUAL INDUCTANCE FROM THE BIOT-SAVART LAW

⇒ The energy stored in the field

U = 1

2
L1I

2

1
. (5.33)

• Now suppose I2 is turned on, keeping I1 fixed.

The extra energy due to the self-inductance is (as above) 1

2
L2I

2

2 .

The back e.m.f. in the first circuit due to the mutual inductance is

∂Φ1

∂t
= M21

∂I2

∂t
. (5.34)

The battery in circuit #1 does work to keep I1 constant at a rate

I1M21

∂I2

∂t
. (5.35)

(The battery in circuit #2 does no work against the mutual inductance since I1 is a
constant.)

⇒ The total energy U = 1

2
L1I

2

1
+ 1

2
L2I

2

2
+ M21I1I2. (5.36)

• This stored energy must be the same if, instead, I2 is switched on before I1

⇒ M21 = M12 (5.37)

5.11 Mutual Inductance From the Biot-Savart Law

We now use the Biot-Savart law to write down the mutual inductance directly, by inte-
gration. The formula itself for M may sometimes be useful, but it is the symmetry of the
formula that we care about here.

• This is a high-tech direct proof. It is not for
examination

• R = r − l1

(r = l2 on loop #2)

• Remember that the vector potential A is defined through B = ∇××××× A. In section 3.3
we showed that the Biot-Savart law can be written

dB =
µ0I

4π
∇×××××

(

dl

R

)

, (5.38)

so we can choose
dA =

µ0I

4π

dl

R
. (5.39)
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5.12. COMBINATION OF L AND M

• The flux linkage through circuit #2 (using Stokes’s theorem)

Φ2 =
∫

dS2·B1 =
∫

dS2·∇×××××A1

=

∮

loop 2
dl2 · A1

=

∮

loop 2
dl2 ·

∮

loop 1
dA1

=
µ0I1

4π

∮

loop 2
dl2 ·

∮

loop 1

dl1

|l2 − l1|

(5.40)

⇒ M12 =
µ0

4π

∮

loop 2

∮

loop 1

dl1 · dl2

|l2 − l1|
= M21. (5.41)

This is obviously symmetric.

Note that the mutual inductance is not symmetric if there is a non-linear magnetic
material (a ferromagnet) present. µ is different for the primary and secondary loops
if the number of turns is different, so that the field, and hence µ, is different.

5.12 Combination of L and M

• The mutual inductance is
M12 = M21 ≡ M. (5.42)

• The self-inductance is L.

• Sign convention: M is positive if the
currents are in the same sense

⇒ Φ2 = L2I2 + MI1. (5.43)

• The mutual inductance produces an e.m.f. E1 in circuit #1 if the current in circuit
#2 changes. This adds to the e.m.f. due to any change in I1 itself.

E1 = −L1

∂I1

∂t
− M

∂I2

∂t
,

E2 = −L2

∂I2

∂t
− M

∂I1

∂t
.

(5.44)
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5.13. ENERGY IN COUPLED CIRCUITS

5.13 Energy in Coupled Circuits

A voltage source connected to an inductor can drive only as much current as the back e.m.f.
allows, i.e., the applied voltage and the back e.m.f. (the negative of the e.m.f.) balance each
other.

V1 = L1

∂I1

∂t
+ M

∂I2

∂t

V2 = L2

∂I2

∂t
+ M

∂I1

∂t

(5.45)

• The energy loss from the voltage sources

= V1I1 + V2I2. (5.46)

= I1L1

∂I1

∂t
+ I1M

∂I2

∂t
+ I2L2

∂I2

∂t
+ I2M

∂I1

∂t
(5.47)

=
∂

∂t

(

1

2
L1I

2

1

)

+
∂

∂t

(

1

2
L2I

2

2

)

+
∂

∂t
(MI1I2)

↑ ↑ ↑
energy gain energy gain energy gain in

in L1 in L2 mutual field

(5.48)

⇒ The total energy is UM = 1

2
L1I

2

1 + 1

2
L2I

2

2 + MI1I2.

• The first two terms are > 0, but the third can take either sign.
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5.14. THE LINK BETWEEN L AND M

5.14 The Link Between L and M

• UM = 1

2
(L1I

2

1
+ 2MI1I2 + L2I

2

2
)

=
1

2
L1

(

I1 +
M

L1

I2

)2

+
1

2

(

L2 −
M2

L1

)

I2

2
. (5.49)

• The total UM must be positive so there is a restriction on the value of M . UM must
be positive even when the first bracket is zero.

⇒ L2 −
M2

L1

> 0

⇒ M2 ≤ L1L2. (5.50)

Define
M = k(L1L2)

1/2 (0 ≤ k ≤ 1). (5.51)

k is the coefficient of coupling; k = 1 ⇒ perfect coupling.

• Example: two long solenoids wound over each other.
The number of turns per unit length is n1

and n2, respectively (A and l are the same).

B1 = µ0n1I1 as usual.

The flux linking #1 = B1An1l

⇒ L1 = µ0n
2

1
Al. (5.52)

The flux linking #2 = B1An2l

⇒ M = µ0n1n2Al. (5.53)

Similarly
L2 = µ0n

2

2
Al. (5.54)

⇒ M = (L1L2)
1/2 (5.55)

for this case, since the flux enclosed is the same for each coil.

83



5.15. THE IDEAL TRANSFORMER

5.15 The Ideal Transformer

We now consider the case of an ideal transformer, where two coils are connected by a loop
of ferromagnet, as shown. We assume that all the flux is confined to the ferromagnet, i.e.,
that there is perfect coupling between the coils.

Here it is more convenient to use the total number of turns in a coil N , rather than the
number per unit length n.

N1
        N2

No flux losses

⇒ k = 1. (5.56)

The flux in the core is Φ,
generated by either coil.

• We assume that there are no energy losses in the wires and no hysteresis. So the
coil ‘former’ (or core) is, say, soft iron, with high µ; the field is not high enough to
saturate the iron.

• The flux of each turn of coil #1 links each turn of coil #2.

Φ1 = N1Φ ; Φ2 = N2Φ

Φ = flux linkage per turn

V1 = −
∂Φ1

∂t
= −N1

∂Φ

∂t

V2 = −
∂Φ2

∂t
= −N2

∂Φ

∂t

(5.57)

• The two coils behave as a transformer:

V1

V2

=
N1

N2

(5.58)

• The self-inductance L = µ0(N/l)2Sl for a coil of length l and cross-sectional area S
with N turns in total.

⇒
L1

L2

=

(

N1

N2

)2
l2
l1

. (5.59)

• This analysis assumes that the voltages generate a changing flux. Thus transformers
are most useful for oscillating voltages, though they can also be used to give a large
voltage spike when a circuit carrying a current is broken suddenly, e.g., to cause a
spark in a car’s sparkplugs.

• For non-ideal transformers, losses may arise from eddy currents in the core, resistive
heating in the coils, hysteresis losses, and flux leakage.
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5.16. TRANSFORMER — EXAMPLE

5.16 Transformer — Example

• Consider a perfect transformer with coil #1 driven by a voltage generator giving a
sinusoidal voltage V1.

N1 N2V1 Z2

I2I1 The coils are wound in the same
direction, but the current I1 goes
into coil #1 at the same end that
I2 comes out of coil #2, so I2 gives
a flux through coil #1 in the op-
posite direction to the flux from I1

⇒ Φ1 = LI1 − MI2. (5.60)

• Coil #2 is connected to a load impedance Z2.

(primary) V1 = L1

∂I1

∂t
− M

∂I2

∂t

(secondary) V2 = 0 = L2

∂I2

∂t
− M

∂I1

∂t
+ I2Z2

(5.61)

• Look for a time dependence like ejωt:

⇒
∂V1

∂t
= jωV1 ;

∂I1

∂t
= jωI1 ; etc. (5.62)

• Rearranging:
V2 = 0 ⇒ (jωL2 + Z2)I2 = jωMI1 (5.63)

V1 = jωL1I1 − jωMI2 = jωL1I1 −
(jωM)2I1

Z2 + jωL2

(5.64)

⇒
V1

I1

= jωL1 −
(jωM)2

Z2 + jωL2

(5.65)

• Assume perfect coupling, and that the coils have the same length.

⇒ M2 = L1L2 and
L1

L2

=

(

N1

N2

)2

⇒
V1

I1

=
jωL1 Z2(N1/N2)

2

jωL1 + Z2(N1/N2)2
. (5.66)

• Also, we find I2Z2 = V1

N2

N1

, as expected.

• The impedance of the ‘input’ to the transformer, Zi ≡ V1/I1 is the same as that for
impedances Z2(N1/N2)

2 and jωL1 in parallel.

⇒ The transformer ‘looks like’ an inductance L1 in parallel with a ‘reflected impedance’
Z2(N1/N2)

2.

• The transformer can match a low-impedance device with a high-impedance device if
the turns ratio is chosen appropriately.
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5.17. MAGNETIC ENERGY

• Usually ωL1 ≫ Z2(N1/N2)
2, so

Zi ≈ Z2(N1/N2)
2. (5.67)

So if the load Z2 is resistive (Z2 real), then Zi is ‘mainly’ real, and the voltages across
the two coils oscillate in phase.

5.17 Magnetic Energy

We wish to obtain a general expression for the magnetic energy density.

• For a current I flowing in an inductance L, the stored energy W = 1

2
LI2.

Now, L = Φ/I, Φ = flux through circuit.

⇒ W = 1

2
ΦI.

• Now consider two circuits:

W = 1

2
L1I

2
1 + M12I1I2 + 1

2
L2I

2
2

= 1

2
(L1I1 + M12I2)I1 + 1

2
(L2I2 + M12I1)I2

= 1

2
I1Φ1 + 1

2
I2Φ2

(5.68)

since the flux through the first circuit Φ1 = L1I1 + M12I2, etc.

• If there are many circuits {i} (or current filaments within each wire), W =
∑

i

1

2
ΦiIi.

• But Φ =

∫

B·dS and B = ∇×××××A, where A is the vector potential,

⇒ Φ =

∫

dS·∇×××××A =

∮

A·dl

⇒ W = 1

2

∑

i

(
∮

A·(Idl)

)

i

• Go to the distributed limit, Idl → Jdτ , and combine the loop integrals and the sum
into one integral:

⇒ W = 1

2

∫

dτA·J (5.69)

where the integral is over a large volume enclosing all the current. W is the total
magnetic energy in the volume.

• Ampère/Maxwell ⇒ ∇×××××H = J (for now. . . )

⇒ W = 1

2

∫

dτA·J = 1

2

∫

dτ A·∇×××××H .

• To prove the following handy theorem, note that the ∇ acts on both A and H ,
generating two terms (Leibniz’s product rule); then use rearrangements of the scalar
triple product:
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5.18. TIME-VARYING ELECTRIC FIELDS

∇·(A×××××H) = H·(∇×××××A) − A·(∇×××××H). (5.70)

• Use this theorem to form the divergence, and convert to a surface integral:

W = −1

2

∫

dτ ∇·(A×××××H) + 1

2

∫

dτ H·∇×××××A

= −1

2

∮

dS·A×××××H + 1

2

∫

dτ H·B
(5.71)

• Take the integral over a large surface of radius R:
dS ∝ R2; A ∝ R−1; H ∝ R−2;
⇒ surface integral → 0 as R → ∞.

⇒ W =

∫

dτ 1

2
B·H (5.72)

⇒ Magnetic energy density: UM = 1

2
B·H (5.73)

5.18 Time-varying Electric Fields

• The electromagnetic equations so far are NOT CONSISTENT with charge conservation:
∮

dS·J +

∫

dτ
∂ρ

∂t
= 0 (5.74)

⇒ ∇·J +
∂ρ

∂t
= 0 (since true for all volumes) (5.75)

This is the equation of continuity, which we derived earlier.

• But we have
∇×××××H = J ⇒ ∇·J = 0 (!) (5.76)

(∇·∇×××××... is always zero)

• So we must add Maxwell’s Displacement Current Ḋ (D is called the electric
displacement)

(Maxwell 4) ∇×××××H = J +
∂D

∂t
(5.77)

This is Maxwell’s greatest contribution. It may not seem very important yet, but
when this equation is combined with the other equations, very important things
happen—waves.

• Take the divergence:

0 = ∇·J +
∂

∂t
∇·D (5.78)

• But ∇·D = ρ (Maxwell 1), so everything is now OK.
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5.19. MAXWELL’S EQUATIONS IN FULL

5.19 Maxwell’s Equations in Full

∇·D = ρfree

∇×××××E = −Ḃ

∇·B = 0

∇×××××H = J free + Ḋ

(5.79)

[The dot, of course,means the partial derivative w.r.t. time.]

Describing Maxwell’s equations, Heinrich Hertz once said: “One cannot escape the feeling
that...they have an intelligence of their own, that they are wiser than we are, wiser even
than their discoverers, that we get more out of them than was originally put into them.”

Einstein (around 1905) was inspired by the invariance of the speed of light in Maxwell’s
equations and so combined them with the principle of relativity to derive E = mc2.

Dirac (in 1927) applied quantum theory to Maxwell’s equations and went on to formulate
his equation for the electron and lay down the foundations of quantum electrodynamics.

Maxwell’s equations recently topped a poll to find the greatest equations of all time in
Physics World (October 2004). They narrowly beat “1 + 1 = 2”!

• There are also constitutive relationships for media:

(D, E) permittivity
(B, H) permeability
(J , E) conductivity

• Other useful equations:

F = q(E + v×××××B) Lorentz force (5.80)

B = ∇×××××A; E = −∇V −
∂A

∂t
(next year) (5.81)
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