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1 REGULAR LANGUAGES

Lexical analysis, also called scanning, is the phase of the compilation process which deals with the actual program
being compiled, character by character. The higher level parts of the compiler will call the lexical analyzer with the
command ”get the next word from the input”, and it is the scanner’s job to sort through the input characters and
find this word.

The types of ”words” commonly found in a program are:

• programming language keywords, such as if, while, struct, int etc.

• operator symbols like =, +, -, &&, !, <= etc.

• other special symbols like: ( ), { }, [ ], ;, & etc.

• constants like 1, 2, 3, ’a’, ’b’, ’c’, "any quoted string" etc.

• variable and function names (called identifers) such as x, i, t1 etc.

Some languages (such as C) are case sensitive, in that they differentiate between eg. if and IF; thus the former would
be a keyword, the latter a variable name.

Also, most languages would insist that identifers cannot be any of the keywords, or contain operator symbols (versions
of Fortran don’t, making lexical analysis quite difficult).

In addition to the basic grouping process, lexical analysis usually performs the following tasks:

• Since there are only a finite number of types of words, instead of passing the actual word to the next phase we
can save space by passing a suitable representation. This representation is known as a token.

• If the language isn’t case sensitive, we can eliminate differences between case at this point by using just one
token per keyword, irrespective of case; eg.

#define IF-TOKEN 1
#define WHILE-TOKEN 2
.....
.....
if we meet "IF", "If", "iF", "if" then return IF_TOKEN
if we meet "WHILE, "While", "WHile", ... then return WHILE-TOKEN

• We can pick out mistakes in the lexical syntax of the program such as using a character which is not valid in the
language. (Note that we do not worry about the combination of patterns; eg. the pattern of characters "+*"
would be returned as PLUS-TOKEN, MULT-TOKEN, and it would be up to the next phase to see that these should
not follow in sequence.)

• We can eliminate pieces of the program that are no longer relevant, such as spaces, tabs, carriage-returns (in
most languages), and comments.

In order to specify the lexical analysis process, what we need is some method of describing which patterns of characters
correspond to which words.

1.1 Regular Expressions

Regular expressions are used to define patterns of characters; they are used in UNIX tools such as awk, grep, vi and,
of course, lex.

A regular expression is just a form of notation, used for describing sets of words. For any given set of characters Σ, a
regular expression over Σ is defined by:

• The empty string, ε, which denotes a string of length zero, and means “take nothing from the input”. It is
most commonly used in conjunction with other regular expressions eg. to denote optionality.

• Any character in Σ may be used in a regular expression. For instance, if we write a as a regular expression, this
means “take the letter a from the input”; ie. it denotes the (singleton) set of words {“a”}

• The union operator, “|”, which denotes the union of two sets of words. Thus the regular expression a|b denotes
the set {“a”, “b”}, and means “take either the letter a or the letter b from the input”
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• Writing two regular expressions side-by-side is known as concatenation; thus the regular expression ab denotes
the set {“ab”} and means “take the character a followed by the character b from the input”.

• The Kleene closure of a regular expression, denoted by “*”, indicates zero or more occurrences of that ex-
pression. Thus a* is the (infinite) set {ε, “a”, “aa”, “aaa”, . . . } and means “take zero or more as from the
input”.

Brackets may be used in a regular expression to enforce precedence or increase clarity.

1.2 Non-Deterministic Finite-State Automata

In order to try and understand how lex builds a scanner, we will construct a formal model of the scanning process.
This model should take characters one-by-one from the input, and identify them with particular patterns which match
up with a regular expression.

The standard model used is the finite-state automaton. We can convert any definition involving regular expressions
into an implementable finite automaton in two steps:

Regular expression ←→ NFA ←→ DFA

A non-deterministic finite-state automaton (NFA) consists of:

• An alphabet Σ of input symbols

• A set of states, of which we distinguish:

– a unique start state, usually numbered “0”

– a set of final states

• A transition relation which, for any given state and symbol gives the (possibly empty) set of next states

We can represent a NFA diagrammatically using a (labelled, directed) graph, where states are represented by nodes
(circles) and transitions are represented by edges (arrows).

The purpose of an NFA is to model the process of reading in characters until we have formed one of the words that
we are looking for.

How an NFA operates:

• We begin in the start state (usually labelled 0) and read the first character on the input.

• Each time we are in a state, reading a character from the input, we examine the outgoing transitions for this
state, and look for one labelled with the current character. We then use this to move to a new state.

– There may be more than one possible transition, in which case we choose one at random.

– If at any stage there is an output transition labelled with the empty string, ε, we may take it without
consuming any input.

• We keep going like this until we have no more input, or until we have reached one of the final states.

• If we are in a final state, with no input left, then we have succeeded in recognising a pattern.

• Otherwise we must backtrack to the last state in which we had to choose between two or more transitions, and
try selecting a different one.

Basically, in order to match a pattern, we are trying to find a sequence of transitions that will take us from the start
state to one of the finish states, consuming all of the input.

The key concept here is that: every NFA corresponds to a regular expression

Moreover, it is fairly easy to convert a regular expression to a corresponding NFA. To see how NFAs correspond to
regular expressions, let us describe a conversion algorithm.
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1.2.1 Converting a regular expression to a NFA - Thompson’s Algorithm

We will use the rules which defined a regular expression as a basis for the construction:

1. The NFA representing the empty string is:

-&%
'$

0 &%
'$
��
��

1

q

ε

2. If the regular expression is just a character, eg. a, then the corresponding NFA is :

-&%
'$

0 &%
'$
��
��

1

q

a

3. The union operator is represented by a choice of transitions from a node; thus a|b can be represented as:

-&%
'$

0 &%
'$
��
��

1

q

a

1

b

4. Concatenation simply involves connecting one NFA to the other; eg. ab is:

-&%
'$

0 &%
'$

1

j

a

&%
'$
��
��

2

j

b

5. The Kleene closure must allow for taking zero or more instances of the letter from the input; thus a* looks like:

-&%
'$

0 &%
'$

1

j

ε

&%
'$

2

j

a

Y ε &%
'$
��
��

3

j

ε

*

ε
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1.2.2 Kleene’s Theorem

We have shown how to convert a regular expression to an NFA; the proof that these represent the same language is
straightforward (by induction). However, we have asserted that there is a correspondence in both directions; this is
formalised in Kleene’s Theorem:

Kleene’s Theorem, part 1: To each regular expression there corresponds a NFA
Strategy: The corresponding NFA is the one constructed by Thompson’s Algorithm; proof that it is equivalent is by
induction over regular expressions.
Proof: Boring!

Kleene’s Theorem, part 2: To each NFA there corresponds a regular expression
Strategy: Proof by induction over the states of the NFA (sort of).
The language represented by a NFA can be partitioned into the union of a number of smaller languages, each defined
as follows:

Let the states of the NFA be numbered from 1 to N .
Let p and q be states, and let J be a number such that 0 ≤ J ≤ N .
Then:

L(p, q, J) =
{

x ∈ Σ∗ | x corresponds to a path in the NFA between p and q
that passes through no state numbered as high as J

}
Note that if S is the start state, then the union of all L(S, F,N + 1) for all finish states F is the language accepted by
the NFA.

Equally, if we can show that L(p, q, J) has a corresponding regular expression for all p, q and J , we will have proved
the theorem. The proof of this will proceed by induction over J .

Proof: (Kleene’s Theorem, part 2)

• Base Case: J = 1
We must be able to get from p to q without passing through any states; therefore either p=q, or we go directly
in one transition from p to q. The only strings that can be recognised in this case are ε and single characters
from Σ. The rules R1 and R2 give us a regular expression corresponding to these situations.

• Inductive Step: J = K + 1
The induction hypothesis is that for some K such that 1 ≤ K ≤ N , the language L(p, q,K) has a corresponding
regular expression. Now we must prove that, based on this assumption, L(p, q,K+1) has a corresponding regular
expression.

Suppose the machine L(p, q,K + 1) consumes some string x; we must find a regular expression corresponding to
x. Now suppose also that it passes through state K on its way (if it doesn’t, then x is in L(p, q,K), which has a
corresponding regular expression by the induction hypothesis). Since the machine can “loop” on K arbitrarily
many times, we can split x up into three substrings:

a which moves the machine from state p to state K

b which causes the machine to “loop” on state K

c which moves the machine from state K to state q

We note that while any of the above strings may cause us to start or finish at state K, none of them actually
cause us to move through K. Thus we have:

a ∈ L(p, K,K)

b ∈ L(K, K,K)

c ∈ L(K, q,K)

By the induction hypothesis each of these have corresponding regular expressions, say A, B and C respectively,
and thus the regular expression for x is A(B*)C.

Since our choice of x was arbitrary, we have proved the theorem.

QED.

4



1.2.3 Converting a NFA to a Regular Expression

The last theorem actually yields an algorithm for converting a NFA to a regular expression. The proof was by induc-
tion; we can transform this into a recursive function where the recursion is based on an integer argument.

We note that the induction step tells us that to calculate the language L(p, q,K + 1) for any K > 1, it will either be:

- the language L(p, q,K), or

- the language (L(p, K,K).L(K, K,K) ∗ .L(K, q,K)).

If we represent this “or” by the union operation, we then have a recursive definition of L(p, q,K + 1) in terms of
languages of the form L( , ,K).

The base case is where K = 1. As we have seen in the proof of Kleene’s theorem, these machine components correspond
to one-step transitions in the FSA, and the equivalent regular expressions are thus just the symbols which cause those
transitions.

Based on this we can define function L, which takes three numbers as arguments and returns a regular expression, as
follows:

regular-expression L(int I, int J, int K)
{
if (K==1)
return {a | there is an ‘a‘ transition between states I and J}

else
return L(p,q,K-1) | (L(p,K-1,K-1).L(K-1,K-1,K-1)*.L(K-1,q,K-1));

}

Given any FSA with N states altogether, where S is the start state and F is the final state, we convert it to a regular
expression by calling the function L(S,F,N+1)

1.3 Deterministic Finite-State Automata

NFAs are useful, in that they are easily constructed from regular expressions, and give us some kind of computational
idea of how a scanner might work. However, since they involve making decisions, and backtracking if that decision
was wrong, they are not really suitable for implementation using conventional programming languages.

Instead, we use a Deterministic Finite-State Automaton (DFA) which is a special case of a NFA with the
additional requirements that:

1. There are no transitions involving ε

2. No state has two outgoing transitions based on the same symbol

Thus, when we are in some state in a DFA, there is no choice to be made; the operation of a DFA can very easily be
converted into a program.

It is vital to note that: every NFA can be converted to an equivalent DFA

We will define an algorithm to do this, for arbitrary NFAs; the basic idea here is that sets of states in the NFA will
correspond to just one state in the DFA.

1.3.1 Constructing a DFA from an NFA (“Subset Construction”)

We merge together NFA states by looking at them from the point of view of the input characters:

• From the point of view of the input, any two states that are connected by an ε-transition may as well be the same,
since we can move from one to the other without consuming any character. Thus states which are connected by
an ε-transition will be represented by the same states in the DFA.

• If it is possible to have multiple transitions based on the same symbol, then we can regard a transition on a
symbol as moving from a state to a set of states (ie. the union of all those states reachable by a transition on
the current symbol). Thus these states will be combined into a single DFA state.
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To perform this operation, let us define two functions:

• The ε-closure function takes a state and returns the set of states reachable from it based on (one or more)
ε-transitions. Note that this will always include the state tself. We should be able to get from a state to any
state in its ε-closure without consuming any input.

• The function move takes a state and a character, and returns the set of states reachable by one transition on
this character.

We can generalise both these functions to apply to sets of states by taking the union of the application to individual
states.

Eg. If A, B and C are states, move({A,B,C},‘a’) = move(A,‘a’) ∪ move(B,‘a’) ∪ move(C,‘a’).

The Subset Construction Algorithm

1. Create the start state of the DFA by taking the ε-closure of the start state of the NFA.

2. Perform the following for the new DFA state:
For each possible input symbol:

(a) Apply move to the newly-created state and the input symbol; this will return a set of states.

(b) Apply the ε-closure to this set of states, possibly resulting in a new set.

This set of NFA states will be a single state in the DFA.

3. Each time we generate a new DFA state, we must apply step 2 to it. The process is complete when applying
step 2 does not yield any new states.

4. The finish states of the DFA are those which contain any of the finish states of the NFA.

1.4 DFA minimisation

Since we are interested in translating a DFA into a program, we will want to ensure that this program is as efficient
as possible. In automata terms, one aspect of this will be to ensure that the constructed DFA has as few states as
possible. This is achieved by an algorithm known as DFA minimisation.

We take the “optimistic” approach: we start by assuming that all states are actually the same, and only distinguish
those which we can prove are different. As for subset construction, the states of the minimised DFA will be sets of
states from the original DFA; these will be states that we couldn’t tell apart!

Two states are different if:

• one is a final state and the other isn’t, or

• the transition function maps them to different states, based on the same input character

We base our algorithm on partitioning the states using this criterion.

1. Initially start with two sets of states: the final, and the non-final states.

2. For each state-set created by the previous iteration, examine the transitions for each state and each input symbol.
If they go to a different state-set for any two states, then these should be put into different state-sets for the
next iteration.

3. We are finished when an iteration creates no new state-sets.

1.5 Further Properties of Regular Languages

Since we have shown the equivalence of regular languages and FSAs, we can prove facts about language membership
by describing constructions on their corresponding automata. Also, we show that it is possible to prove facts other
than language membership using a FSA.
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1.5.1 Total DFA

The last type of FSA that we need to look at is the total DFA - this has properties which we will need in the next section.

A total FSA is one where each state has exactly one transition to some other state for every input symbol. Thus there
are no “gaps” in the transition table for the machine: given any state and any input symbol, it will always be possible
to make a transition.

We can convert any ordinary DFA to a total DFA as follows:

1. Create some new state S, which we will use for “stuck” computations

2. For each input symbol, make a transition from state S to itself: thus it is never possible to leave this state.

3. For each other state S′, and for every possible input symbol a, check to see if S′ has an outgoing transition on
a; if it doesn’t, then make a new transition from S′ to S on a.

It can be easily seen that this DFA is total.

1.5.2 Closure of Regular Languages

By the definition of regular expressions (and by Thompson’s algorithm), we know that the union, concatenation and
Kleene closure of regular languages must also be a regular language. It is reasonable to ask: does this hold for other
“set-theoretic” operations, such as intersection, difference and complement? We prove that these languages are regular
by constructing the appropriate automata.

Let L1 and L2 be regular languages over the alphabet Σ, and let M1 and M2 be their corresponding total DFAs.
Let us define the components of M1 and M2 as follows:

• let the set of states of M1 be P , from which we distinguish:

– p0, the start state of M1

– Pf , the set of final states of M1

• let D1 be the transition function for M1; that is, the (partial) function:
D1 : P × Σ −→ P

• let the set of states of M2 be Q, from which we distinguish:

– q0, the start state of M2

– Qf , the set of final states of M2

• let D2 be the transition function for M2; that is, the (partial) function:
D2 : Q × Σ −→ Q

Now we can define:

1. The intersection of L1 and L2 is the machine M1 ∩M2 defined by:

• the set of states is P × Q, the Cartesian product of P and Q. Thus for any p ∈ P and q ∈ Q, the pair
(p, q) is a state. We distinguish:

– (p0, q0), the start state of M1 ∩M2

– {(p, q) | p ∈ Pf and q ∈ Qf}, the set of final states of M1 ∩M2

• the transition function: DP×Q : (P × Q) × Σ −→ (P × Q) is defined, for any character ‘a’, by:
DP×Q((p, q), a) = (D1(p, a), D2(q, a))

2. The difference of L1 and L2 is the machine M1 −M2, defined as for intersection, except that the set of final
states is now: {(p, q) | p ∈ Pf and q 6∈ Qf}

3. The complement of the language L1 is the machine M1’, which is simply M1 with the final and non-final states
swapped; ie. the set of final states is: P − Pf
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1.5.3 Other Decision Problems for FSAs

We use a FSA to answer a question of the form: “is x in the language L?”. This is known as a decision problem,
since the answer will be “yes” or “no”. We can pose other decision problems for regular languages:

DP1 For any regular language L, is L = ∅?

DP2 For any two regular languages L1 and L2, is L1 ⊂ L2?

DP3 For any two regular languages L1 and L2, is L1 = L2?

Once again, we approach these problems by examining the corresponding FSAs. The corresponding FSA decision
problem, and the decision algorithm, for the above are:

DP1 Given a FSA M , does M accept any strings?
A FSA accepts no strings if either there are no final states, or if there is no path from the start state to a final
state. To see if this is so, we need to work out which states are “reachable” from the start state. Construct the
following sets of states:

– R0 just contains the start state

– Ri is all the states in Ri−1, along with any states reachable in one transition from a state in Ri−1

We stop the construction when Ri = Ri−1 (this has to happen, as there are only a finite number of states
altogether). When this happens, just examine the states in Ri; if this set doesn’t contain any final states, then
M accepts no strings.

DP2 Given two FSAs M1 and M2, is the language accepted by M1 a subset of that accepted by M2?
We note that L1 ⊂ L2 if and only if L1 − L2 = ∅. Thus our algorithm is: construct the machine M1 −M2 (as
in the last section), and apply the algorithm for [DP1]

DP3 Given two FSAs M1 and M2, is the language accepted by L1 equal to that accepted by M2?
We note that L1 = L2 if and only if they are subsets of each other. Thus we simply apply [DP2] twice.

1.6 Grammars

Basically, a grammar consists of a set of production rules of the form:

A → α

where A is a symbol known as a non-terminal, and α is a sequence of symbols.

Each production rule can be seen as giving the definition of the non-terminal on the left-hand-side; the above rule
states that “whenever we see an A, we can replace it with α”.

A non-terminal may have more than one definition, in which case we use “|”, the union operator; eg.

A → α
| β

means that “whenever we see an A, we can replace it with α or with β”.

We distinguish one special non-terminal in the grammar called the start symbol, usually written S. The production
rules for this symbol are usually written first in a grammar.

Any symbol used in the grammar which does not appear on the left-hand-side of some rule (ie. has no definition) is
called a terminal symbol.

The following is an example of a grammar:
S → Xc
X → Y X

| ε
Y → a

| b

8



The non-terminals of the grammar are S, X and Y ; the terminals are a, b, c.

A grammar works by starting with the start symbol, and successively applying the production rules (replacing the
l.h.s. with the r.h.s.) until we get a word which contains no non-terminals; this is known as a derivation.

Anything which we can derive from the start symbol by applying the production rules is called a sentential form.
The last sentential form which contains no non-terminals is called a sentence.

Note that any grammar may have an infinite number of sentences which can be derived; the set of all these sentences
is the language defined by the grammar.

Some experimentation with the above grammar will show that it can derive all words which start with arbitrarily
many ‘a’s or ‘b’s and finish with a ‘c’ - this is the language defined by the regular expression (a|b)*c.

In fact, every regular expression can be converted to a grammar.

However, not every grammar can be converted back to a regular expression; any grammar which can is called a regular
grammar; the language it defines is a regular language.

Regular Expression −→ Grammar

Regular Expression ←− Regular Grammar

1.7 Regular Grammars

A regular grammar is a grammar where all of the production rules are of one of the following forms:

A → aB
or A → a

where A and B represent any single non-terminal, and a represents any single terminal, or the empty string.

If a grammar can only derive regular languages, but is not of the above form, then (we claim) it can be converted to
this form. In order to justify our assertion that we can represent all regular expressions in this manner, we give an
algorithm for converting from an FSA to a regular grammar.

1.8 Converting an FSA to a Regular Grammar

We will let each state in the NFA correspond to a non-terminal in the grammar. Each symbol used on the transitions
corresponds to a terminal symbol.

Let Si denote the non-terminal corresponding to state i of the NFA. Then

1. The start symbol of the grammar is S0, the non-terminal corresponding to the start state of the NFA

2. For each transition from state i to state j on some symbol ‘a’, create a production rule of the form: Si → aSj

3. For each state i of the NFA which is a finish state, create a production rule of the form: Si → ε

Note that ε-transitions between states would generate production rules of the form Si → Sj , which says that “wher-
ever we see Si we can replace it with Sj” - another indication that ε-transitions denote equivalence.

This process will work equally well with a DFA, and can be applied in reverse to a regular grammar to produce the
corresponding NFA.

Regular Expression ←→ NFA or DFA ←→ Regular Grammar
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1.9 Limitations of Regular Languages

Since regular grammars are a special type of grammar, it is reasonable to assume that the set of regular languages is
a subset of all possible languages. So what type of languages aren’t regular?

First of all, we note one very important point:

Every finite language is regular

Any language is just a set of strings; a finite language is a set which contains a finite number of strings. We know this
is regular, since if we have a finite language {w1, w2, ..., wn}, we can rewrite it as the regular expression: w1 | w2 |
... | wn.

How do we form an infinite regular language? The union or concatenation of two finite languages will still be a finite
language; thus, any infinite regular language must be formed from a regular expression which uses Kleene closure.

That means the regular expression which represents it must be of the form X(Y*)Z, where X, Y and Z are all regular
expressions (possibly involving the use of Kleene-closure themselves). One implication of this is that every infinite
regular language must have as a subset some set of words of the form xyiz, for all i ≥ 0, where x, y and z are strings
which correspond to X, Y and Z respectively.

This conclusion is known as the Pumping Lemma for regular languages; ie:

if an infinite language L is regular,
then there exist three strings x, y and z such that

y 6= ε and {xyiz | i ≥ 0} ⊆ L

1.9.1 The Pumping Lemma: Examples

Consider the following three languages:

L1 = {anbn | 0 ≤ n ≤ 100}
L2 = {anbn | n ≥ 0}
L3 = {anbm | n, m ≥ 0}

The first language is regular, since it contains only a finite number of strings.

The third language is also regular, since it is equivalent to the regular expression (a*)(b*).

The second language consists of all strings which contain a number of ‘a’s followed by an equal number of ‘b’s.

Lemma: L2 is not regular
Strategy: Proof by contradiction
Proof: Let us assume that it is regular; then we must have some set of strings of the form {xyiz | i ≥ 0} ⊆ L.
Suppose such a subset did exist.

- Obviously, y could not contain a mixture of ‘a’s and ‘b’s, since this would mean that xyiz would have ‘b’s before
‘a’s. Thus, y must consist solely of ‘a’s or solely of ‘b’s.

- Let us assume then that y consists solely of ‘a’s. Then if, for some n we have that xynz is in the language, there
is no way that xyn+1z can be in the language, since this will contain extra ‘a’s without any extra ‘b’s. Thus
there will be no way for xyiz to be in the language for every i ≥ 0.

- We can use exactly the same argument to refute the supposition that y can consist entirely of ‘b’s.

Thus we have shown that y cannot consists of ‘a’s ‘b’s or their mixture; ie no such y exists, and so the Pumping
Lemma is not satisfied. Thus L2 is not regular.

QED

(Note that we cannot draw any conclusions from the fact that L1 ⊆ L2 ⊆ L3).
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2 CONTEXT-FREE LANGUAGES

In this section we examine the most popular type of grammars - context-free grammars - and we consider methods of
making them more efficient, as well as their inherent limitations.

2.1 The Chomsky Hierarchy

Obviously languages exist which are not regular; Noam Chomsky categorised regular and other languages as follows:

Language Class Grammar Automaton
3 Regular NFA or DFA
2 Context-Free Push-Down Automaton
1 Context-Sensitive Linear-Bounded Automaton
0 Unrestricted (or Free) Turing Machine

This is a hierarchy, so every language of type 3 is also of types 2, 1 and 0; every language of type 2 is also of types 1
and 0 etc.

The distinction between languages can be seen by examining the structure of the production rules of their correspond-
ing grammar, or the nature of the automata which can be used to identify them.

• Type 3 - Regular Languages

As we have discussed, a regular language is one which can be represented by a regular grammar, described using
a regular expression, or accepted using an NFA or a DFA.

• Type 2 - Context-Free Languages

A Context-Free Grammar (CFG) is one whose production rules are of the form:

A → α

where A is any single non-terminal, and α is any combination of terminals and non-terminals.

A NFA/DFA cannot recognise strings from this type of language since we must be able to ”remember” informa-
tion somehow. Instead we use a Push-Down Automaton which is like a DFA except that we are also allowed to
use a stack.

• Type 1 - Context-Sensitive Languages

Context-Sensitive grammars may have more than one symbol on the left-hand-side of their production rules
(provided that at least one of them is a non-terminal). However, the production rules must now obey the
following:

CS1 The number of symbols on the left-hand-side must not exceed the number of symbols on the right-hand-side
CS2 We do not allow rules of the form A → ε unless A is the start symbol and does not occur on the

right-hand-side of any rule.

Since we allow more than one symbol on the left-hand-side, we refer to those symbols other than the one we are
replacing as the context of the replacement.

The automaton which recognises a context-sensitive language is called a linear-bounded automaton: this is ba-
sically a NFA/DFA which can store symbols in a list.

Conditions CS1 and CS2 above mean that the sentential form in any derivation must always increase in length
every time a production rule is applied. This basically means that the size of a sentential form is bounded by
the length of the sentence (ie. word) we are deriving.

Since the sentential form cannot thus grow infinitely large before deriving a sentence, a linear-bounded automa-
ton always uses a finitely-long list as its store.
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• Type 0 - Unrestricted (Free) Languages

Free grammars have absolutely no restrictions on their grammar rules, (except, of course, that there must be at
least one non-terminal on the left-hand-side).

The type of automata which can recognise such a language is basically a NFA/DFA with an infinitely-long list
at its disposal to use as a store; this is called a Turing machine.

2.2 Grammars for Programming Languages

Of the four grammar types, context-free grammars (CFG) represent the best compromise between power of expression
and ease of implementation.

Regular languages are obviously too weak, since they can’t even describe situations such as checking that the number
of ”begin” and ”end” statements in a text are equal (this would be a variant of the language anbn)

However, there are some structures which even context-free languages cannot describe.

For example, the language (a|b)*c(a|b)* is regular and thus context-free. However, if we add in the condition that
the string before the ‘c’ must be the same as the string after the ‘c’, we get the language {αcα | α ∈ (a|b)∗}, which
is not even context-free.
This language abstracts the problem of having a declaration of a variable name before its use (with α being the variable
name and ‘c’ the intervening program text).
In situations such as these, we would usually formulate a context-free grammar for the language in so far as it is
possible, and leave details such as declaration/usage checking to the ”semantic” phase.

2.2.1 BNF Notation

One of the earliest forms of notation used for describing the syntax of a programming language was Backus-Naur
Form (BNF); this is basically just a variant of a context-free grammar, with the symbol “::=” used in place of “→”
to mean “is defined as”. Additionally, non-terminals are usually written in angle-brackets and terminals in quotes.

For example, we could describe a block of statements in Pascal as:

〈 block 〉 ::= “BEGIN” 〈 opt-stats〉 “END”.
〈 opt-stats 〉 ::= 〈 stats-list 〉 | ε.
〈 stats-list 〉 ::= 〈 statement 〉 | 〈 statement 〉 “;” 〈 stats-list 〉.

An extension of this notation, known as extended BNF (EBNF), allows us to use regular- expression-like constructs
on the right-hand-side of the rules: for any sequence of symbols α, we write “[α]” to say that α is optional, and “{α}”
to denote 0 or more repetitions of α (ie. the Kleene closure of α).

Thus we could re-write the above rules in EBNF as:

〈 block 〉 ::= “BEGIN” [〈 stats-list 〉] “END”.
〈 stats-list 〉 ::= {〈 statement 〉 ”;”} 〈 statement 〉.

Using EBNF has the advantage of simplifying the grammar by reducing the need to use recursive rules.

We could describe the complete syntax of a programming language using EBNF (or equivalently a CFG), but it tends
to make things easier if we break it up into two sections:

1. The lexical syntax, which defines which patterns of characters make up which words. This can be described
using regular expressions

2. The context-free syntax, which defines which sequences of words which make up phrases from the programming
language; we describe this using a context-free grammar.

Thus the first task in writing a parser for a language is breaking up its syntax into the “regular” and “context-free”
part. The choice is arbitrary but a simple guideline is that:

characters from the input should not appear in the context-free syntax;
these should be tokenised by the lexical phase.

As well as modularising our task, this approach will facilitate debugging in parser generators such as yacc.
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2.3 Derivations and Parse Trees

Parsing is the process where we take a particular sequence of words and check to see if they correspond to the language
defined by some grammar.

Basically what we have to do is to show how we can get:

from the start symbol of the grammar
to the sequence of words that supposedly belong to the language
by using the production rules

We can do this by constructing the appropriate parse tree for the sequence of words, which is simply a graphical way
of listing the production rules that we have used.
Considering the following simple grammar for arithmetic expressions:

E → E OP E | ( E ) | −E | num
OP → + | − | ∗ | ÷

Here there are just two non-terminals, E and OP (where E is the start symbol); the terminal symbols are: +, -, *,
÷, (, ), num.

Suppose the lexical analysis phase has given us the sequence of tokens which correspond to: (num + num) ÷ num.
We can parse this as follows:

Rule Applied Sent. Form
E

E → E OP E E OP E
E → (E ) ( E ) OP E
E → E OP E ( E OP E ) OP E
E → num (num OP E ) OP E

OP → + (num+ E ) OP E
E → num (num + num) OP E

OP → ÷ (num + num) ÷ E
E → num (num + num) ÷ num

We say that E derives (num + num) ÷ num, and write:

E →∗ (num + num) ÷ num

We can represent the above derivation graphically by means of a parse tree. The root of the tree is the start symbol
E, and its leaves are the terminal symbols in the sentence which has been derived. Each internal node is labelled with
a non-terminal, and the children are the symbols obtained by applying one of the production rules.
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There are two ways of constructing a parse tree whose root is the start symbol and whose leaves are the sentence:

Top-Down As we did earlier, we start with the start symbol and apply the production rules (replacing l.h.s. with
r.h.s.) until we derive the sentence

Bottom-Up We start with the sentence, and apply the production rules in reverse (ie. replacing r.h.s. of the rule
with the l.h.s.) until we derive the start symbol.

Both of these methods will be discussed in detail later.

2.3.1 Leftmost and Rightmost Derivations

At any stage during a parse, when we have derived some sentential form (that is not yet a sentence) we will potentially
have two choices to make:

1. which non-terminal in the sentential form to apply a production rule to

2. which production rule for that non-terminal to apply

Eg. in the above example, when we derived E OP E, we could then have applied a production rule to any of these
three non-terminals, and would then have had to choose among all the production rules for either E or OP .

The first decision here is relatively easy to solve: we will be reading the input string from left to right, so it is our own
interest to derive the leftmost terminal of the resulting sentence as soon as possible. Thus, in a top-down parse we
always choose the leftmost non-terminal in a sentential form to apply a production rule to - this is called a leftmost
derivation.

If we were doing a bottom-up parse then the situation would be reversed, and we would want to do apply the produc-
tion rules in reverse to the leftmost symbols; thus we are performing a rightmost derivation in reverse.

For example, a bottom-up rightmost derivation would look like:
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Rule Applied (in reverse) Sent. Form
(num + num) ÷ num

E → num ( E +num) ÷ num
OP → + ( E OP num) ÷ num

E → num ( E OP E ) ÷ num
E → E OP E ( E ) ÷ num
E → (E ) E ÷ num

OP → ÷ E OP num
E → num E OP E
E → E OP E E

Note that this has no effect on the parse tree; we still get:

E

OP EE

num÷E )(

OP EE

num + num

�
���

����*
6

Q
Q

Q
Q

Q
QQk

�
�

�
�
�7 6

S
S

S
SSo 6 6

�
�

�
��

6

@
@

@
@I

6 6 6

2.4 Modifying Grammars

Once we have decided between a leftmost or rightmost derivation strategy, we will then need some method of deciding
which production rule to choose for a given non-terminal. There are some modifications that we can make to any
grammar in order to make this task a little easier.

2.4.1 Left Factoring

In general, if A is a single non-terminal, and α, β and γ are strings of terminals or non- terminals, then a production
rule of the form: A → αβ | αγ can be left-factored into two rules of the form:

A → α B
B → β | γ

where B is some new non-terminal.

2.4.2 Eliminating Ambiguity

A grammar is said to be ambiguous if it can produce more than one parse tree for a particular sentence; this occurs
when two different sequences of leftmost (or rightmost) derivations can produce the same sentence from the same start
symbol.
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Consider the following example:

STAT → if EXPR then STAT ESTAT Rule 1
| st Rule 2

ESTAT → else STAT Rule 3
| ε Rule; 4

EXPR → num Rule 5

Suppose we wanted to parse the sentence: if num then if num then st else st

We could try to derive this (in the manner of a leftmost, top-down parse) as follows:

Rules Sentential Form
STAT

Rule 1 if EXPR then STAT ESTAT
Rule 5 if num then STAT ESTAT
Rule 1 if num then if EXPR STAT ESTAT ESTAT
Rule 5 if num then if num then STAT ESTAT ESTAT
Rule 2 if num then if num then st ESTAT ESTAT

So far, so good. But in order to finish the derivation, we could choose either of two routes:

1. We apply rule 4, 3 and 2 to get:

Rules Sentential Form
Rule 4 if num then if num then st ESTAT
Rule 3 if num then if num then st else STAT
Rule 2 if num then if num then st else st

STAT
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num if EXPR then STAT ESTAT
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2. Alternatively, we could apply rule 3 first, and then 2 and 4 to get:

Rules Sentential Form
Rule 3 if num then if num then st else STAT ESTAT
Rule 2 if num then if num then st else st ESTAT
Rule 4 if num then if num then st else st
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In both cases the correct sentence is derived, but the difference in the structure of the parse trees reflects the fact that
the grammar is ambiguous. In this case, the ambiguity arises because we have not specified whether the else is to
be associated with the first if (as in the first derivation) or with the second if (as in the second); ie. which of the
following it is semantically equivalent to:

1. if num then { if num then st } else st

2. if num then { if num then st else st }

The latter is preferable, since in most programming languages we will want to be able to match each else with the
closest previous unmatched if.

In order to incorporate this convention into our grammar, we must change the rules so that we can tell the difference
between matched statements (an equal number of if and else terminals) and unmatched statements. This gives us:

STAT → MSTAT
| USTAT

MSTAT → if EXPR then MSTAT else MSTAT
| st

USTAT → if EXPR then UELSE
UELSE → STAT

| MSTAT else USTAT
EXPR → num

Unlike left-factoring, we cannot provide any general procedure which will eliminate ambiguity; instead, it will depend
on our knowledge of the semantics of the language.

In fact, it is not possible to write an algorithm which will take an arbitrary grammar and decide whether or not it is
ambiguous. Even if we do identify ambiguity, we may not always be able to remove it, since some languages cannot
be described by a grammar which is unambiguous.

2.4.3 Eliminating Immediate Left Recursion

A grammar is left recursive if we can find some non-terminal A which will eventually derive a sentential form with
itself as the left-most symbol.
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We have immediate left recursion of there is a rule of the form:

A → Aα1 | . . . | Aαn | β1 | . . . | βm

where each αi and βj is any mixture of terminals and non-terminals, with the condition that each βj does not begin
with A.

The essential problem with such productions is that a parser could keep applying some rule A → Aαi which will not
ultimately generate some terminal symbol that we can compare with the input string.
We fix this problem by introducing some new non-terminal A′, and replacing the above rule with two new rules:

A → β1A
′ | . . . | βmA′

A′ → α1A
′ | . . . | αnA′ | ε

The first rule cannot be left-recursive since no βj begins with A, and the second rule will not be left-recursive as long
as no αi is ε.

This process will always work if the left recursion is immediate; however, it will not work if the recursion involves
more than one step.

2.4.4 Eliminating Indirect Left Recursion

Indirect left recursion occurs as follows:

Suppose we have non-terminals A0, A1, . . . , An and that α1, α1, . . . , αn+1 are mixtures of terminals and non-terminals,
then the production rules:

A0 → A1α1 | . . .
A1 → A2α2 | . . .

· · ·
An → A0αn+1 | . . .

could result in a leftmost derivation of the form:

A0 → A1α1 → A2α2α1 → . . . → A0αn+1 . . . α2α1

Again, such a derivation would cause problems during a top-down parse.

If we have a grammar that does not have a derivation of the form B →∗ B, for any non-terminal B (ie. the grammar
has no cycles), and there are no ε-productions, then we can apply the following algorithm to eliminate all left recursion.

Let α, β1, . . . , βn represent any mixture of terminals and non-terminals. Then:

1. Arrange all the non-terminals into some arbitrary order: call them A1, A2, . . . , An

2. For each non-terminal Ai in turn, do:

(a) For each terminal Ai such that 1 ≤ j < i and we have a production rule of the form Ai → Ajα, where the
Aj productions are Aj → β1 | . . . | βn, do:
Replace the production rule Ai → Ajα with the rule Ai → β1α | . . . | βnα

(b) Eliminate any immediate left recursion among the Ai productions

This algorithm is preventative in nature - it does not look for left recursion and then eliminate it; instead, it rearranges
the grammar so that no left recursion can possibly occur. Thus, even non-left-recursive grammars may be rewritten
using this algorithm.

The effect of step 2(a) above is to eliminate all production rules of the form Ai → Ajα for every j < i; in other
words, if we have a chain of derivations of the form:

A0 → A1α1 → A2α2α1 → . . . → Aiαi . . . α2α1

We can be sure that the index i of Ai is increasing all the time, and so can never get back around to 0 at any stage
in the derivation (which would have caused recursion).

Note: the replacement technique used in step 2(a) is a standard procedure: if we ever have a production rule involving
a non-terminal on the r.h.s. that we “don’t like” for some reason,then we get rid of it by replacing it in the rule
with the r.h.s. of its production rule(s).
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2.4.5 Eliminating ε-productions

An ε-production is a rule of the form A → ε for some non-terminal A (this is also called an erasing rule for A).
Usually the main motivation for removing this type of rule is that we need to apply some algorithm which only works
for grammars with no ε-productions (such as the elimination of indirect left-recursion).

A non-terminal is said to be nullable if it can derive the empty string in one or more steps; that is, if B is nullable,
then there exists some derivation B →∗ ε. We need this concept, since the elimination of an erasing rule for a
non-terminal will have a knock-on effect on every other non-terminal that can derive it.

In order to eliminate ε-productions from a grammar we perform the following:

For every nullable non-terminal B:

• For every production rule of the form: C → αBβ add in a new rule of the form C → αβ, where C is any
non-terminal, and α and β are any sequences of terminals or non-terminals.

ie. since we’ve removed the facility which allows B to go to ε, we must compensate for this everywhere B is used on
the r.h.s of a production rule..

2.4.6 Eliminating Unit Productions

A unit production is one of the form A → B, where both A and B are single non-terminals. What this basically
says is that A is the same as B, since any where we see one we can replace it with the other. Thus we can shorten or
grammar without changing the accepted language by eliminating this type of production rule.

For any non-terminal A, we say that a non-terminal B is A-derivable if there exists some derivation A →∗ B .
Obviously this type of derivation will be effected by the elimination of unit productions.

To eliminate unit productions from a grammar, we perform the following:

1. Eliminate all ε-productions from the grammar.
(This makes the task of finding unit derivations much easier).

2. For each non-terminal A, and For every other non-terminal B which is A-derivable (ie A →∗ B)

• For every B production rule of the form B → α, add a new rule to the grammar of the form A → α

3. Delete all the unit productions.

2.5 PUSH-DOWN AUTOMATA

Just as finite-state automata corresponded to regular languages, the context-free languages (CFLs) have corresponding
machines called push-down automata (PDA). In this section we formally define PDAs and examine the connection
with CFLs.

We have previously seen how to construct a deterministic FSA for a regular language; it is an important result of this
section that:

while every CFG has a corresponding PDA,
not every CFG has a corresponding deterministic PDA

2.5.1 Formal Definition

Basically, a PDA is an NFA with a stack; formally we define a PDA as consisting of:

• An alphabet Σ of input symbols

• A set of states, of which we distinguish:

– a unique start state

– a set of final states

• An alphabet Γ of stack symbols
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• A transition relation which, for any given state, input symbol and stack symbol, gives a new state and stack
symbol; i.e. it has the form:

(State, InputSymbol, StackSymbol) 7→ (State, StackSymbol)

Basically, if a ∈ Σ, t, u ∈ Γ and P and Q are states, a transition of the form

(P, a, t) 7→ (Q, u)

means “read the symbol ‘a’ from the input, move from state P to state Q, and replace the symbol t on top of the
stack with the symbol u”.

Obviously for this to happen we must be in state P , we must have ‘a’ as the next symbol on the input tape, and t
must be on top of the stack.

The actions push and pop are instances of the above transitions; for any stack symbol t, we have

• push t is (P, ε, ε) 7→ (Q, t)

• pop t is (P, ε, t) 7→ (Q, ε)

A PDA is said to accept some string x if and only if we can get:

- from the start state with an empty stack and x as input

- to a finish state with an empty stack and an empty input.

2.5.2 Converting a CFG to a PDA

Every CFG can be converted to an equivalent PDA. The constructed PDA will perform a leftmost derivation of any
string accepted by the CFG.

Suppose we are given a CFG and let T and N be its sets of terminal and non-terminal symbols respectively. Let S be
the start symbol. Then we construct the PDA as follows:

• The input alphabet is T

• There are only two states, let us call them P and Q, where

– P is the start state

– Q is the only final state

• The stack alphabet is T ∪N

• The transitions are as follows:

– (P, ε, ε) 7→ (Q,S)

– For each grammar rule of the form A→ α, there is a transition (Q, ε, A) 7→ (Q,α)

– For each terminal symbol ‘a’, there is a transition (Q, a, a) 7→ (Q, ε)

2.5.3 Converting a PDA to a CFG

We will proceed in a manner analogous to Kleene’s theorem for regular languages: that is, we will try to slice up the
machine into various components (each of which has a corresponding language), and then put them back together
again using a CFG.

For any PDA, let us define the language

〈P,Q, t〉 =

{
x ∈ Σ∗

x is consumed in moving from state P to state Q in the
machine, with the symbol t being taken from the top of the
stack in the process

}

Now, given any PDA, we construct a context-free grammar which accepts the same language as follows:

• The terminal symbols are just the input symbols of the PDA

• The non-terminal symbols are all triples of the form 〈P,Q, t〉, for each state P and Q, and each stack symbol t
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• If S and F are the start and finish states respectively of the PDA, then the start symbol of the CFG is 〈S, F, ε〉.

• The production rules are as follows:

– For each transition of the form (P, a, t) 7→ (R, β1 · · ·βj), add all rules of the form

〈P,Qj , t〉 → a.〈R,Q1, β1〉.〈Q1, Q2, β2〉 . . . 〈Qj−1, Qj , βj〉

where the Qi can be any state in the machine

– For each transition of the form (P, a, t) 7→ (R, ε), add all rules of the form

〈P,R, t〉 → a

2.5.4 Deterministic PDAs

In general terms, a deterministic PDA is one in which there is at most one possible transition from any state based
on the current input.

Formally, a deterministic PDA is a PDA where:

• for every state P , input symbol ‘a’ and stack symbol t, there is at most one transition of the form (P, a, t) 7→ (Q, u)
for any state Q and stack symbol u.

Any context-free language that can be converted to a deterministic PDA is called a deterministic CFL.

2.5.5 Non-Deterministic CFLs

The important point then is that:
not every context-free language is determinstic

To see this, consider the language {xnyn | n ≥ 0} ∪ {xny2n | n ≥ 0} We can easily show that this context-free by
giving its CFG. However, we will show that it is not deterministic context-free.

Proof: (by contradiction)

Suppose that this language is deterministic context-free; then it has a corresponding deterministic PDA.

Let us create two copies of this PDA called M1 and M2. Call any two states “cousins” if they are copies of the same
state in the original PDA. Now we construct a new PDA as follows:

• The states of the new PDA is the union of the states in M1 and M2, where

– the start state of M1 is the new start state

– the final states of M2 are the new final states

• The transition relation is that of M1 and M2 with the following alterations:

– Change any transition originating from a final state in M1 so that it now goes to its “cousin” state in M2

– Change all those ‘y’ transitions which cause a move into some state from M2 into ‘z’ transitions

This is a PDA over the alphabet {x, y, z}. To see what language it recognises, consider its actions on an input of
xkykzk for some fixed k ≥ 0.

Initially it will move from the start state to a final state of M1 while consuming the input xkyk. Because it is deter-
ministic, there is no other state which it could reach while consuming this input. But we know that by its construction
M1 can now also go on to accept k more copies of ‘y’; therefore if we run the new PDA on the rest of the input, it
will consume k more copies of ‘z’ as it moves through M2.

Thus the constructed PDA accepts the language {xnynzn | n ≥ 0} - but this is impossible, as this language is not
context free. Thus our assumption that the PDA for the original language could be deterministic is contradicted.

QED
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2.6 Proving that a Language is not Context-Free

Since context-free languages are so important, it is desirable to have some way of proving when a language isn’t
context-free. We did this for regular languages by choosing those which were “big enough” (ie. infinite) to cause a
particular type of repetition (or periodicity) in their derivation. The nature of the “pump” (for regular expressions it
was Kleene Closure) could then be used to characterise these languages.

So we consider some questions about context-free grammars:

• In what way does a CFG “pump”?
Repetition in a CFG is achieved by recursion in the rules. This can occur directly or indirectly, but will result
in a derivation of the form: A →∗ vAy, where A is a non-terminal, and v and y are strings.

• What is the effect of this “pumping”?
Each time we apply the sequence of rules which recurse back to A, we also generate an extra copy of both v and
y. Thus if we go through the sequence say n times, we get the derivation A →∗ vnAyn

This “matching” or “balancing” of two patterns is the hallmark of context-free languages.

• When does this “pumping” happen?
This can be broken down into two sub-questions:

– For what sort of parse tree does this “pumping” happen?
If a derivation “pumps” on some non-terminal A, then this non-terminal must occur twice in some path
from the root of the parse tree to one of the leaves. This is guaranteed to happen if we know that the
grammar has, say, m non-terminals altogether, and the parse tree for a string has a path with length greater
than m (we simply run out of non-terminals to label the nodes with, and so must repeat one!). So a parse
tree contains a “pump” if its height is greater than m.

– For what sort of strings does this “pumping” happen?
Suppose the maximum number of symbols on the r.h.s. of any grammar rule of the language is p. Then
each application of any rule generates at most p symbols; (ie. each node of the parse tree has at most p
children). Thus a path of length m or less can generate at most pm symbols. This means that if we have a
string of length greater than pm, there must have been a “pump” in the parse tree which generated it.

Thus the ability to generate strings of length greater than pm indicates that the language represented by the
grammar is infinite.

Let us suppose that u, x and z are strings such that:

S →∗ uAz
and

A →∗ x

and if, as assumed above, we have also that:
A →∗ vAy

The it should be clear that for any i ≥ 0:

S →∗ uAz →∗ uvAyz →∗ . . . →∗ uviAyiz →∗ uvixyiz

Then we can generate the set {uxz, uvxyz, uv2xy2z, . . . , uvixyiz, . . .}

Tying all this together we get:

2.6.1 The Pumping Lemma for context-free languages

For any context-free grammar G, there is a number K, depending on G, such that any string generated by G which
has length greater than K can be written in the form uvxyz, so that either v or y is non-empty, and uvnxynz is in
the language generated by G for all n ≥ 0.
Proof:
Based on the above discussion, we can see that the number K is simply pm.

QED
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2.6.2 The Pumping Lemma: Examples

Lemma: The language L = {anbncn | n ≥ 1} is not context free.
Proof (By contradiction)
Suppose this language is context-free; then it has a context-free grammar.
Let K be the constant associated with this grammar by the Pumping Lemma.
Consider the string aKbKcK , which is in L and has length greater than K.
By the Pumping Lemma this must be representable as uvxyz, such that all uvixyiz are also in L.
This is impossible, since:

- either v or y cannot contain a mixture of letters from {a, b, c}; otherwise they would be in the wrong order for
uv2xy2z

- if v or y conatin just ‘a’s, ‘b’s or ‘c’s, then uv2xy2z cannot maintain the balance between the three letters (it
can, of course maintain the balance between two)

QED

Lemma: The language L = {aibjck | i < j and i < k} is not context free.
Proof (By contradiction)
Suppose this language is context-free; then it has a context-free grammar.
Let K be the constant associated with this grammar by the Pumping Lemma.
Consider the string aKbK+1cK+1, which is in L and has length greater than K.
By the Pumping Lemma this must be representable as uvxyz, such that all uvixyiz are also in L.

- By the same argument as for the previous lemma neither v nor y may contain a mixture of symbols.

- Suppose v consists entirely of ‘a’s.
Then there is no way y, which cannot have both ‘b’s and ‘c’s, can generate enough of these letters to keep their
number greater than that of the ‘a’s (it can do it for one or the other of them, not both).
Similarly y cannot consist of just ‘a’s.

- So suppose then that v or y contains only ‘b’s or only ‘c’s.
Consider the string uv0xy0z which must be in L. Since we have dropped both v and y, we must have at least
one ‘b’ or one ‘c’ less than we had in uvxyz, which was aKbK+1cK+1. Consequently, this string no longer has
enough of either ‘b’s or ‘c’s to be a member of L.

QED

2.6.3 Limitations of the Pumping Lemma

The Pumping Lemma is very unspecific as to where in the generated string the pumping is to occur. This can make
some proofs quite difficult.

For example, to prove that {ambn | m > n or m is a prime number} is impossible by direct application of the
Pumping Lemma.

In such cases, specialised versions, such as Parikh’s Theorem, are required.

2.7 The Closure of Context-Free Languages

We have seen that the regular languages are closed under common set-theoretic operations; the same, however, does
not hold true for context-free languages.

Lemma: The context-free languages are closed under union, concatenation and Kleene closure.
That is, if L1 and L2 are context-free languages, so are L1 ∪ L2, L1L2 and L∗1.
Proof:
We will prove that the languages are closed by creating the appropriate grammars.
Suppose we have two context-free languages, represented by grammars with start symbols S1 and S2 respectively.
First of all, rename all the terminal symbols in the second grammar so that they don’t conflict with those in the first.
Then:
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• To get the union, add the rule S → S1 | S2

• To get the concatenation, add the rule S → S1 S2

• To get the Kleene Closure of L1, add the rule S → S1 S | ε to the grammar for L1.

QED

Lemma: The context-free languages are not closed under intersection
That is, if L1 and L2 are context-free languages, it it not always true that L1 ∩ L2 is also.
Proof:
We will prove the non-closure of intersection by exhibiting a counter-example.
Consider the following two languages:

L1 = {aibjck | i < j}
L1 = {aibjck | i < k}

We can prove that these are context-free by giving their grammars:

L1 = S → ABC
A → aAb | ε
B → bB | b
C → cC | ε

L2 = S → ASC | Bc
A → a
B → bB | ε
C → cC | c

The intersection of these languages is:

L1 ∩ L2 = {aibjck | i < j and i < k}

We proved in the last section that this language is not context-free.
QED

Lemma: The context-free languages are not closed under complementation.
That is, if L is a context-free language, it it not always true that L′ is also.
Proof: (By contradiction)
Suppose that context-free languages are closed under complementation.
Then if L1 and L2 are context-free languages, so are L′1 and L′2. Since we have proved closure under union, (L′1 ∪L′2)
must also be context-free, and, by our assumption, so must its complement (L′1 ∪ L′2)

′.
However, by de Morgan’s laws (for sets), (L′1 ∪ L′2)

′ ≡ (L1 ∩ L2), so this must also be a context-free language.
Since our choice of L1 and L2 was arbitarary, we have contradicted the non-closure of intersection, and have thus
proved the lemma.

QED

2.8 Decision Problems for Context-Free Languages

Based on the Pumping Lemma, we can state some decidability results for context-free languages.

Lemma: It is decidable whether or not a given string belongs to a context-free language.
Proof:
If we eliminate all ε-productions, and all unit productions from the context-free grammar for the language, then each
time we apply a production rule we either:

- make the sentential form grow longer

- increase the number of terminal symbols in the sentential form

Therefore the number of production rules applied (and thus the height of the parse tree) will be bounded by the length
of the input string. Since this is finite, an effective (though inefficient) decision algorithm need only enumerate all
such parse trees, and check the leaves to see if they correspond to the string.

QED

Without examining the issue in detail, we also note the following:
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• The constraints placed on the rule-format of context-sensitive grammars allow us to use the same argument
as above to assert that language membership is decidable.

• In order to decide if a string is a member of a free language, we run the corresponding Turing Machine, and
see if it halts on “yes”. Clearly this is the Halting Problem, which is undecidable. Thus it is not possible in
general to construct a parser for a free language.

Lemma: It is decidable whether or not a context-free language is empty.
Proof:
We need to show that the corresponding context-free grammar can generate a string.
If a CFG can generate a string, then it should be able to do so without using recursion (since we could just skip the
recursion and generate a shorter string). If there are m non-terminals altogether, then some tree of height less than
m must have leaves which are only terminals.
Thus we need only examine all such trees to see if the CFG generates a sentence.

QED

Some decision problems for CFGs (and accordingly for push-down automata) are not solvable.

We state, without proof, that the following problems are undecidable in general:

• Given two context-free languages L1 and L2, is L1 ∩ L2 ≡ ∅?
ie. do two context-free grammars generate the same string?

• Given some alphabet of terminal symbols Σ, does a grammar over this alphabet generate all the strings of Σ∗?

• Is the context-free grammar for a language ambiguous?

• Given two context-free languages L1 and L2, is L1 ⊂ L2?

• Given two context-free languages L1 and L2, is L1 = L2?

The proof of these theorems follows from a famous decision problem called Post’s correspondance problem.
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3 TOP-DOWN PARSING

In this section we examine some algorithms for the implementation of a top-down parser, including recursive descent,
the LL(k) family, Earley’s parser and Unger’s method.

3.1 Recursive Descent Parsing

Recall that we have a grammar (set of production rules) and a sentence; our job is to show how the production rules
can be applied to the start symbol in order to derive the sentence.

The simplest way to construct a top-down parser is to regard:

• each production rule as defining a function, where:

– the name of the function is the non-terminal on the l.h.s. of the rule

– each instance of a non-terminal on the r.h.s. is a call to the corresponding function,

– each instance of a terminal on the r.h.s. tells us to match it with the input symbol

This is fairly easy to do if each r.h.s. starts with a different terminal symbol - this means that we needed only to read
one character from the input in order to know which rule to pick.

Suppose we were given the following production rules:

X → AB | aAb | Cc | ε

Since we can’t make easy predictions, the simplest approach here is to try the first rule; if that doesn’t work, try
the second, and so on. Really, this type of algorithm is more suitable for implementation in a goal-directed language
such as Prolog (where we can backtrack after a failure), rhather than a conventional one like C. Note that if we used
a Prolog version with an ambiguous grammar, then the program should respond with an answer for each possible
derivation (since Prolog will try to find all ways of satisfying its goal).

3.2 Lookahead

The basic problem in parsing is choosing which production rule to use at any stage during a derivation. Any approach
to parsing which involves backtracking will probably involve creating complex or inefficient algorithms in a conventional
programming language. To make implementation easier, we introduce the notion of lookahead.

Lookahead means attempting to analyse the possible production rules which can be applied, in order to pick the one
most likely to derive the current symbol(s) on the input.

Suppose we are in the middle of a derivation, where we have:

• Current Sentential Form = αXβ

• Input string = αaγ

where:

- α consists entirely of terminals, and corresponds to the piece of the input that has already been matched

- X is the leftmost non-terminal, β is the rest of the sentential form

- a is the next symbol on the input, γ is the rest of the input

Our job then is to figure out which production rule will allow Xβ can derive aγ; thus we examine the r.h.s. of the
production rules for X as follows:

1. If the r.h.s. starts with a terminal symbol, then it must be of the form X → aδ for this rule to be of any use

2. If the r.h.s. starts with a non-terminal, ie. it looks like X → Y δ say, then

(a) we must examine the production rules for Y to see if any of these can derive an a.

(b) If Y can derive ε, then we must see what δ can derive; ie. apply steps 1 and 2 to the production rules for δ.

3. If we find that X can derive ε, then we must check to see what the symbols following X in the sentential form
(ie. the first symbol in β) can derive.
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3.2.1 FIRST and FOLLOW

We formalise the task of picking a production rule using two functions, FIRST and FOLLOW.

FIRST is applied to the r.h.s. of a production rule, and tells us all the terminal symbols that can start sentences
derived from that r.h.s. It is defined as:

1. For any terminal symbol a, FIRST (a) = {a}.
Also, FIRST (ε) = {ε}.

2. For any non-terminal A with production rules A → α1 | α2 | . . . | αn, FIRST (A) = FIRST (α1) ∪
FIRST (α2) ∪ . . . ∪ FIRST (αn)

3. For any r.h.s. of the form: β1β2 . . . βn (where each βi is a terminal or a non-terminal) we have:

(a) FIRST (β1) is in FIRST (β1β2 . . . βn)
if β1 can derive ε, then FIRST (β2) is also in FIRST (β1β2 . . . βn)
if both β1 and β2 can derive ε, then FIRST (β3) is also in FIRST (β1β2 . . . βn)
· · ·
if β1β2 . . . βi can derive ε, then FIRST (βi+1) is also in FIRST (β1β2 . . . βn)

(b) ε is in FIRST (β1β2 . . . βn) only if ε is in FIRST (βi), for all 0 ≤ i ≤ n

FIRST can be applied to any r.h.s., and returns a set of terminal symbols.

Thus, if X is the current non-terminal (ie. leftmost in the current sentential form), and a is the next symbol on the
input, then we want to look at the r.h.s. of the production rules for X and choose the one whose FIRST set contains a.

FOLLOW is used only if the current non-terminal can derive ε; then we’re interested in what could have followed it
in a sentential form. (NB: A string can derive ε if and only if ε is in its FIRST set.)

1. If S is the start symbol, then put ⊥ into FOLLOW (S)

2. Examine all rules of the form A → αXβ; then

(a) FIRST (β) is in FOLLOW (X)

(b) If β can derive the empty string then put FOLLOW (A) into FOLLOW (X)

The “⊥” is a symbol which is used to mark the end of the input tape.

FOLLOW can be applied to a single non-terminal only, and returns a set of terminals.

Thus, if X is the current non-terminal, a is the next symbol on the input, and we have a production rule for X which
allows it to derive ε, then we apply this rule only if a is in the FOLLOW set forX.

FIRST and FOLLOW help us to pick a rule when we have a choice between two or more r.h.s. by predicting the first
symbol that each r.h.s. can derive. Even if there is only one r.h.s. we can still use them to tell us whether or not we
have an error - if the current input symbol cannot be derived from the only r.h.s. available, then we know immediately
that the sentence does not belong to the grammar, without having to (attempt to) finish the parse.

3.3 Implementing a Parser

The rules we developed above do not change during a parse. Hence, instead of writing them into our parsing program,
we can store them in a two-dimensional array, called a parse table. This parse table tells us the rule to apply for the
current non-terminal in the sentential form and the current input symbol. Any blank entries in the parse table denote
“error”.

For any non-terminal X and terminal z, the fact that some production X → α is in the parse table entry for [X,z]
means that we have worked out that this is the production most likely to lead to a derivation of z from X.

Thus, to put entry X → α into the parse table entry [X,z] we must have either:

1. z is in FIRST (α), or
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2. ε is in FIRST (α) and z is in FOLLOW (X)

Using these rules we can systematically construct a parse table for any grammar.

The most common way to implement this type of parser is using a stack. At any stage during the parse, the leftmost
non-terminal in the sentential form is on top of the stack, with the rest of the symbols (to the right) underneath it.
Applying a production rule involves popping the non-terminal off the stack and pushing on the r.h.s. of the rule (with
the symbols in reverse order) back on.

3.4 The LL(k) Parsers

In general we can define a class of grammars known as the LL(k) grammars, where k represents the number of
lookahead symbols needed to eliminate any element of choice from a parse.

L = Scanning the input from Left to right

L = Conducting a Leftmost derivation

k = Using k symbols of lookahead

Any (regular) grammar constructed from a DFA will be LL(0) since we do not need to use FIRST or FOLLOW.

The class of grammars for which we need only one symbol of lookahead are calledLL(1) grammars - the definitions
for FIRST and FOLLOW given earlier correspond to this case.

Sometimes when we construct an parse table there will be two or more rules in the same box. In this situation we say
that the grammar is “not LL(1)”, since the algorithm has clearly failed to indicate a non-deterministic parse in all cases.

For any k in {2, 3, 4, . . .}, we can adjust the definitions of FIRST and FOLLOW so that they use k symbols of looka-
head; this will give us an LL(k) parse table. We say that a language is LL(k) if there are no duplicate entries in its
LL(k) parse table.

Making k greater means that we will be able to parse more languages, but it also means that the algorithm will be
more complex, and the resulting parse table will be larger. In general LL(1) grammars represent the most acceptable
compromise between power of expression and ease of implementation for top-down parsers.

3.5 Early’s Parser

Early describes his parser as a “breadth–first top-down parser with bottom-up recognition” (!) While we will regard
it as a top-down parser it does in fact exhibit many similarities to LR parsing.

Note that any similarity with the LR algorithms is superficial however:

• The LR algorithm generates a set of states from the grammar; this machine can then be used to parse any input
(Parser construction)

• Early’s algorithm is executed for a particular string; each string will cause different state-sets to be generated
(Parser operation)

At any stage in a top-down parse we have a “current” non-terminal symbol and a choice of rules to apply to it. If we
cannot make a definite choice (eg. based on lookahead), we must adopt a search strategy.

Conventionally, this will be

1. Depth first, where we choose the first alternative and try it; if this doesn’t work we must backtrack and try the
next one. (this is how Prolog’s DCGs1 work)

2. Breadth first, where we hive off one “subprocess” for each alternative, and proceed with trying each of them in
parallel.

The major problem with breadth-first parsing is that it takes exponential time (relative to the input string length)
in general. Early’s approach seeks to limit the options chosen, resulting in an algorithm of order n3, where n is the
length of the input string.

1See the SICStus Prolog manual pages 69-72
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3.5.1 Early’s Items

This is achieved by enhancing the concept of an item. In Early’s parser an item has the form:

i : kX → α4β

where i and k are numbers, and X → αβ is a production rule. An item of this form is interpreted as meaning:

• We are at position i on the input (when i = 0 we are at the start of the string).

• The non-terminal X corresponds to some sub-string of the input which starts at position k

• We have recognised an α on the input, and should we go on to recognise β, we can then make the reduction to
X

If the start symbol is S, we can represent this situation as:

S︷ ︸︸ ︷
x0 . . .

X︷ ︸︸ ︷
α︷ ︸︸ ︷

xk . . . xi−1 4

β︷ ︸︸ ︷
xi . . . . . . xn−1

Thus at any stage during the parse we always have that 0 ≤ k ≤ i ≤ n where n is the length of the input string.

We will need to define a version of the closure operation for these items:

• State Closure (Marker before a non-terminal)
For each state with an item of the form

i : kX → α4Y β

where Y is any non-terminal, take all rules of the form Y → γ, and add the states for:

i : iY → 4γ

3.5.2 Early’s Algorithm

Early’s algorithm proceeds as follows:

Given any grammar with start symbol S, and some input string x0...xn−1 of length n,

1. Form the start state, which consists of the item

0 : 0 → 4S

and its closure

2. For each new state (for some position i) that we create, and for each item in that state:

• Shift Input (Marker before a terminal)
If the item is of the form

i : kX → α4aβ

where a is a terminal symbol matching the input symbol xi, create the state formed by taking the closure
of:

i + 1 : kX → αa4β

• Apply Rule (Marker at end of rule)
If the item is of the form

i : kX → γ4

look at all those states for k that have the marker to the left of X; ie items of the form

k : jY → α4Xβ

and create new states consisting of the closure of items of the form:

i : jY → αX4β
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3. Keep applying step (2) until all states up to n have been generated. If one of these then contains the item

n : 0 → S4

the parse has been successful.

3.6 Unger’s Method

When faced with a choice of production rules, Unger’s Method works by evaluating all possible partitions of the input
string that can correspond to the symbols on the right-hand-side of each option.

As an example, we take the grammar
E → E + T
E → T
T → T ∗ a
T → a

Suppose we are trying to match the string “a∗a+a”.
We may represent the initial situation as an attempt to match E to this:

E
a ∗ a + a
Table 1

As there are two options for the right-hand-side, we enumerate these as:

E + T
a ∗ a + a
a∗ a+ a
a ∗a+ a
a ∗a +a
a ∗ a + a

Table 1.1

T
a ∗ a + a
Table 1.2

If we consider table 1.2 first, we can expand the production rules for T to get two new tables:

T ∗ a
a ∗ a + a
a∗ a+ a
a ∗a+ a
a ∗a +a
a ∗ a + a

Table 1.2.1

a
a ∗ a + a

Table 1.2.2

Now by just looking at the columns involving terminal symbols, we can tell that both of these are impossible. The
only correct rows in table 1.2.1 should have a “∗” in the second column and an “a” in the third: there are none.
Similarly, in table 1.2.2 it is clearly impossible for “a” to be the same as “a∗a+a”, and so we reject this also.

Going back then to table 1.1, we can see that some of its rows can also be eliminated. The middle column has the
terminal “+” in it, so the only acceptable rows are those with a “+” in this column: that is row 1. So the table now
looks like:

E + T
a ∗ a + a

Now for each row that is left, we must expand both E and T , and consider their possible partitions.

Since we know that T can generate “a” (we could write out the tables to prove this), we can proceed with analysing
E. Expanding out we get:

E + T
a ∗ a
Table 1.1.1

T
a ∗ a

Table 1.1.2

We can throw away table 1.1.1 immediately since “+” won’t match with “∗”. Expanding the remining table gives us
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T ∗ a
a ∗ a
Table 1.1.2.1

a
a ∗ a

Table 1.1.2.2

The second table can be thrown away, and expanding T shows that table 1.1.2.1 does indeed represent a correct parse.
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4 BOTTOM-UP PARSING

In this section we describe bottom-up parsing and examine the (deterministic, directional) LR(k) family of parsers;
i.e. LR(0), SLR(1), LR(1) and LALR(1). We also examine the Tomita and CYK approaches to bottom-up parsing.

Context-Free Grammar

LR(0) items LR(1) items

DFA with no lookahead DFA with 1 symbol of lookahead

LR(0) SLR(1) LR(1) Merge similar item sets

LALR(1)

PPPPPPPPPPPPq

������������)

? ?

@
@

@
@
@R

�
�

�
�

�	

J
J

J
JĴ
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4.1 Bottom-Up (Shift-Reduce) Parsing

In bottom-up parsing we start with the sentence and try to apply the production rules in reverse, in order to finish
up with the start symbol of the grammar. This corresponds to starting at the leaves of the parse tree, and working
back to the root.

• Each application of a production rule in reverse is known as a reduction.

• The r.h.s. of a rule to which a reduction is applied is known as a handle.

Thus the operation of a bottom-up parser will be as follows:

1. Start with the sentence to be parsed as the initial sentential form

2. Until the sentential form is the start symbol do:

(a) Scan through the input until we recognise something that corresponds to the r.h.s. of one of the production
rules (this is called a handle)

(b) Apply a production rule in reverse; ie. replace the r.h.s. of the rule which appears in the sentential form
with the l.h.s. of the rule (an action known as a reduction)

In step 2(a) above we are “shifting” the input symbols to one side as we move through them; hence a parser which
operates by repeatedly applying steps 2(a) and 2(b) above is known as a shift-reduce parser.

A shift-reduce parser is most commonly implemented using a stack, where we proceed as follows:

• start with the sentence to be parsed on top of the stack

• a ”shift” action correponds to pushing the current input symbol onto the stack

• a ”reduce” action occurrs when we have a handle on top of the stack. To perform the reduction, we pop the
handle off the stack and replace it with the terminal on the l.h.s. of the corresponding rule.

In a top-down parser, the main decision was which production rule to pick. In a bottom-up shift-reduce parser there
are two decisions:

1. Should we shift another symbol, or reduce by some rule?
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2. If reduce, then reduce by which rule?

Observe that the basic operation of a shift reduce parser is going through the input symbols from left-to-right looking
for one of a particular set of strings (the r.h.ss. of the production rules).

Thus the basis of any shift-reduce parser will be a machine which can shift input symbols until it recognises a handle.
We have already met such a machine - what we need is simply a (handle-recognising) DFA.

• A parser action such as ”shift a” corresponds to making a transition from one state to another based on symbol
‘a’ in the DFA

• An action such as reduce by A → α means that we have recognised all the symbols in α and have now reached
what is effectively a final state for that handle.

In order to construct the DFA from a grammar we need some way of representing the current status of the parse as a
state in the DFA.

4.2 LR(0) items

An LR(0) item is a production rule with the marker “4” somewhere on the r.h.s.

An LR(0) item of the form A → α1α2 . . . αi4αi+1 . . . αn means that:

• we have already recognised terminal symbols on the input which correspond to (ie. which are reducible to)
α1α2 . . . αi

• should we now recognise symbols corresponding to αi+1 . . . αn, then we will have moved to a final state in the
DFA, and will be ready to reduce by the rule A → α1 . . . αn

Note that an item which has the “4” on the far right of the r.h.s. of a rule implies that it is time to perform a
reduction by that rule (we’ve recognised everthing on the r.h.s.).

4.2.1 Kernel Items

When we have an item with the marker immediately to the left of some non-terminal, then this tells us that the next
step in the parse is to recognise some sequence of symbols which correspond to this non-terminal. To do this, we have
to examine the rules for that non-terminal, and proceed from there.

For instance, the item B → c4C tells us that the next step is to recognise a C; we can do this by recognising one of
the two r.h.s. of the production rules for C. This item is thus equivalent to: C → 4Bd and C → 4d.

An item with the “4” on the far left of the r.h.s. is called a non-kernel item. Anywhere we have the “4” to the
immediate left of a non-terminal is equivalent to each of the non-kernel items for that non-terminal.

4.2.2 The closure and move operations on items

The process of building a handle-recognising DFA from LR(0) items is very similar to converting a NFA to a DFA
using the ”subset construction” algorithm of section 1. Hence we will need some equivalent of ε-closure and the NFA
move function.

To get the closure of a set of items, take all those items which have the marker immediately to the left of a non-terminal,
and add in all the non-kernel items for that non-terminal. This operation is very similar to the ε-closure operation
since we can “get to” all items in the closure set of an item without shifting any symbols (ie. without consuming any
input).

The transitions in the DFA will correspond to moves between item-sets based on some symbol. Basically move works
as follows:

Let x represent any symbol (terminal or non-terminal), α and β are any sequence of symbols, then:

move{A → α4xβ, x} = {A → αx4β}
move{A → α4xβ, b} = {}, for any b 6= x
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4.3 Handle-recognising DFAs and LR(0) Parsers

Using these idea, we are ready to construct a handle-recognising DFA. DFA states are sets of items; making a transition
in the DFA corresponds to moving the marker one place to the right in an item.

We make things a little easier if we introduce a production rule of the form S′ → S to the grammar, where S is the
start symbol. Whenever we reduce by this rule, we know that we are finished. (A grammar which has had this rule
added is called an augmented grammar).

Since our new start symbol is now S′, the ”goal” of the parse will be to recognise an S and reduce this to S′; this is
represented by the LR(0) item: S′ → 4S. This item is called the initial item.

4.3.1 Construction of a handle-recognising DFA

To construct a handle-recognising DFA from a context-free grammar, perform the following:

1. Prepare the grammar by:

(a) Eliminating any ε-productions

(b) If S is the start symbol, add a new rule to the grammar S′ → S.

2. The start state of the DFA is closure{S′ → 4S}

3. Each time we create a new state in the DFA perform the following:
For each grammar symbol (terminal or non-terminal):
work out the closure of the move operation applied to newly created state and this symbol; this may create new
states.

Note the similarities between this and the ”subset construction” algorithm which we used to convert a NFA to a DFA.

4.3.2 Operation of a handle-recognising DFA

Any handle-recognising DFA works as follows:

1. Start in state I0.

2. SHIFT: As we read symbols from the input, make the appropriate transitions in the DFA from the current
state.

3. REDUCE: If we are in a state that has a production rule of the form
A → α4 for any non-terminal A and r.h.s. α, then we have recognised the handle α, and can reduce by the
rule. We do this as follows:

(a) move backwards along the DFA transitions for each symbol in α

(b) from the state you end up in, make a forwards transition on A

4. ACCEPT: The final DFA state is the one containing the item S′ → S4. If we reach this state and have
consumed all the input, then we accept the string as being valid.

4.3.3 The LR(k) parsers

Any parser constructed using the above method will be a member of the family of LR(k) parsers:

L = scanning the input from Left to right

R = Conducting a Rightmost derivation (in reverse)

k = using k symbols of lookahead.

As usual, lookahead is indicated by the presence of FIRST or FOLLOW somewhere in the construction. We did not
use them above, so we have constructed a LR(0) parser.
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4.3.4 Inadequte States

It is possible that some of the DFA states constructed using the previous algorithm will contain items which suggest
both “shift” and “reduce” actions. This situation is known as a shift/reduce conflict.

Because we have conflicts in the handle-recognising DFA, the parser will not know which action to take; it will have
to pick one arbitrarily and try it out. Because of this non-determinism, we say that the grammar was not LR(0).

An alternative problem could arise if we have two or more items in a state which have the “4” marker to the right
of their r.h.s.; thus we would not know which one to reduce by. This situation is called a reduce/reduce conflict.
Instances of this are rarer than shift/reduce conflicts.

[Note that no state can have a shift/shift conflict since we are using a DFA; this sort of problem would arise only
as a result of using an NFA.]

Any state in a handle-recognising DFA which contains either a shift/reduce or a reduce/reduce conflict is known as
an inadequate state.

It is the ideal of LR parser design to minimise the number of inadequate states without sacrificing efficiency. The
most common way of doing this is to introduce lookahead into the parser construction, leading to the LR(1) family of
parsers.

4.4 SLR(1) Parsers

SLR(1) stands for SimpleLR(1); this is basically a method of adding lookahead to LR(0) parsers as simply as possible.

The technique is based on the following observation:

If we are in a DFA state containing the item: A → α4 then a possible action will be to reduce by this rule. Doing
this reduction would involve:

going from a sentential form that looks like: . . . α4 . . .
to one that looks like: . . . A4 . . .

By looking at examples, we can see that the symbol immediately to the right of the marker in a sentential form should
correspond to the next input symbol: we can rephrase this as: the symbol following A should be the next symbol in
the input.

Since we already have a method of characterising the set of symbols which can follow a non-terminal in a sentential
form, we can formulate the SLR(1) reduction rule:

• Reduce by the rule A → α only if the current state contains A → α4 and the next input symbol is in
FOLLOW (A)

This provides a quick and easy way to incorporate lookahead into the parser; however, there are many languages which
are not SLR(1).

4.5 LR(1) Parsers

In order to introduce lookahead as early as possible into the parser construction, we define the following:

An LR(1) item is an LR(0) item plus some lookahead symbols.
Thus an LR(1) item looks like: [A → α1α2 . . . αi4αi+1 . . . αn, a]

This means that:

• we have just recognised α1α2 . . . αi, and

• should we go on to recognise αi+1 . . . αn (or something which corresponds to them), then we can reduce by the
rule A → α1 . . . αn,

• with the understanding that, when we do, the next symbol on the input will be ‘a’.

[Note: Given that the next input symbol will be following A in the current sentential form, we know that the lookahead
symbol ‘a’ must be in FOLLOW (A).]
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4.5.1 Constructing LR(1) Item sets

In order to construct the sets of items for an LR(1) parser, we just need to make three modifications:

1. The Initial Item
The initial item is now of the form [S′ → 4S, ⊥]. That is we want to recognise an S (or something corresponding
to it) and reduce by this rule, on the understanding that the next symbol is the end of the input (ie. that there
is no more input).

2. The move operation
As might be expected, move([A → α4Bγ, a], B) = [A → αB4γ, a]; ie. move does not change the lookahead
symbol

3. The closure Operation
Previously we had constructed the closure of the LR(0) item [A → α4Bγ] by adding in all non-kernel items of
the form [B → 4β]. This will be the same for the LR(1) item [A → α4Bγ, a], but we need to compute a new
lookahead set.

Since we are only interested in finding β and reducing it to B as a kind of a ”sub-goal” of finding Bγ , we can
state that after reducing to B, the next input symbol should match whatever is derived from γ; ie. it should be
in FIRST (γ). If γ can derive ε, then the next input symbol should match what had previously been expected
to follow A, ie. the lookahead symbol ‘a’.

Thus: closure([A → α4Bγ, a]) contains all items of the form [B → 4β, b], where ‘b’ is a terminal in FIRST (γa)

The algorithm for constructing a handle-recognising DFA is exactly the same as before, except that we use the above
modifications.

One result of these changes is to increase the number of possible items, and also the number of likely states in the
handle-recognising DFA; thus LR(1) parsing tables for a grammar tend to be significantly larger than the LR(0) or
SLR(1) tables for the same grammar.
However, the parsing is improved, because now we can modify the SLR(1) reduction rule to get:

The LR(1) reduction rule:

• Reduce by the rule A → α1 . . . αn if and only if the item [A → α1 . . . αn4, a] is in the current state, and ‘a’ is
the next input symbol.

Since the number of ‘a’ symbols may be smaller than FOLLOW (A), there can be less reductions in an LR(1) parse
table, and thus less potential conflicts.

4.6 LALR(1) Parsers

While LR(1) parsers are quite powerful, they can involve a large number of states, and this can cause complications
for the implementation. We can reduce the number of states without paying too much of a price in terms of increased
conflicts by noting that there will often be two different states whose basic items are the same, but which differ only
in lookahead sets.
We can reduce the size of an LR(1) parse table if we combine such states together; the resulting lookahead is the union
of the two individual lookaheads. Parse tables constructed from this type of DFA are known as LALR(1) parsers, for
Look-Ahead LR(1) parsers. [Stupid name - all LR(1) parsers have lookahead]

Merging two states in this manner will not adversely effect the move function, since this does not depend on the
lookahead.

Merging states will not add any extra shift/reduce conflicts that were not in the LR(l) parser originally, since shift
actions do not depend on lookaheads. However, the number of reduce/reduce conflicts may be increased.

4.7 Tomita’s Parser

Tomita’s Algorithm amounts to a simple generalisation of the standard LR algorithm. The LR parse-table is con-
structed as usual, and we proceed with the parsing algorithm in the normal way.

In order to keep a record of the parse-state, we maintain a stack consisting of symbol/state pairs. This is maintained
as follows:
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1. Each time we make a shift action we push the symbol and the new state onto the stack.

2. A reduce action for some rule whose right-hand-side has length k involves popping k symbol/state pairs off the
stack, and then pushing the symbol and state corresponding to the rule’s left-hand-side.

Thus at any stage during the parse, the current state will be on top of the stack. When we meet a conflict arising
from an inadequate state, we simply duplicate the stack, and split the parse into a different process for each stack.
The input string is accepted if any of the parallel parsings terminate successfully.

In general the effectiveness of this algorithm is proportional to the “strength” of the initial parse table; e.g. a Tomita
Parser constructed from an LALR(1) table can expect to be more efficient than one constructed from an LR(0) table.

4.8 CYK Method

The Cocke-Younger-Kasami parsing method is based on a bottom-up approach to the partitioning of the input. In its
most general form it is identical to chart parsing.

The algorithm proceeds as follows:

Phase 1 For each symbol in the input string, construct a set of all those non-terminals that can generate that symbol
on its own. (This can be calculated from the grammar)

Phase 2 For each adjacent pair of symbols, construct a set consisting of all those non-terminals that can derive that
pair, or some pairing of their phase 1 non-terminals.

Phase i For each substring of the input of length i, construct a set of non-terminals which can generate that string,
or some combonation of the terminals in the string and any phase k non-terminals (for any k < i).

We are finished if the start symbol is a phase n non-terminal, where n is the string length.
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