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Abstract 

We review recent research that assesses evidence for the detection of anthropogenic and natural 

external influences on the climate. Externally driven climate change has been detected by a 

number of investigators in independent data covering many parts of the climate system, 

including surface temperature on global and large regional scales, ocean-heat content, 

atmospheric circulation, and variables of the free atmosphere, such as atmospheric temperature 

and tropopause height. The influence of external forcing is also clearly discernible in 

reconstructions of hemispheric scale temperature of the last millennium. These observed climate 

changes are very unlikely to be due only to natural internal climate variability, and they are 

consistent with the responses to anthropogenic and natural external forcing of the climate system 

that are simulated with climate models. The evidence indicates that natural drivers such as solar 

variability and volcanic activity are at most partially responsible for the large-scale temperature 

changes observed over the past century, and that a large fraction of the warming over the last 50 

years can be attributed to greenhouse gas increases. Thus the recent research supports and 

strengthens the IPCC Third Assessment Report conclusion that “most of the global warming 

over the past 50 years is likely due to the anthropogenic increase in greenhouse gases”. 



1. Introduction  

The “International Ad Hoc Detection group” (IDAG) is a group of specialists on climate 

change detection, who have been collaborating on assessing and reducing uncertainties in the 

detection of climate change since 1995. Early results from the group were contributed to the 

IPCC Second Assessment Report (SAR; IPCC 1996). Additional results were reported by 

Barnett et al. (1999) and contributed to the IPCC Third Assessment Report (TAR; IPCC 2001).  

The weight of evidence that humans have influenced the course of climate during the past 

century has accumulated rapidly since the inception of the IDAG.  While little evidence was 

reported on a detectable anthropogenic influence on climate in IPCC (1990), a “discernible” 

human influence was reported in the SAR, and the TAR concluded that “most of the observed 

warming over the last 50 years is likely to have been due to the increase in greenhouse gas 

concentrations”. The evidence has continued to accumulate since the TAR. This paper reviews 

some of that evidence, and refers to earlier work only where necessary to provide context. 

Climate change detection assumes that climate (meaning the statistical characteristics of our 

atmospheric, oceanic and cryospheric environment) is implicitly predictable in the sense that if a 

(known) change in external forcing occurs, the climate will respond by displaying a predictable 

change in its statistical characteristics. This should hold even if the climate displays “regime-

like” behavior, as is characteristic of many chaotic systems (Palmer 1999a), because regime 

occupancy characteristics are part of the full description of the behaviour of the climate system. 

If changes occur in these occupancy characteristics, then we expect that they will be reflected in 

the statistics (means, variances, auto- and cross-covariances, and higher order moments) that 

characterize the climate. A key statistical characteristic of the climate system is its mean state; an 

aspect of climate that we assume can be changed in predictable ways by both natural and 
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anthropogenic external influences. For example, climate is expected to respond to aerosols 

ejected into the stratosphere by strong volcanic eruptions, to variations in solar irradiance, to 

changes in greenhouse gases and to changes in the composition of the atmosphere associated 

with human activity, particularly the burning of fossil fuel. Similarly, we assume that if external 

influences cause changes in the climate’s variability, then the characteristics of those changes 

(e.g., a change in regime occupation frequency) will also occur in predictable ways.    

Evidence from coupled global climate models (CGCMs; oceanic and atmospheric general 

circulation models that are coupled together with land surface and cryospheric components), 

together with our rapidly increasing understanding of the role of external forcing in 

paleoclimates, suggests that this assumption is well founded.  Thus one of the main goals of 

detection and attribution research during the past several years has been to compare observed 

changes in climate, primarily during the past century, against CGCM simulations that have been 

forced with estimates of historical changes in anthropogenic and natural external forcing.  

The most easily obtainable evidence of externally forced change has come from global-scale 

analyses of the combined instrumental surface air temperature and sea-surface temperature 

records (e.g., Jones et al. 1999; Jones and Moberg 2003).  This record, which extends into the 

19th century, is well suited for climate change research because it is of high quality and has broad 

spatial coverage. It has been extensively scrutinized (e.g., Folland et al. 2001b), and is expected 

to exhibit the response to external forcing with high signal-to-noise ratio.  Therefore, climate 

change detection research initially relied mainly on the surface temperature record.  

While temperature variables continue to be investigated in order to better understand and 

reduce uncertainty, investigation is now proceeding with several other climate variables. Some 

recent studies have also begun to assess whether the climate response to external forcing is 
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detectable on regional scales.  In addition, some investigators are now evaluating the prospects of 

detecting externally forced change in the frequency and intensity of climatic extremes. Both of 

these developments are important because, ultimately, policy makers will be most strongly 

influenced by evidence of impacts in regions that are of direct interest to them, and by evidence 

that anthropogenic greenhouse gas emissions are having an influence on the occurrence of high 

impact climate events such as heat waves and flooding.   

The plan for the remainder of this paper is as follows. Section 2 briefly reviews the detection 

techniques that have been used in recent research. Our consideration of new scientific 

developments begins in Section 3 with a description of the considerable progress that has been 

made in improving our understanding of the climate of the last millennium and the external 

factors that have influenced its variability.  Sections 4, 5 and 6 then review advances that are 

based on the instrumental surface temperature record (Section 4), free atmosphere temperature 

and circulation records (Section 5), and oceanic records (Section 6). Section 7 deals briefly with 

rainfall and climate extremes, and Section 8 discusses some recent progress with the use of 

Bayesian methods.  We complete the paper with a summary of our main findings in Section 9.  

2. Methodological considerations 

Any discussion on the methodology that is used for detection and attribution should begin 

with an understanding of these terms.  The definitions we use are those given by Mitchell et al. 

(2001) in the TAR (IPCC 2001).  Quoting from that report, “Detection is the process of 

demonstrating that an observed change is significantly different (in a statistical sense) than can 

be explained by natural internal variability” where natural internal variability is the chaotic 

variation of the climate system that occurs in the absence of anomalous external forcing. 

Detection does not immediately imply attribution of the cause of the detected change.  As noted 
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in the SAR (IPCC 1996) and the TAR unequivocal attribution would require controlled 

experimentation with our climate system.  That, of course, is not possible, and thus from a 

practical perspective, attribution of anthropogenic climate change is understood to mean (a) 

detection as defined above, (b) demonstration that the detected change is consistent with a 

combination of external forcing including anthropogenic changes in the composition of the 

atmosphere and natural internal variability, and (c) that it is “not consistent with alternative, 

physically-plausible explanations of recent climate change that exclude important elements of 

the given combination of forcings” (IPCC 2001). 

In this section we very briefly review the statistical methods that have been used in recent 

detection and attribution work. Two statistical approaches have been used in recent studies.  

Standard ‘frequentist’ methods (methods based on the relative frequency concept of probability) 

continue to predominate, but there is increasing interest in the use of Bayesian methods of 

statistical inference. One reason is that information from multiple lines of evidence can be 

combined in the Bayesian framework.  We will briefly review the optimal fingerprinting 

technique in the following subsection.  This will be followed by a short discussion on the 

differences between the standard  and Bayesian approaches to statistical inference that are 

relevant to detection and attribution. 

a. Optimal fingerprinting 

Optimal fingerprinting is generalized multivariate regression that has been adapted for the 

detection of climate change and the attribution of change to externally-forced climate change 

signals (Hasselmann 1979, 1997; Allen and Tett 1999). The multiple regression model that is 

used has the form uXay +=  where vector y is a filtered version of the observed record, matrix 

X contains the estimated response (signal) patterns to the external forcings that are under 
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investigation, a  is a vector of scaling factors that adjusts the amplitudes of those patterns, and u  

is a realization of internal climate variability. Vector u  is assumed to be a realization of a 

Gaussian random vector with a covariance matrix C . Vector a  is estimated with 

yXXXyCXXCX TTTT ~~)~~()( 111 == −−−a   where matrix X~  represents the signals patterns after 

normalization by the climate’s internal variability, and vector y~  represents the observations after 

normalization.  The normalizations transform the signals and observations so as to maximize the 

signal-to-noise ratio (see Mitchell et al 2001, and references cited therein). 

The matrix X typically contains signals that are estimated with either a CGCM, an 

atmospheric general circulation model (AGCM; see Sexton et al. 2001, 2003) or a simplified 

climate model such as an energy balance model (EBM). Because CGCMs simulate natural 

internal variability as well as the response to specified anomalous external forcing, the GCM 

simulated climate signals are typically estimated by averaging across an ensemble of simulations 

(for a discussion of optimal ensemble size and composition, see Sexton et al., 2003). By allowing 

us to scale the signal patterns to best match the pattern of change that is contained in the 

observations, the vector of scaling factors a  accounts for the possibility of error in the amplitude 

of the anomalous external forcing, and for the possibility that the amplitude of the climate model 

response to the forcing may not be correct. 

Fitting the multiple regression model requires an estimate of the climate’s natural internal 

variability (i.e., the covariance matrix C ). The instrumental record is not long enough to provide 

a reliable estimate and may also be contaminated by the effects of external forcing. Thus long 

control simulations with CGCMs (i.e., without anomalous external forcing) are typically used for 

this purpose.  It is understood that CGCMs may not simulate natural internal climate variability 

accurately, particularly on small spatial scales, and thus a residual consistency test (Allen and 
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Tett 1999) is typically used to assess the model simulated variability on the scales that are 

retained in the analysis. It is also recognized that the uncertainty of the estimate of the vector of 

scaling factors a  should be assessed with a second, statistically independent estimate of the 

covariance matrix C . This second covariance estimate is typically obtained from an additional, 

independent control simulation.  

Signal estimates obtained with CGCMs contain remnants of the climate’s natural internal 

variability even though they are obtained by averaging across an ensemble of forced climate 

change simulations.  The presence of this noise in the signal may bias ordinary least squares 

estimates of a  downward, particularly if only a small ensemble is available to estimate signals 

that have small signal-to-noise ratios (as is the case in the 20th century). Thus several recent 

studies that use CGCM derived signals have estimated a  with the total least squares algorithm 

(Allen and Stott 2003). 

There is considerable variation in the details of the implementation of the optimal 

fingerprinting approach, and in the way data are processed prior to its application.  However, 

recent research has shown that different approaches to detection and attribution yield consistent 

results. Methodological aspects that have been investigated include the use of stepwise versus 

multiple regression (Hegerl and Allen 2002), various data-treatment methods (Gillett et al. 

2002a) and the use of signals and noise estimates constructed from multiple models (Gillett et al. 

2002b). This demonstration of consistency and robustness of results increases our confidence in 

the detection of anthropogenic climate change. 

b. Methods of Inference 

Detection and attribution questions are assessed through a combination of deductive 

reasoning (to determine whether there is evidence that other mechanisms of change not included 
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in the climate model could plausibly explain the observed change) and by evaluating specific 

hypotheses on the scaling factors a . The hypotheses continue to be assessed most often using 

standard methods (Hasselmann 1979, 1997; Hegerl et al. 1997; Allen and Tett 1999; Allen et al. 

2004). However, some researchers are now also beginning to use Bayesian methods 

(Hasselmann 1998; Leroy 1998; Berliner et al. 2000; Schnur and Hasselmann 2004; Lee et al. 

2004). 

i) Standard approach    

In the standard approach, detection of a postulated climate change signal occurs when its 

amplitude in observations is shown to be significantly different from zero. This is handled by 

testing the null hypothesis 0a =:DH  where 0  is a vector of zeros. The second attribution 

requirement (consistency with a combination of external forcings and natural internal variability) 

is assessed with the assistance of the attribution consistency test (Hasselmann 1997; see also 

Allen and Tett 1999) which evaluates the null hypothesis 1a =:AH  where 1  denotes a vector of 

units. Consistency between the observed and climate model simulated response to forcing (i.e., a 

finding that there is insufficient evidence to reject AH ) lends support to an attribution 

assessment, but does not on its own provide strong evidence in support of attribution (Berliner et 

al. 2000; Lee et al. 2004). A complete attribution assessment would take into account not just 

evidence from this test, but would also account for competing mechanisms of climate change as 

completely as possible, as discussed in Mitchell et al. (2001).   

ii) Bayesian approach  

Interest in a Bayesian approach is motivated by several factors. These include the ability to 

integrate information from multiple lines of evidence, and the ability to incorporate independent 
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prior information into the analysis. Two distinct approaches to Bayesian detection and attribution 

have been taken to date. These are exemplified by Hasselmann (1998) and Schnur and 

Hasselmann (2004) on the one hand, and Berliner et al. (2000) and Lee et al. (2004) on the other. 

In both cases inferences are based on a posterior distribution that blends evidence from the 

observations with independent prior information that is represented by a prior distribution.  This 

ability to incorporate prior information, which may include information on the uncertainty of 

external forcing estimates, climate models, and their responses to forcing, is a strength of the 

Bayesian approach even though some of the prior information may be subjective.  This is 

because all information that enters into the analysis is declared explicitly.  Another strength is 

that Bayesian inferences are probabilistic (i.e., based on the posterior likelihoods of detection and 

attribution), which means that they can better feed into decision making processes that balance 

risks and benefits.  Also, the Bayesian approach provides a more satisfactory inference on 

attribution by assessing the likelihood of attribution consistency.  

Schnur and Hasselmann (2004) approach the problem by developing a filtering technique 

appropriate for the Bayesian method that optimizes the impact of the data on the prior in a 

manner similar to the way in which optimal fingerprints maximize the ratio of the anthropogenic 

signal to natural variability noise in the conventional approach. The optimal filter in the Bayesian 

approach depends on the properties of both the natural climate variability and model errors. In 

contrast, Berliner et al. (2000) and Lee et al. (2004) use an approach that does not optimize the 

impact of the data on the prior distribution.  Instead, they use Bayesian methods only to make 

inferences about the estimate of a  that is obtained from a conventional optimal fingerprinting 

approach.  
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3.  Analysis of paleo-climate reconstructions 

Both instrumental measurements and proxy data can be used to investigate climate change 

and climate variability of Earth’s recent past. However, prior to the mid-19th century, only 

European instrumental data are adequate to extend temperature time series back to about 1750. 

Before then it is necessary to use proxy records to estimate temperatures. Although the proxy 

evidence is less reliable than instrumental data (e.g., Jones et al. 2001; Esper et al. 2002), 

estimates for earlier centuries (particularly the last millennium) are vital as they enable the last 

140 years to be placed in a broader context.  These records also provide estimates of the range of 

variability on decadal to century time scales that can occur naturally due to external forcing from 

solar output changes and explosive volcanism, and due to internal variability of the climate 

system. 

a. The last millennium 

Compilations of proxy records developed during the last few years clearly show that the 

earth has warmed rapidly in the last 100 years or so (see the reviews by Jones et al. 2001, and 

Jones and Mann 2004). There is surprising agreement between the temperature time series 

developed by different authors (Figure 1a) even though the different reconstructions generally 

use different proxies and represent somewhat different variables. Data in some reconstructions 

cover only the mid-to-high latitudes. Some reconstructions are representative only of the 

growing season while others reflect temperature variations in all seasons. Some are 

representative only of land areas, while others represent both land and ocean areas.  Most 

reconstructions are only available to the 1970s and 1980s, beyond which many proxies are not 

available.  
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The reconstructions show that average temperatures during the last two decades of the 20th 

century, which were 0.2 K warmer than the 1961 to 1990 average, were probably the warmest of 

the last millennium. The 1980s and 1990s are estimated to have been about 0.2 K warmer than 

the warmest decadal periods in the 11th and 12th centuries.  The first half of the millennium was 

generally cooler than the 20th century mean, but milder than the 1500 to 1900 period.  The 

coolest century was the 17th followed by the 19th, separated by a milder 18th century. The 

warming during the 20th century, which is approximately 0.6 K (IPCC 2001), is considerably 

larger than the variation of warming/cooling estimates of approximately ±0.2 K within each 

century of the rest of the millennium that are obtained from paleo reconstructions. Thus, proxy-

derived series suggest that 20th century warming is unique in the last millennium for both its 

mean value and its rapidity of change. Both the early and late decades of the 20th century are 

clearly unusual in a millennial context.  

Attribution results generally indicate that the early 20th century warming can be explained as 

a combination of a signal from natural forcing and an emerging greenhouse gas signal of similar 

magnitude, possibly in combination with natural climate variability. However, the contribution 

from individual natural forcings and internal variability remain somewhat controversial. Some 

studies indicate that solar forcing dominates (e.g. Stott et al. 2003), while others find a 

significant greenhouse gas signal (Tett et al., 2002; Hegerl et al., 2003) and a warming due to a 

cessation of volcanism (Hegerl et al. 2003) or a large contribution from internal climate 

variability (Tett et al. 2002, Delworth and Knutson 2000).  

The proxy-based view of temperature change over the last 500 years was challenged by 

reconstructions of past surface temperatures derived from boreholes (Huang et al. 2000).  

Boreholes represent the temperature of the ground below the land/atmosphere interface, which 
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integrates the temperature variations of the overlying atmosphere that diffuse into depth.  

Boreholes therefore predominately provide information on long timescales. Borehole 

temperature readings suggest that Northern Hemisphere surface temperatures may have warmed 

by over 1 K since 1500, compared to the conventional proxy estimate of about 0.5 ± 0.2 K 

(Figure 1a). Part of the discrepancy is due to the seasonal differences in the response of different 

proxy series. Tree ring data are more weighted towards growing season temperatures, while 

boreholes tend to represent mean annual data. Questions have also arisen about possible effects 

of snowcover on the borehole reconstructions (see e.g. Mann and Schmidt, 2003). Area 

weighting of the 453 Northern Hemisphere borehole series that were available, rather than 

simple averaging, reduces the warming since 1500 by 0.2 K. Recently studies (see Mann et al. 

2003, Pollack and Smerdon 2004, and Rutherford and Mann 2004; Huang 2004) suggest that if 

the borehole records are recalibrated with instrumental data over the 20th century, they can be 

shown to support the conventional proxy view of the millennium. Nevertheless, further work 

should go into fully reconciling these two proxies. Like traditional proxy data, many borehole 

records were collected as early as the 1970s and 1980s, so will not fully represent recent late-

20th century warming. A clear resolution to the issue is most likely to come from an extensive 

updating of both traditional and borehole proxy data.  

Despite the differences, the borehole/conventional proxy issues have served 

paleoclimatology well by forcing a reassessment of exactly what part of the year a proxy 

represents. It also demonstrates that it is important to process proxy data in a manner that takes 

their specific characteristics and coverage into account, and to include estimates of uncertainty. 
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b. Paleoclimate forcing and modeling studies 

Substantial progress has been made over the last few years in refining paleo-proxy forcing 

time series and consequently, in interpreting paleoclimate reconstructions with simple energy 

balance climate models (EBMs) that are driven with these forcing time series (c.f., IPCC 2001). 

These results have been confirmed using improved forcing and paleo reconstruction time series 

(Crowley et al. 2004; Crowley 2004) using a more detailed EBM with geographic resolution in 

the horizontal domain and a seasonal cycle. Results confirm previous conclusions that about 50% 

of the decadal pre-anthropogenic Northern Hemisphere temperature variance can be attributed to 

a direct response to solar and volcanic variability (Crowley et al. 2004). A small additional 

amount of variance is explained by the small decrease in CO2 concentration in the 17th and 18th 

century, which is thought to reflect a combination of the ocean response to Little Ice Age cooling 

and possibly decreased land respiration (Joos et al. 1999). Almost 60% of the decadal 

temperature variance in the full proxy record (1005-1960, and up to 77% from 1400 on; see 

Figure 2) can be explained by external forcing (solar, volcanic, greenhouse gas, and sulphate 

aerosol in the 20th century). Additional experiments employing land-use changes suggest that 

some of the late 19th century model-data discrepancies reported in Crowley (2000) can be 

eliminated by specifying known land-use changes (Bertrand et al. 2002; Bauer et al. 2003). 

Presently, a number of CGCM simulations of the last millennium are becoming available (e.g., 

Tett et al. pers. comm.; Zorita et al. 2003) in addition to simulations of selected periods of the 

past (e.g. Rind et al. 2004). These simulations, in conjunction with the increasing availability of 

proxy reconstructions, should improve our understanding of the origins of past climate change 

(see also Jones and Mann, 2004). They can also be used to test reconstruction methods and 
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estimate uncertainties in the shape and variance of reconstructed temperature signals (see, for 

example, Zorita et al., 2003). 

Multiple regression can be used to diagnose the influence of external forcing on climate 

variability in the last millennium as represented by a range of paleo reconstructions (Hegerl et al. 

2003). The response to volcanism and greenhouse gases can be clearly detected in most records 

(Briffa et al. 2001; Crowley et al. 2004; Mann et al. 1999; Esper et al. 2002) and can be 

distinguished from each other and solar forcing with only small differences in results for 

different records. The response to solar forcing is detectable only in some periods and some 

records, although the EBM simulation of solar forcing is not inconsistent with the records. It is 

possible that errors in the forcing history, particularly early in the record, may have obscured the 

solar signal. Low-frequency solar forcing is quite uncertain (Lean et al. 2002). The 

anthropogenic signal can be detected and distinguished from other forcings in all paleo 

reconstructions towards the end of the 20th century, and is detectable in many reconstructions by 

the middle of the 20th century (Hegerl et al. 2003).  

Simulations of the last few hundred years can also be used to estimate changes in global 

ocean heat storage (Figure 3).  Using a comparison between model simulation and the surface 

proxy data set for a best-fit sensitivity and a plausible estimate of ocean diffusivity, substantial 

changes in ocean-heat storage are postulated during the Little Ice Age and a warming that 

commenced in the mid-19th century (Crowley et al. 2004). The first phase of the ocean-heat 

storage increase represents, in part, a relaxation after an intense period of volcanism, and in part, 

anthropogenic greenhouse gas concentration increases due to deforestation and early 

industrialization.  The more recent increases in ocean heat content, which agree very well with 

the Levitus et al. (2001) reconstruction, are driven mostly by the anthropogenic forcing. 
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4. Surface Temperature 

 Averaged globally, surface temperature is estimated to have increased by 0.6 K between 

the late 19th century and the end of the 20th century (Folland et al 2001a, b) with a 95% 

confidence bound, taking into account all known systematic and sampling errors in the basic land 

and marine data, that is estimated to be ±0.2 K. In the following subsections we will briefly 

discuss the instrumental surface temperature record, some recent global and regional detection 

and attribution studies, and results from some studies that have used the observational record to 

constrain estimates of key climate parameters and future temperature change. 

a. Data 

 Land and marine temperature data archives evolve continually, and thus the land surface 

temperature database has recently been enhanced by Jones and Moberg (2003). Concurrently, 

work is underway in many countries to improve data quality and extend data availability 

(particularly at the daily timescale), including a very substantial effort in the United States to 

provide digital access to their 18th and 19th century records.  Such data rehabilitation efforts are 

also required in the developing world, particularly in Central and South America, Africa and 

southern Asia, to fill large gaps in the record.  Improvements in availability of marine 

temperature data are also expected in the next few years, particularly for the 19th century and the 

two world war periods (Diaz et al. 2002).  

While it is very important to continue to fill current data voids to better define and monitor 

regional climate change, it is unlikely that additional data will significantly alter our estimates of 

changes in the global mean temperature.  However, additional data will further reduce the 

uncertainty of these estimates.  Improvements in other aspects of the instrumental record (such as 

daily series of pressure, precipitation, cloudiness, sunshine and water vapor) are also anticipated 
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and will help to produce a more complete picture of climate change from the mid-19th century 

onwards. 

b. Global scale detection and attribution results  

The IPCC TAR concluded that “... most of the warming observed over the last 50 years is 

likely to have been due to the increase in greenhouse gas concentrations” (IPCC 2001). This 

assessment was made with a very broad range of evidence, including evidence from a number of 

optimal detection studies using several different coupled climate models. Subsequent research 

has further increased the pool of evidence that supports the IPCC conclusion. For example, an 

optimal fingerprinting study that uses climate change signals estimated from an array of climate 

models produced results that are broadly consistent with the TAR (Allen et al. 2004).   

Despite the qualitative similarity in detection results, estimates of the magnitude of the 

contributions of individual anthropogenic forcing agents to the observed warming remain 

sensitive to which model was used to estimate the climate change signal and the natural internal 

climate variability. This sensitivity is partly due to differences in forcing and response to 

sulphate aerosols (Hegerl and Allen 2002), and to forcing mechanisms that were not included in 

all models used in the TAR (such as the indirect effect of sulphate aerosols or the effect of the 

changing ozone distribution). Responses attributed to natural external climate forcing are also 

model dependent.  Thus it is important to explicitly include ‘model uncertainty’ in detection and 

attribution assessments. Different choices in the implementation of the optimal detection 

formalism, such as the use of annual or summer season data, the choice of base period for 

calculating anomalies, and the use of a time-evolving signal pattern as opposed to fixed spatial 

trend patterns cause only minor differences in results that can be fully accounted for by these 

choices (Gillett et al. 2002a). 
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Gillett et al. (2002b) recently published a first attempt to overcome model uncertainty by 

using a multi-model approach to detection. Detection results from five models (HadCM2, 

HadCM3, CGCM1, CGCM2 and ECHAM3) were synthesized using the mean response patterns 

as fingerprints in a detection of greenhouse gas and sulfate aerosol influence, including an 

estimate of model uncertainty. Results indicate that the inter-model differences do not greatly 

increase detection and attribution uncertainties as applied to temperature data, and that averaging 

fingerprints actually improves detection results. This statement does not preclude the possibility 

that systematic errors common to all models may still be important, and inter-model differences 

may be much more important in the detection and attribution of change in other variables such as 

precipitation (Allen and Ingram 2002; Hegerl et al. 2004) or regional temperature. 

c. Regional results 

The impact of global warming on society is largely determined by spatial scales far smaller 

than those considered in detection and attribution studies to date.  Thus detection and attribution 

research is beginning to focus on sub-global scales.  Two approaches are being used in this work 

– one to assess the extent to which global studies can provide information on sub-global scales, 

and another to assess the influence of external forcing on the climate in specific regions. 

Our approach to the former is to consider a global data set from which we have 

systematically removed global mean information.  The result is shown in Figure 4a-c (after Allen 

et al. 2004).  The detection diagram with full global mean information included is shown in 

Figure 4a (corresponding to Figure 12.12 in the TAR).  The combined greenhouse gas and 

sulphate aerosol (“GS”) signal is detected in observations regardless of the model that is used to 

estimate the signal, and the estimated scaling factors on the GS signals are generally consistent 

with unity. Estimates of the contribution to observed warming from GS forcing are very similar 
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regardless of the model used to estimate the GS signal. The estimated magnitude and 

detectability of aerosol and other anthropogenic and natural signals in multi-signal analyses is 

less consistent between fingerprints from different models. However, a greenhouse gas signal is 

detected consistently if other signals are explicitly considered, providing strong evidence for the 

attribution of a part of the observed warming to greenhouse gas increases. 

Similar results are obtained when the linear trend in the global mean is removed from 

observations (Figure 4b), although uncertainties on the scaling factors, or equivalently, the 

estimated contribution to 20th century warming, is increased.  Figure 4c shows the result that is 

obtained when all global mean information is removed from the GS signal estimates.  We see 

that the uncertainty of the scaling factors is further increased, and that detection of the space-time 

evolution of the estimated GS pattern of global change occurs less consistently with the different 

GS signal estimates. However, detection still occurs at the 5% (one-sided) significance level, or 

lower, in four out of nine cases, and with only slightly weaker significance level, in 7 out of nine 

cases. Note that the increase in uncertainty is expected when global mean information, which has 

a high signal-to-noise ratio, is disregarded. Figures 4b and 4c provide evidence that the detection 

of anthropogenic climate change is also driven by the pattern of the observed warming in space 

and time, not only by consistent global mean temperature trends between models and 

observations. This suggests that greenhouse warming should also be detectable on subglobal 

scales.  

A related approach applies indices that reflect features of the anticipated response to 

anthropogenic forcing.  Such indices might include the global-mean surface temperature, the 

land-ocean temperature contrast, the magnitude of the annual cycle in surface temperature over 

land, the Northern Hemisphere meridional temperature gradient and the hemispheric temperature 
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contrast (Braganza et al. 2004, see also Karoly and Braganza 2001, and Karoly et al. 2003). 

Braganza et al. (2004) find changes in these temperature indices during 1950-and 1999 that are 

statistically significant, and similar to those simulated in anthropogenic climate change 

simulations. An attribution analysis suggests that the anthropogenic forcings account for almost 

the entire temperature change in the analysis period, while the early 20th century change is 

explained by equal contributions from anthropogenic and natural forcing, and a contribution 

from internal climate variability. 

Another approach for assessing the regional influence of external forcing is to apply 

detection and attribution formalisms to observations in specific regions (e.g., Zwiers and Zhang 

2003, and Stott 2003).  Zwiers and Zhang (2003) assess the detectability of the GS signal as 

estimated by the Canadian Centre for Climate Modelling and Analysis (CCCma) CGCMs in a 

series of nested regions, beginning globally and descending to separate continental domains for 

North America and Eurasia.  They find that observations in both domains taken during the latter 

half of the 20th century contain evidence that their climates have been influenced by 

anthropogenic emissions (Figure 5).  This finding is robust to the exclusion of North Atlantic 

Oscillation (NAO/AO) related variability (Thompson and Wallace 1998), which may itself be 

related to anthropogenic forcing (see below; also see Gillett et al. 2000, 2003b, Fyfe et al. 1999, 

Shindell et al. 1999).  

Stott (2003) assesses the detectability of the response to natural and anthropogenic forcing 

as simulated by HadCM3 in six continental scale regions, each composed of a small number of 

subregions. For each continental scale region, greenhouse warming can be detected and 

separated from the effect of natural forcing and sulfate aerosol and ozone forcing. The ability of 

HadCM3 to reproduce observed change in these regions, which is illustrated in Figure 6, is 
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compelling evidence of the influence humans have probably had on regional climates.  Stott 

reports detection of an anthropogenic signal in all continental regions considered, although 

HadCM3 appears to have overestimated sulphate aerosol cooling in some regions (notably Asia).  

North American continental scale temperature change has also been analyzed by Karoly et 

al. (2003) in a similar way as in the global study of temperature indices by Braganza et al (2004) 

mentioned above. The indices reflect several large-scale aspects of North American temperature 

change, namely the regional mean, the mean land-ocean temperature contrast, an estimate of the 

mean meridional temperature gradient, an estimate of the mean annual cycle, and an estimate of 

the regional mean diurnal temperature range. The variability of the indices as simulated by five 

CGCMs was compared with estimates from observations, and observed changes in the 20th 

century were compared with those simulated in response to historical natural and anthropogenic 

forcing. Confounded variability caused by changes in instrumental coverage over time was 

controlled by applying a fixed observational data mask to both observations and model. The 

model-simulated decadal variability in the indices was similar to that estimated from 

observations, with the possible exception of meridional temperature gradient variability, which 

tends to be greater in models than in observations.  Simulated trends in the indices were found to 

be consistent with observed trends under historical GS forcing (Figure 7), while there appears to 

be only a small likelihood of agreement with trends driven by natural forcing only for both the 

entire 20th century and the second half of the 20th century.  

d. Observational constraints on future temperature change 

By validating climate models against observations, detection and attribution studies such as 

those described above provide observational constraints that can be used to reduce uncertainty in 

model-based predictions. This approach has been used to provide objective forecasts of global 
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temperature over the coming decades (Allen et al. 2000; Stott and Kettleborough 2002; Allen 

and Stainforth 2002) that are less sensitive to the choice of model and insensitive to details of the 

external forcing scenarios used to drive the models. 

Detection formalisms can also be used to obtain observational constraints on key climate model 

parameters (such as the climate sensitivity to radiative forcing and ocean diffusivity) by 

determining parameter settings that yield simulations that are consistent with observations.  Such 

studies have generally been performed with EBMs or a model of intermediate complexity 

because of cost considerations, although some studies are now underway with more complex 

climate models (e.g., see http://www.climateprediction.net/index.php).  Results using 20th 

century instrumental data (Forest et al. 2000, 2002; Andronova and Schlesinger 2000; Gregory et 

al. 2002a, Knutti et al. 2003) are in broad agreement with each other and generally yield a 

skewed distribution for climate sensitivity with peak values around 2-3 K for CO2 doubling and a 

wide tail to the right. The 10-90% uncertainty range on climate sensitivity is typically around 

1.8-6.5 K (Forest et al. 2002). Since aerosol forcing is a major uncertainty in simulating 20th 

century climate change, all studies either make assumptions about total aerosol forcing (e.g. 

Forest et al. 2000), allow for a range of total aerosol forcing (Forest et al. 2002) or apply an 

inverse calculation of the sulfate forcing given the scaling for sulfate aerosol and greenhouse gas 

forcing (Gregory et al. 2002a; Knutti et al. 2003;. Anderson et al 2003). If reconstructions of 

Northern Hemispheric mean temperature from paleo data are used, it may be possible to further 

reduce the upper bound of this uncertainty range (G. C. Hegerl et al 2004, pers. com.). This is 

consistent with Hansen et al (1984) who looked at forcing and temperature at the last glacial 

maximum and concluded that the climate sensitivity associated with processes on the decadal to 

century scale probably does not exceed 5 K.  
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5. Free Atmosphere  

a. Temperature 

One of the major remaining puzzles in our understanding of the causes of late 20th century 

climate change relates to the apparent “differential warming” of the surface and troposphere. 

Surface thermometer measurements indicate that the Earth’s near-surface temperatures have 

warmed at a rate of 0.15 to 0.20°C/decade since 1979. The reality of this recent surface warming 

has been confirmed by numerous investigations (see, e.g., Jones et al., 1999; National Research 

Council, 2000). In contrast, radiosondes and the satellite-based Microwave Sounding Unit 

(MSU) record developed at the University of Alabama at Huntsville (UAH) show little or no 

tropospheric warming over the past 25 years (Parker et al. 1997 and Christy et al. 1998). This 

contrasts with model simulations of the response to anthropogenic forcing, which generally show 

substantial tropospheric warming over this period (e.g. Santer et al. 2001, and Tett et al. 2003).  

Radiosonde measurements provide a longer-term perspective on surface and tropospheric 

warming rates. They show that the tropical troposphere warmed relative to the surface over 

1960-1978, and thereafter cooled relative to the surface (Gaffen et al. 2000). Analyses of 

radiosonde data by Angell (2000) and others have concluded that there is no discrepancy 

between the overall warming rates at the surface and in the lower troposphere for the period 

1958-1998.  As noted above, this consistency between surface and tropospheric warming rates 

appears to break down over the shorter, MSU era. 

A number of recent studies have sought to understand the possible causes of differential 

surface and tropospheric warming rates in models and observations. Santer et al. (2000) showed 

that spatial differences in coverage between satellite data, which are globally complete,  and 

surface observations, which are spatially incomplete, could explain up to one-third of the 
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difference between surface and lower tropospheric temperature (2LT) trends over 1979-1999. 

External forcing also helps to reconcile some of the differential warming, since both volcanic 

eruptions and stratospheric ozone depletion may have cooled the troposphere by more than the 

surface over the last several decades. This can be demonstrated in model simulations (IPCC 

2001; Santer et al. 2000) and from observational studies (Santer et al. 2001;  Free and Angell 

2002). There are, however, substantial uncertainties in quantifying the differential cooling caused 

by these forcings. These arise primarily from uncertainties in our estimates of historical forcings, 

and from errors in the model responses to these forcings. 

Several recent investigations have also assessed the differential effects of natural modes of 

variability  (such as ENSO and the AO/NAO) on observed surface and tropospheric 

temperatures. These differential effects arise from differences in the amplitudes and spatial 

expression of these modes at the surface and in the troposphere, and make only minor 

contributions to the overall differences in observed surface and tropospheric warming rates 

(Santer et al. 2001; Hegerl and Wallace 2002).  

Accounting for all these effects (spatial coverage, external forcing, and natural variability) 

cannot fully explain the apparent differential warming of the surface and troposphere in 

observations, or why models do not replicate this differential warming (Santer et al. 2001). 

It is possible that observational error may explain these remaining discrepancies. A recently 

completed reprocessing of the MSU channel 2 temperature data (Mears et al. 2003) yields an 

estimated tropospheric temperature trend over 1979-1998 that is roughly 0.1 K per decade 

warmer than the trend in the Christy et al. (2000) version of the channel 2 data (Figure 8). This 

discrepancy is primarily related to differences in the estimated calibration coefficient for the 
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MSU instrument on the NOAA-9 satellite. It also arises from differences in how both groups 

account for the effects of satellite orbital drift on the sampling of the diurnal temperature cycle.  

If the Mears et al. (2003) analyses of the satellite data is more reliable, then there is no 

serious inconsistency between modeled and observed tropospheric temperature trends (Figure 9; 

Santer et al., 2003a). There is some evidence to support this interpretation. For example, 

significant tropospheric warming occurs also in another recent reanalysis of the MSU channel 2 

data (Vinnikov and Grody 2003), which uses a different strategy from that in Mears et al. (2003) 

and Christy et al. (2000) to account for drift in sampling the diurnal cycle. Also, a recent study 

by Fu et al. (2004) applied a regression-based technique to adjust MSU channel 2 data for the 

contribution it receives from the cooling stratosphere. This statistical adjustment reveals 

pronounced tropospheric warming, even in the Christy et al. (2000) MSU channel 2 product. 

Further study of the robustness of this result is underway. A recent study suggests that 

radiosonde products (whose trends are quite similar to UAH trends) may also have 

underestimated the tropospheric warming since 1979 (Lanzante et al. 2003). Additionally, 

synthetic MSU temperatures computed from the recently-completed ERA-40 reanalysis project 

also show tropospheric warming (Santer et al., 2004), and are in close agreement with the Mears 

et al. (2003) version of MSU channel 2. There are, however, valid scientific concerns regarding 

some of this supporting evidence, and further research is needed to validate the vertical 

coherence in model simulations. 

Alternatively, if the Christy et al. (2000) analysis is closer to the “true” tropospheric 

temperature change over the satellite era, then we do not understand the factors that influence 

observed lapse rate variability on multi-decadal timescales, and climate models cannot reproduce 

the “observed” differential warming. This highlights the importance of reducing uncertainties in 
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satellite- and radiosonde-based estimates of recent tropospheric temperature changes. If we 

cannot achieve this, we admit the possibility of very different outcomes in comparisons between 

modeled and observed atmospheric temperature trends, ranging from “close correspondence” to 

“fundamental inconsistency”. 

b. Tropopause Height 

The tropopause marks the transition between the turbulently-mixed troposphere and the 

more stably-stratified stratosphere. Measurements from radiosondes indicate that the height of 

the tropopause has increased in recent decades (Ramaswamy et al. 2001; Seidel et al. 2001). 

Reanalysis products show similar changes (Randel et al. 2000; Santer et al. 2003b). 

Superimposed on these decadal-scale increases in tropopause height are short term decreases 

associated with major volcanic eruptions. Long term change in the location of the tropopause 

may be a useful fingerprint of human effects on climate. The height of the tropopause reflects an 

integrated response to temperature changes in both the troposphere and stratosphere, leading to 

signal-to-noise (S/N) characteristics than are rather different from those of atmospheric 

temperatures in discrete layers (Santer et al. 2003c).  

Model results suggest that the observed decadal-scale increase in tropopause height is 

largely driven by the GHG-induced warming of the troposphere and the ozone-induced cooling 

of the stratosphere, and that natural variability alone (internal, solar, and volcanic) cannot explain 

this increase. Model fingerprints of anthropogenically-forced tropopause height change are 

readily identifiable  in reanalysis data (Santer et al. 2003c). Positive detection results are robust 

to a number of different processing options, such as the vertical resolution of the temperature 

data used to define the lapse-rate tropopause, inclusion or removal of global means, choice of 

reanalysis dataset, etc (Santer et al., 2004). Significant uncertainties remain, however, in the 
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relative contributions of tropospheric warming and stratospheric cooling to recent tropopause 

height change. 

c. Circulation 

Anomalous external forcing on the climate system may produce dynamical (e.g., Palmer 

1999a) as well as thermal responses in the atmosphere. One such dynamical change which has 

received considerable attention is the recent trend toward the positive phase of the Arctic 

Oscillation (AO; Thompson and Wallace 1998) and its Atlantic sector version, the North Atlantic 

Oscillation (NAO), to linger in its positive state (see Gillett et al. 2003a). This has been 

attributed by some to anthropogenic greenhouse gas increases and/or ozone forcing (e.g., 

Shindell et al. 2001).  Although all anthropogenically forced models consistently produce some 

increase in a pattern-based NAO index (varying from very small for some models to similar to 

observed for others; Osborne 2002), regional details are not consistent between models (Gillett et 

al. 2003a and Osborn 2002). Natural variability of the NAO/AO cannot be fully eliminated as 

longer episodes showing similar changes have occurred in the early 20th century and may have 

occurred in earlier centuries (Luterbacher et al. 2002). The change in the pattern based AO/NAO 

index (obtained using the first empirical orthogonal function of surface pressure) is more unusual 

with respect to the observed earlier variability than that in the NAO index based on longer 

records of the difference between surface pressure readings at the Azores (or Gibraltar) and 

Iceland. Also, the change in the hemispheric scale AO (also referred to as the Northern Annular 

Mode) is more unusual relative to the earlier record than in the Atlantic sector based NAO 

(Ostermeier and Wallace 2003). Note that recent winters have seen a decline in the NAO back to 

1951-1980 levels.  

While attribution of the observed AO/NAO trend to external influences is uncertain (Osborn 
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2002; Gillett et al. 2003a), evidence of a human contribution to changes in the global surface 

pressure distribution observed during 1948-1998 has been obtained using signals from a number 

of climate models (Gillett et al. 2003b).  While the signals are detected in several independently 

constructed surface pressure datasets (HadSLP – Basnett and Parker 1997; NCEP/NCAR 

reanalysis – Kalnay et al. 1996; Trenberth and Paolino 1980), the strength of the response to 

anthropogenic forcing that is simulated by the models is a factor of 3-5 weaker than the apparent 

response in the observations.  This suggests that the effects of future circulation changes may be 

underestimated by climate models and points to a need for research to reconcile the discrepancies 

between models and observations. 

Circulation changes that are largely associated with a trend towards the positive phase of the 

Southern Annular Mode with anomalously low pressure over Antarctica have also been noted in 

the Southern Hemisphere (IPCC 2001; Thompson et al. 2000; Thompson and Solomon 2002). 

Modeling evidence suggests that these changes are largely consistent with forcing due to ozone 

depletion (Sexton, 2001; Gillett and Thompson 2003), though greenhouse gas increases may 

have also played a role (Fyfe et al. 1999, Kushner et al. 2001).  

Recently, attention has also been given to Southern Hemisphere (SH) synoptic variability 

(Simmonds and Keay 2000; Fyfe 2003) as represented in the NCEP/NCAR reanalysis.  These 

studies have noted a shift in the distribution of cyclones over the 1960-1999 period, with fewer 

cyclones in the sub-Antarctic Southern Ocean, and an increase over the Antarctic Ocean.  While 

it is not clear whether this apparent change is the result of increases in SH data availability, 

Simmonds and Keay (2000) use circumstantial evidence and studies conducted with independent 

data to argue that the decline equator ward of 60oS is probably real.  Fyfe (2003) shows that 

these changes are associated with a shift toward the positive phase of the Southern Annular mode 
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and that similar changes occur in an ensemble of anthropogenically forced CGCM simulations 

beginning early in the 20th century. The simulated change emerges beyond the range of the 

model’s natural variability by mid century, and simulated changes between 1960 and 1999 are 

similar to those seen in the NCEP/NCAR reanalysis.   

6. Oceans 

The oceans, because of their large heat storage capacity, are the thermal flywheel of the 

climate system.  They store most of the heat contained in the system and, along with the 

atmosphere, redistribute it to maintain the climate system as we know it today.  As global 

warming increases, it is critical to know how oceanic heat storage and sea level will be affected. 

a. Heat Content 

Recent work by Levitus et al. (2001) has made it possible to document changes in oceanic 

heat content from 1955 onwards.  These changes have been evaluated on an ocean-by-ocean 

basis by Barnett et al. (2001), comparing model results with observations only where the latter 

existed, thereby avoiding many sampling problems (cf. Gregory et al, 2004).  They found that 

the heat content in the upper 3000m of each of the world’s oceans has increased steadily since 

1955 (and apparently had been increasing well before that – Section 3b; Figure 3).  

Anthropogenically forced simulations obtained from a CGCM showed changes in heat content  

similar to those calculated from observations.  A detection and attribution analysis, using 

methods similar to those described in Section 2, demonstrates consistency between the observed 

and simulated changes in ocean heat content and indicates that the observed change is probably 

not the result of internal climate system variability alone.  Similar results were reported by 

Reichert et al. (2002) using ocean heat content signals from a different CGCM. It should be 

noted that the forcings from these two simulations were somewhat different from each other. 
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Other potential sources of the observed ocean warming have since been investigated.  

Changes in solar forcing can potentially explain only about 2% of the observed increase in ocean 

heat content (Crowley et al. 2004). Geothermal heat escaping to the oceans from the great rifts 

may explain perhaps 15% of the observed change (W. Munk and J. Orcutt 2003, pers. com.) and 

thus sea floor heating is probably not a major factor.  In contrast, estimates of changes in ocean 

heat content caused by anthropogenic warming provide a much closer fit to the observations, and 

thus provide a more plausible explanation of the underlying cause.  

The ocean heat content analyses cited above are based on basin integrated values for the 

different ocean basins, in part because observational coverage, particularly at lower levels in the 

ocean, remains thin. Future efforts must seek to evaluate the heat input into the oceans, and their 

response, on a full three dimensional basis, else they risk ignoring what should be a strong, 

spatially dependent signal in the warming (e.g. Gregory 2000; Gregory et al 2004; Sun and 

Hansen 2003; and Sokolov et al 2003). In one such a detailed study of ocean climate change, 

Banks and Bindoff (2003) find that observed watermass changes in the Indo-Pacific appear to be 

consistent with those simulated by a coupled climate model (HadCM3), and that the correlation 

between simulation and observations is significant relative to the variability of the control 

simulation. But the comparison is still difficult due to the inhomogeneous space-time coverage of 

the observations and uncertainties introduced through the methods of filling in the observational 

dataset outside the well observed part of the ocean (Gregory et al 2004) and the fact that many 

ocean models underestimate the levels of natural variability of phenomena such as the Pacific 

Decadal Oscillation and ENSO. In the end, better regional ocean information will be necessary 

for regional response and detection studies and biological impacts analyses. 
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b. Sea Level and Sea Ice 

Sea level has been measured at a large number of locations around the world since before 

1900.  Several studies conducted over the last 20 years have estimated a linear rise in sea level of 

approximately 10-20 cm over the last century (IPCC 2001) after taking factors such as 

continental rebound into account.  This value has a substantial uncertainty attached to it.  A 

continued rise associated with anthropogenically-induced ocean warming (steric effects) and 

melting of land ice could have potentially large impacts on low lying coastal regions, including 

the Gulf Coast of the United States, and small islands such as the Maldives.  But how much of 

the observed rise to date can be attributed to anthropogenic causes? 

It has recently become possible to attribute portions of the observed increase in sea level to 

various physical mechanisms (c.f. Munk 2002).  The Levitus et al. (2000, 2001) global ocean 

temperature data implies a sea level rise of 3 cm during the latter half of the 20th century. 

Thermal expansion may have caused an additional 3 cm rise in the first half of the century 

(Crowley et al. 2004). The IPCC TAR estimates total sea level rise between 1910 and 1990 from 

eustatic processes, including the effects of thermal expansion and melting land ice, of 7 cm, but 

with a very wide uncertainty range.  This raises a serious problem as noted by Munk (2002), 

because about 50% of sea level rise, again with very large uncertainty, remains unexplained: the 

observed sea level rise starts too early, is too linear and is too large to be due to anthropogenic 

effects alone.  Munk notes that the differential might be explained by melting of the polar caps 

and corresponding changes in the earth’s moment of inertia, but observed changes in the Earth’s 

rotation characteristics only partially support such conjecture.Other possible explanations include 

uncertainties in current estimates of sea level rise and ocean heat storage, especially in the deep 

ocean where there are few observations (Cabanes et al. 2001; Munk 2002). This discrepancy 
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emphasizes that more research is needed to understand previous as well as future predicted sea 

level rise.  

Some attention has also recently been paid to observed changes in Arctic sea-ice extent. A 

recent detection exercise showed that these changes are outside the range of natural internal 

variability and are consistent with changes in model forced with both anthropogenic and natural 

external forcing agents. At the same time, the observed changes are not consistent with model 

results when only changes in natural external forcing are prescribed (Gregory et al. 2002b). This 

suggests that Arctic sea ice extent is also beginning to show the signature of anthropogenic 

climate change.  

7. Rainfall and climate extremes 

It is recognized that the impact of climate change will probably be felt most strongly through 

changes in precipitation and short-term climate extremes such as heavy rainfall and/or flooding, 

extreme temperature and heat waves. It is therefore important to determine whether these aspects 

of climate are changing and whether the changes can be attributed to human activity. We 

therefore very briefly review a few of the developments related to these questions in this section.  

a. Observed and simulated changes 

Evidence for observed changes in short duration extremes generally depends on the region 

considered and the analysis method (IPCC 2001). So far, only a few global analyses have been 

performed, mainly due to the poor availability of quality controlled and homogenized daily 

station data. However, as noted in Section 2, the availability of historical daily data is improving. 

Also, indices for temperature and precipitation extremes that are calculated from station data are 

becoming available, including some indices from regions where daily station data are not 

released (Frich et al. 2002; Klein-Tank and Können, 2003).  
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A first analysis of a subset of indices suggests detectable signals in indices of temperature 

extremes, but limited agreement between modeled and observed changes in rainfall and drought 

extremes (Kiktev et al. 2003). However, significant increases in observed extreme precipitation 

have been reported over some parts of the world, for example over the United States (Karl and 

Knight 1998), where the increase is similar to changes expected under greenhouse warming (for 

example, Semenov and Bengtsson 2002; Groisman et al. 2004). However, a quantitative 

comparison between area-based extreme events simulated in models and point-observations by 

weather stations, as required in detection efforts, remains difficult because of the different scales 

involved (Osborn and Hulme 1997). In the absence of detection results for extreme events, 

particularly for non-temperature related events, studies based on model data alone can be used to 

develop suitable approaches for early detection.  

Simulated changes in globally averaged annual mean and extreme precipitation appear to be 

quite consistent between models and follow physical principles (Allen and Ingram 2002). 

However, the spatial pattern of projected precipitation change is very different between models. 

The latter makes changes in annual mean precipitation difficult to detect in output from a given 

model when using a precipitation change signal from another model (e.g., Hegerl et al. 2004).  

This, coupled with the currently low signal-to-noise ratio for anthropogenically forced change in 

model output, suggest that detection in observations will remain a challenge. Interestingly, Allen 

and Ingram (2002) demonstrate that global mean precipitation variations simulated by a model 

that includes both natural and anthropogenic external forcing tend to follow observed variations 

in global mean precipitation, although Lambert et al (2004) indicate that most of this agreement 

is probably due to the precipitation response to natural forcing. Gillett et al (2004) confirm this: 

they detect volcanic influence in global precipitation, but no anthropogenic influence, using 
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integrations of the Parallel Climate Model. Robock and Liu (1994) previously showed a 

significant reduction in global mean precipitation in a model in response to a volcanic eruption. 

This result has a clear physical explanation: a short-wave forcing anomaly, due for example to 

solar or volcanic activity, that gives the same temperature response as a longwave forcing 

anomaly due to a change in CO2 concentrations has a much greater impact on precipitation. The 

reason is that the direct impact of a CO2 increase on the tropospheric energy budget is to reduce 

precipitation (e.g., Yang et al 2003). Subsequent surface and tropospheric warming more than 

compensates for this reduction in almost all models, but still leaves a net precipitation change 

induced by CO2 smaller than the change induced by a similar-magnitude (in terms of temperature 

impact) short-wave forcing.  This has important implications for detection and for placing 

constraints on projections of future precipitation amounts (Section 4d), since different forcings 

affect precipitation in different ways.  

Model results suggest that future changes in precipitation extremes will probably be greater 

than changes in mean precipitation (see, for example, Meehl et al. 2000; Kharin and Zwiers 

2000, 2004; Semenov and Bengtsson 2002). They also indicate that simulated changes in 

temperature extremes cannot be explained just by a shift in the temperature distribution (Hegerl 

et al. 2004). Therefore, changes in extremes can not be inferred from changes that are detected in 

the more widely available monthly mean data.  A model-model detection study, where 

fingerprints from one model were used to detect precipitation change in simulations from another 

model, suggests that changes in moderately extreme precipitation (i.e., the magnitude of events 

that occur a few times per year) may be more robustly detectable using signals from different 

models than changes in annual total rainfall (Figure 10; Hegerl et al. 2004). This is mainly 
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because precipitation extremes increase over a large fraction of the globe, making detection 

results less sensitive to the spatial pattern of change.  

b. Attribution of changes in climate-related risk 

An emerging challenge in detection and attribution research is that many  important impacts 

of climate change will probably manifest themselves through a change in the frequency or 

likelihood of occurrence of events that, taken individually, could be explained as natural (e.g. 

Palmer 1999b). Whenever an extreme climate event occurs, such as the floods in the central 

Europe in the Autumn of 2002 or the Mississippi-floods of 1993 in the USA, the question arises 

as to whether this event has been “caused” by climate change. If the event in question might have 

occurred naturally, the only answer that can be given to this question, as stated, is “no”, although 

it might be possible to add that this kind of event is expected to become more likely in the future 

as a result of climate change. There is, however, a clear demand for a more quantitative 

assessment, not only for assessing how such risks may change in the future (Palmer and 

Raissanen 2002) but also to provide a more complete understanding of the reasons they are 

occurring now.  

The concept of ‘attributable risk’ is well established in the epidemiological literature. If 1P  

is the probability of an event (such as a flood) occurring now, and 0P  is the probability of it 

occurring, all other things being equal, if greenhouse gas concentrations had not increased over 

the past century, then the fraction of the current risk that is attributable to past greenhouse gas 

emissions is simply 10 /1 PP−  (Allen 2003). This concept applies straightforwardly to events that 

occur frequently both with and without the risk factor in question (i.e. in both present-day 

climate, under the influence of past greenhouse gas emissions, and the climate that would have 

been obtained at present, all other things being equal, in the absence of those emissions), since 
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both 1P  and 0P  can be interpreted simply in terms of frequency of occurrence. Analyses of 

attributable risk provide the basis for such statements as “half the deaths due to X are attributable 

to environmental risk factor Y” and are subject to well-documented hazards of interpretation 

(Greenland & Robins 1988) which need to be borne in mind as they are extended to the climate 

problem. The “frequency of occurrence” interpretation becomes more problematic when we are 

dealing with the most extreme events that, by definition, occur very infrequently in both present-

day and pre-industrial climate where the probability of events is much more difficult to assess. 

Changes in the probability and recurrence time of extreme rainfall, temperature and storminess 

events are expected under climate change conditions (e.g., Kharin and Zwiers 2000, 2004), 

suggesting that this kind of quantitative risk analysis will become more important in the future.  

8. Bayesian studies 

As indicated in Section 2b, there is increasing interest in using Bayesian methods in 

detection and attribution work, and several studies using these techniques are now available. This 

subsection reviews three of these studies. Two studies (Schnur and Hasselmann 2004; Lee et al. 

2004) used geographically distributed surface temperature data and geographical patterns of 

anthropogenically forced climate change simulated by CGCMs.  A third study (Smith et al. 

2003) used time series of Northern and Southern hemisphere mean surface temperature and 

hemispheric mean anthropogenic signals from an EBM. 

Schnur and Hasselmann (2004) report on a study that uses an optimal Bayesian filtering 

technique.  They applied the technique to recent 31-year trends of near-surface temperature, 

precipitation, and summer and winter diurnal temperature range, and considered three competing 

hypotheses: namely that the climate changes observed late in the 20th century can be explained 

by natural internal variability alone, by natural internal variability and greenhouse gas forcing 
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(G), or by natural internal variability and the combined effect of greenhouse gas and sulfate 

aerosol forcing (GS). These three possibilities were assumed to be equally likely apriori.  Schnur 

and Hasselmann constructed a filter that maximizes the impact of the observations on the prior 

likelihood of detection. As with the standard optimal fingerprinting approach, a filter is required 

because there is insufficient data to perform the analysis without reducing the dimensionality of 

the problem.  However, because a different optimization criterion is used, the Bayesian filter 

does not require as large a dimension reduction as the standard approach (Figure 11a). 

Consequently, the the G and GS signals are more sharply defined. 

Figure 11b shows the posterior probabilities that were obtained in the reduced (optimal) 

detection space for each variable and hypothesis. Also shown is the net posterior that is obtained 

when all four variables are used simultaneously. For temperature, the odds of hypotheses G and 

GS against the natural-variability hypothesis are seen to be very large, i.e. the G and GS signals 

are clearly detected in the observations. However, GS is found to be only twice as likely as G, 

which does not represent decisive evidence for one hypothesis over the other (Kass and Raftery 

1995). For diurnal temperature range (DTR) and precipitation, detection is not achieved. In the 

combined analysis, G and GS are still both detected, with the odds of GS over G being only 

slightly larger than one. Compared to conventional analyses, the inclusion of the model error 

structure in the Bayesian analysis leads to a downgrading of the information on the impact of 

sulfate forcing. This occurs because the model uncertainty in the response to aerosols is much 

larger than that for greenhouse gases.  

Lee et al. (2004) report on a Bayesian study using a version of the technique described by 

Berliner et al. (2000). Their approach is to perform a conventional optimal fingerprinting 

analysis using multiple regression as discussed in Section 2a, and then to use Bayesian 
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techniques to evaluate detection and attribution hypotheses about the scaling factors a . This 

study considers only the GS signal, but evaluates the evidence for its presence in observations for 

several 5-decade windows, beginning with 1900-1949, and ending with 1950-1999.  The GS 

signal and the necessary estimates of natural internal variability were obtained from two versions 

of the CCCma CGCM.  Dimension reduction in this study was performed in the conventional 

manner.   

The resulting posterior distributions were analysed to assess  whether there was evidence to 

support detection and attribution.  Evidence supporting detection was assessed by comparing 

prior and posterior probabilities that D∈a , where ),1.0[ ∞=D . This criterion, in effect, requires 

high posterior likelihood that the observed response to GS forcing is positive, but requires that 

the model response is not larger than 10-times the apparent observed response.  Evidence 

supporting attribution was similarly assessed by comparing prior and posterior probabilities that 

A∈a , where )2.1,8.0(=A . This is a stringent requirement that, in effect, requires a high 

posterior likelihood that the amplitude of the model response to historical GS forcing is within 

20% of the apparent observed response.  Similar to Schnur and Hasselmann (2004), the Lee et al. 

evaluation of the evidence was made by means of Bayes factors (Kass and Raftery, 1995), which 

are ratios that compare the posterior odds of detection (or attribution) to the corresponding prior 

odds.  

The results of this analysis provide “Very Strong” evidence (defined as a Bayes factor 

greater than 150) in support of detection during the early and latter halves of the 20th century 

regardless of the choice of prior distribution.  On the other hand, evidence for attribution, as 

stringently defined above, is weak. “Positive evidence” (Bayes factor in the range 3 to 20) for 

attribution was obtained when using noncommittal priors and a less stringent attribution criterion 
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that requires the model response to the GS forcing to be within 50% of the apparent observed 

response. Lee et al. estimated that “Strong evidence” for attribution may emerge within the next 

two decades as the anthropogenic signal strengthens.  

The third study using Bayesian methods cited above (Smith et al. 2003) considers the joint 

behaviour of the Northern and Southern hemispheric mean surface temperature time series 

during the 20th century.  A Bayesian approach was used in this case to faciliate intercomparison 

between a number of competing time series models of the temporal covariability between the 

hemispheres.  Some of these models included estimates of responses to historical variations in 

external forcing as covariates.  The main finding was that a bivariate time series model that 

includes the responses to historical greenhouse gas, aerosol, and solar forcing factors is clearly 

better than similar time series model that exclude one or more of these forcing factors.   

All three of these studies demonstrate the utility of the Bayesian approach, both as a tool for 

selecting between competing statistical models (Smith et al. 2003) or as a means for taking prior 

information and sources of uncertainty into account (Schnur and Hasselmann 2004; Lee et al. 

2004).  Bayesian techniques have often been criticized because they incorporate prior 

information that may be subjective in nature.  However, many authors have shown that the prior 

plays a relatively minor role in determining the form of the posterior distribution. Bayesian 

approaches are better able to quantify the evidence for attribution and offer the flexibility to 

easily incorporate evidence from multiple lines of evidence together with model and 

observational uncertainty into a single comprehensive analysis.  The interest in these methods 

can be expected to continue to increase. 
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9. Summary and Conclusions 

Recent detection studies based on changes in surface temperature are consistent with the 

findings reported in the IPCC TAR. Additional uncertainties, such as the effect of differences in 

model fingerprints and simulations have meanwhile been addressed. It has been demonstrated 

that averaging fingerprints from multiple models increases our confidence in detecting 

anthropogenic climate change and that different implementations of the optimal detection 

method show consistent results. New detection studies show that anthropogenic climate change 

is detectable in the surface temperature records of individual continents and that it can be 

distinguished from climate change due to natural forcing.   

Important progress has also been made in our understanding of Northern Hemisphere mean 

temperature over the last millennium. Paleo reconstructions of hemispheric mean temperature 

show that the 20th century warming is unique in the last millennium both for its size and rapidity. 

Recent evidence suggests that the borehole –record of climate change may be consistent with 

that of conventional proxy records. However, reconstruction techniques are still being evaluated. 

New detection studies based on proxy reconstructions yield generally consistent results with 

studies based on the instrumental period. The combined response to volcanism and greenhouse 

gases can be detected in most reconstructions and the individual responses to greenhouse gas, 

volcanic and solar forcing can be distinguished from each other  with only small differences in 

results for different records. Simulations of the last millennium with coupled climate models are 

becoming available, which should help in further improving our understanding of the climate of 

the last millennium. 

Progress has also been made towards understanding the temperature evolution in the free 

atmosphere. Recently, an independently processed version of the Microwave Sounding Unit 
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(MSU), channel 2 recorded temperature of the mid-troposphere has become available. This new 

product shows global warming at a rate that is consistent with model-simulations of the warming 

in the mid-troposphere and the differential warming between surface and mid-troposphere. While 

it is still unclear which of the MSU2 temperature datasets is more reliable, this work suggests 

that the differential warming between surface and lower troposphere is within present 

observational uncertainty. Further work is needed to assess and reduce uncertainties in estimates 

of observed tropospheric warming. Furthermore, observed variations in tropopause height have 

been shown to be consistent with model simulated changes in tropopause height resulting from 

anthropogenic and natural forcing. 

The anthropogenic climate change signal has also been detected in ocean heat content, 

which has increased in all ocean basins. The model simulated trend in ocean heat content during 

the latter half of the 20th century is similar to that estimated from observations and does not seem 

explainable via natural forcings.  The simultaneous warming in all basins could not be explained 

by solar variability or geothermal forcing.  However, questions remain about the spatial 

similarity of the observed and modeled signals within each ocean basin, as well as sampling 

problems associated with the distribution of the observed ocean temperature data.  An 

anthropogenic signal has also been detected in global sea level pressure data, although in this 

case, the model simulated response to anthropogenic forcing is significantly weaker than the 

changes that have been observed.  

We conclude that there is now further evidence supporting the findings of the IPCC TAR. 

Our understanding of the importance of external forcing in determining Earth’s climate and its 

variability have been increased through the continued development and analysis of millenial 

scale proxy climate records. The detection of climate change from anthropogenic forcing has 
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been extended to continental scales and to other variables including sea level pressure and 

tropopause height. Several methodological advances have been made, including the use of multi-

model methods and the increasing use of Bayesian methods to more comprehensively assess the 

available detection and attribution evidence. Important steps have been made towards a better 

understanding of the temperature evolution at the earth’s surface compared to the free 

atmosphere in the satellite era. Progress is being made towards understanding ocean climate 

change and changes in climatic extremes, although we are still far from having a full 

understanding of both of these important issues.  

Many open questions remain, for example, the role of forcings not yet fully included in 

CGCM simulations, such as land use change or forcing by black carbon and non-sulfate aerosols. 

Also, due to poor signal-to-noise ratios and model uncertainty, anthropogenic rainfall changes 

can not presently be detected even on a global scale, although a volcanic signal is detectable in 

global mean land rainfall. It will remain to be investigated whether projections of future changes 

in the hydrological cycle can, in part, be constrained by the apparent rainfall response to natural 

forcing, and the possibility that change in intense precipitation may be more detectable. 
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Figure Captions 

Figure 1: Several compilations of Northern Hemisphere temperatures for the last millennium, all 

smoothed with a 50-year Gaussian filter.  For details of the series see Briffa and Osborn (2002). 

Calendar-year averages are shown in a) and ‘summer’ (April-September) averages are shown in 

b).  The two grey lines in a) show the borehole records (dashed as given by Huang et al. 2000, 

and solid after areally weighting). Error estimates for some of the compilations are discussed in 

Jones and Mann (2004). 

 

Figure 2: Contribution of external forcing to an updated record of Northern Hemispheric mean 

temperature north of 30 N (Crowley and Lowery 2000). The top section shows a comparison 

between the paleoreconstruction (black), the instrumental record (green) and a best combination 

of solar, volcanic and anthropogenic forcing from an Energy Balance Model simulation (red). 

The bottom panel shows the contribution from each forcing estimated by a multiple regression 

(the thick curve indicates the best guess and the thin curves indicate the 5 to 95% uncertainty 

range). An asterisk “*” denotes a response that is detected at the 5% significance level. Internal 

climate variability is estimated from the residual paleo variability. After Hegerl et al. (2003). 

 

Figure 3: Simulated ocean heat content change over the last millennium from a simulation that 

matched the surface temperature record (c.f. Figure 2) and a similar simulation with slightly 

higher sensivity (3.0 K) and no solar forcing. Both simulations were started at 1AD to allow the 

simulation to adjust to the radiative forcing perturbations. The 20th century response to natural 

forcing is shown for reference. Also shown are the ocean heat content values from Levitus et al. 

(2000) and an estimate of relative sea level change from marsh deposits near Clinton, CT (van 
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der Plassche et al. 1998). Dashed lines refer to periods of no deposition or erosion (see Crowley 

et al. 2004).  

 

Figure 4:  Examples of detection and attribution (D&A) analyses under different assumptions 

regarding data retention. Consider mainly results to the left of the first vertical dashed line.  The 

bars represent 5-95% confidence intervals.  The upper panels refer to the scaling factor needed to 

make the predicted and observed patterns match, while the lower panels give the incremental 

warming associated with various forcings.  a) D&A using all available observed data, b) D&A 

results after removing linear trend in global mean from the observed data and c) results from 

D&A using data from which all global mean information has been removed. Results on the right 

hand side of the panel indicate that a separation between different external climnate forcings (G 

greenhouse gas, N natural, S Sulphate, So Solar, V Volcanic) is increasingly difficult if global 

scale information is disregarded. Please see Allen et al. (2004) for a complete description and 

discussion of this illustration.  

 

Figure 5:  Results of a continental scale analysis of the detectability of a model simulated 

response to greenhouse gas and sulfate aerosol (GS) forcing in North American decadal mean 

temperatures (upper panel) and Eurasian decadal mean temperatures (lower panel) for 1950-

1999. Vertical bars indicate the uncertainty of the scaling (expressed as 95% confidence 

intervals) on the GS signal that is required to make the best fit with observations. The GS signal 

is obtained by combining two ensembles of transient climate change simulations performed with 

two versions of the Canadian Centre for Climate Modelling and Analysis global climate model. 

Results are shown as a function of the number of regional EOFs of decadal mean temperature 
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that are retained in the analysis. Two confidence intervals are shown for each truncation, 

reflecting two independent estimates of the internal variability obtained from control runs 

performed with the CCCma models. Confidence intervals that exclude zero provide evidence for 

the detection of the GS signal at the 5% level of significance, and confidence intervals that 

include unity provide evidence in support of an attribution claim.  Results are generally not very 

sensitive to truncation.  After Zwiers and Zhang (2003, Figure 2). 

 

Figure 6: Comparison of HadCM3 all forcings runs with the observed decadal mean temperature 

changes in 1900-2000 for 16 sub-continental scale regions. The four dashed green curves 

represent the individual ensemble members, the solid green curve represents the ensemble mean, 

and observations are given in black. The model captures many features of the observed 

temperature changes, such as the steady warming in Southern Africa (SAF), Southern South 

America (SSA), and South Asia (SAS). Also apparent is the variability in Northern Europe 

(NRU) with an early century warming and a late century warming, and accelerating warming in 

Sahara region (SAH). Central America (CAM) also has early and late century warming in both 

model and observations. North America is not particularly well captured with no early century 

warming in Western N. America (WNA) in the model.  South Australia (SAU) is also not well 

captured.  In  mid Asia (MAS) all model simulations suggest a cooling in the middle of the 

century while the observations show a general warming. Generally the model captures many 

features of both the variability and the trends in the different regions. Other regions shown are 

Eastern Southern N. America (ESNA), Eastern Northern N. America and Greenland (GRL), 

Northern Asia (NAS), Amazon (AMZ), Southern S. America (SSA), Central Africa (CAF), 
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Southern Australia (SAU), Mediterranean (MDB). The geographical domains of the regions are 

defined in Stott (2003, Table 1). 

 

Figure 7: Trends in anthropogenically forced model simulations and in observations over 1950-

1999. The error bars on the model trends are 5-95% confidence intervals for the ensemble-mean 

trends, estimated by resampling the long control simulations form the respective models and 

allowing for the number of members in each ensemble. The error bars about zero at the location 

of the observed trends are uncertainties of the trend estimates due to nature internal climate 

variability, as simulated by the models. They are 5-95% confidence intervals for a single 

realization, estimated from control simulations from the ECHAM4, HadCM2 and PCM models, 

which are the only one with DTR data available.  From Karoly et al. (2004). 

 

Figure 8:  Changes in global-mean monthly-mean mid- to upper tropospheric temperatures 

(MSU channel 2) over 1979 to 2000. The Christy et al. (2000) version of the MSU channel 2 

data shows virtually no overall warming (+0.014°C/decade). Independent reprocessing of the 

raw channel 2 radiances by Wentz et al. (2001) yields a warming of +0.142°C/decade over 1979-

2000. Anomalies in both data sets are defined relative to their respective climatological monthly 

means over 1979-1997.  

 

Figure 9: Statistical significance of differences between simulated and observed channel 2 

temperature trends. Observed trends are from two different sources (Christy et al. 2000, and 

Wentz et al. 2001). Model equivalent channel 2 trends are from the “GSOP” experiment 

performed by Bengtsson et al. (1999) with the ECHAM4/OPYC coupled model. The comparison 
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involves “residual” trends after removal of estimated ENSO and volcano effects from model and 

observed data (Santer et al. 2001). The range of residual trends arises from uncertainties in τ (the 

assumed decay time for a volcanic signal) and from the choice of index used for removal of 

ENSO influences. All trends were computed with global-mean monthly-mean data spanning the 

228-month period January 1979 through December 1997, the period of the GSOP integration. 

Model channel 2 trends are not significantly different from the Wentz et al. (2001) results, but 

are generally inconsistent with Christy et al. (2000).  

 

Figure 10: Change in annual mean precipitation (left panels) and the wettest day per year (right 

panels) in CGCM1 (top) and HadCM3 (middle) at the time of CO2 doubling. Changes are 

expressed as a percentage of the present day climatological value. The scale ranges from -30% to 

+30%. Changes are only plotted where they are significant at the 10% level according to a 

Mann-Whitney test. The bottom two panels show the average of climate change patterns from 

both models where the large-scale (smoothed) changes are consistent between the models 

(inconsistency at the 10% level determined by a Mann-Whitney test using the ensemble member 

simulations). (See Hegerl et al. 2004). 

 

Figure 11: Optimal Bayesian detection and attribution analysis for annual means of surface 

temperature (TAS), precipitation (PREC), and summer (JJA) and winter (DJF) means of diurnal 

temperature range (DTR). (a) The number of EOFs retained from the ECHAM3/LSG control run 

(spanning the initial phase space), and the number of patterns retained after applying the optimal 

filtering in the Bayesian and conventional detection and attribution analysis, respectively.(b) The 

prior and posterior probabilities for each of the climate change hypotheses (climate change can 
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be explained by natural internal variability (“Natural”), greenhouse gases alone (“GHG”), 

greenhouse gases plus sulfate aerosols (“GHG+S”)). Uniform priors were assumed giving each 

hypothesis a probability of 1/3. The net posteriors refer to the posterior probabilities if evidence 

from all four variables is considered simultaneously. The two small values for “Natural” are 

actually almost zero and have been inflated for display purposes only. See Schnur and 

Hasselmann (2004), for details. 
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Figure 1: Several compilations of Northern Hemisphere temperatures for the last 
millennium, all smoothed with a 50-year Gaussian filter.  For details of the series see 
Briffa and Osborn (2002). Calendar-year averages are shown in a) and ‘summer’ (April-
September) averages are shown in b).  The two grey lines in a) show the borehole records 
(dashed as given by Huang et al. 2000, and solid after areally weighting). Error estimates 
for some of the compilations are discussed in Jones and Mann (2004). 
  

 



 66

 

Figure 2: Contribution of external forcing to an updated record of Northern Hemispheric 
mean temperature north of 30 N (Crowley and Lowery 2000). The top section shows a 
comparison between the paleoreconstruction (black), the instrumental record (green) and a 
best combination of solar, volcanic and anthropogenic forcing from an Energy Balance 
Model simulation (red). The bottom panel shows the contribution from each forcing 
estimated by a multiple regression (the thick curve indicates the best guess and the thin 
curves indicate the 5 to 95% uncertainty range). An asterisk “*” denotes a response that is 
detected at the 5% significance level. Internal climate variability is estimated from the 
residual paleo variability. After Hegerl et al. (2003). 
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Figure 3: Simulated ocean heat content change over the last millennium from a 
simulation that matched the surface temperature record (c.f. Figure 2) and a similar 
simulation with slightly higher sensivity (3.0 K) and no solar forcing. Both simulations 
were started at 1AD to allow the simulation to adjust to the radiative forcing 
perturbations. The 20th century response to natural forcing is shown for reference. Also 
shown are the ocean heat content values from Levitus et al. (2000) and an estimate of 
relative sea level change from marsh deposits near Clinton, CT (van der Plassche et al. 
1998). Dashed lines refer to periods of no deposition or erosion (see Crowley et al. 2004). 
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Figure 4a 

 

Figure 4b 
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Figure 4c 
Figure 4:  Examples of detection and attribution (D&A) analyses under different assumptions 
regarding data retention. Consider mainly results to the left of the first vertical dashed line.  
The bars represent 5-95% confidence intervals.  The upper panels refer to the scaling factor 
needed to make the predicted and observed patterns match, while the lower panels give the 
incremental warming associated with various forcings.  a) D&A using all available observed 
data, b) D&A results after removing linear trend in global mean from the observed data and c) 
results from D&A using data from which all global mean information has been removed. 
Results on the right hand side of the panel indicate that a separation between different external 
climnate forcings (G greenhouse gas, N natural, S Sulphate, So Solar, V Volcanic) is 
increasingly difficult if global scale information is disregarded. Please see Allen et al. (2004) 
for a complete description and discussion of this illustration. 
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Figure 5:  Results of a continental scale analysis of the detectability of a model simulated response to 
greenhouse gas and sulfate aerosol (GS) forcing in North American decadal mean temperatures (upper 
panel) and Eurasian decadal mean temperatures (lower panel) for 1950-1999. Vertical bars indicate the 
uncertainty of the scaling (expressed as 95% confidence intervals) on the GS signal that is required to 
make the best fit with observations. The GS signal is obtained by combining two ensembles of transient 
climate change simulations performed with two versions of the Canadian Centre for Climate Modelling 
and Analysis global climate model. Results are shown as a function of the number of regional EOFs of 
decadal mean temperature that are retained in the analysis. Two confidence intervals are shown for each 
truncation, reflecting two independent estimates of the internal variability obtained from control runs 
performed with the CCCma models. Confidence intervals that exclude zero provide evidence for the 
detection of the GS signal at the 5% level of significance, and confidence intervals that include unity 
provide evidence in support of an attribution claim.  Results are generally not very sensitive to truncation.  
After Zwiers and Zhang (2003, Figure 2). 
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Figure 6: Comparison of HadCM3 all forcings runs with the observed decadal mean temperature changes 
in 1900-2000 for 16 sub-continental scale regions. The four dashed green curves represent the individual 
ensemble members, the solid green curve represents the ensemble mean, and observations are given in 
black. The model captures many features of the observed temperature changes, such as the steady 
warming in Southern Africa (SAF), Southern South America (SSA), and South Asia (SAS). Also 
apparent is the variability in Northern Europe (NRU) with an early century warming and a late century 
warming, and accelerating warming in Sahara region (SAH). Central America (CAM) also has early and 
late century warming in both model and observations. North America is not particularly well captured 
with no early century warming in Western N. America (WNA) in the model.  South Australia (SAU) is 
also not well captured.  In  mid Asia (MAS) all model simulations suggest a cooling in the middle of the 
century while the observations show a general warming. Generally the model captures many features of 
both the variability and the trends in the different regions. Other regions shown are Eastern Southern N. 
America (ESNA), Eastern Northern N. America and Greenland (GRL), Northern Asia (NAS), Amazon 
(AMZ), Southern S. America (SSA), Central Africa (CAF), Southern Australia (SAU), Mediterranean 
(MDB). The geographical domains of the regions are defined in Stott (2003, Table 1). 
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(b)                            Temperature trends over 1950-99
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Figure 7: Trends in anthropogenically forced model simulations and in observations over 1950-1999. The 
error bars on the model trends are 5-95% confidence intervals for the ensemble-mean trends, estimated by 
resampling the long control simulations form the respective models and allowing for the number of 
members in each ensemble. The error bars about zero at the location of the observed trends are 
uncertainties of the trend estimates due to nature internal climate variability, as simulated by the models. 
They are 5-95% confidence intervals for a single realization, estimated from control simulations from the 
ECHAM4, HadCM2 and PCM models, which are the only one with DTR data available.  From Karoly et 
al. (2004). 
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Figure 8:  Changes in global-mean monthly-mean mid- to upper tropospheric temperatures 
(MSU channel 2) over 1979 to 2000. The Christy et al. (2000) version of the MSU channel 2 data 
shows virtually no overall warming (+0.014°C/decade). Independent reprocessing of the raw 
channel 2 radiances by Wentz et al. (2001) yields a warming of +0.142°C/decade over 1979-
2000. Anomalies in both data sets are defined relative to their respective climatological monthly 
means over 1979-1997.  
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Figure 9: Statistical significance of differences between simulated and observed channel 2 
temperature trends. Observed trends are from two different sources (Christy et al. 2000, and 
Wentz et al. 2001). Model equivalent channel 2 trends are from the “GSOP” experiment 
performed by Bengtsson et al. (1999) with the ECHAM4/OPYC coupled model. The comparison 
involves “residual” trends after removal of estimated ENSO and volcano effects from model and 
observed data (Santer et al. 2001). The range of residual trends arises from uncertainties in τ (the 
assumed decay time for a volcanic signal) and from the choice of index used for removal of 
ENSO influences. All trends were computed with global-mean monthly-mean data spanning the 
228-month period January 1979 through December 1997, the period of the GSOP integration. 
Model channel 2 trends are not significantly different from the Wentz et al. (2001) results, but are 
generally inconsistent with Christy et al. (2000).  
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Figure 10: Change in annual mean precipitation (left panels) and the wettest day per year (right 
panels) in CGCM1 (top) and HadCM3 (middle) at the time of CO2 doubling. Changes are 
expressed as a percentage of the present day climatological value.The scale ranges from -30% to 
+30%. Changes are only plotted where they are significant at the 10% level according to a Mann-
Whitney test. The bottom two panels show the average of climate change patterns from both 
models where the large-scale (smoothed) changes are consistent between the models 
(inconsistency at the 10% level determined by a Mann-Whitney test using the ensemble member 
simulations). (See Hegerl et al. 2004). 
 



 76

 

 

Figure 11: Optimal Bayesian detection and attribution analysis for annual means of surface 
temperature (TAS), precipitation (PREC), and summer (JJA) and winter (DJF) means of diurnal 
temperature range (DTR). (a) The number of EOFs retained from the ECHAM3/LSG control run 
(spanning the initial phase space), and the number of patterns retained after applying the optimal 
filtering in the Bayesian and conventional detection and attribution analysis, respectively.(b) The 
prior and posterior probabilities for each of the climate change hypotheses (climate change can be 
explained by natural internal variability (“Natural”), greenhouse gases alone (“GHG”), 
greenhouse gases plus sulfate aerosols (“GHG+S”)). Uniform priors were assumed giving each 
hypothesis a probability of 1/3. The net posteriors refer to the posterior probabilities if evidence 
from all four variables is considered simultaneously. The two small values for “Natural” are 
actually almost zero and have been inflated for display purposes only. See Schnur and 
Hasselmann (2004), for details. 

 




