
E
APPLICATION

NOTE

AP-608

Implementing a Plug
and Play BIOS Using
Intel's Boot Block Flash
Memory

Order Number: 292161-001

CHARLES A. ANYIMI
TECHNICAL MARKETING
ENGINEER

February 1995

Information in this document is provided solely to enable use of Intel products. Intel assumes no liability whatsoever, including
infringement of any patent or copyright, for sale and use of Intel products except as provided in Intel's Terms and Conditions of
Sale for such products.

Intel Corporation makes no warranty for the use of its products and assumes no responsibility for any errors which may appear
in this document nor does it make a commitment to update the information contained herein.

Intel retains the right to make changes to these specifications at any time, without notice.

Contact your local Intel sales office or your distributor to obtain the latest specifications before placing your product order.

MDS is an ordering code only and is not used as a product name or trademark of Intel Corporation.

Intel Corporation and Intel's FASTPATH are not affiliated with Kinetics, a division of Excelan, Inc. or its FASTPATH trademark
or products.

*Other brands and names are the property of their respective owners.

Additional copies of this document or other Intel literature may be obtained from:

Intel Corporation
Literature Sales
P.O. Box 7641
Mt. Prospect, IL 60056-7641

or call 1-800-879-4683

© INTEL CORPORATION 1995 CG-041493

E AP-608

1

1.0 INTRODUCTION

Today’s PC can perform a myriad of functions, perhaps
far more than the original designers of the PC ever
envisioned. The number of software packages available
for mass consumption is staggering, and more are being
unveiled each year. Multimedia has enabled the PC to
invade every nook and cranny of the home. The number
of systems being purchased with CD-ROMS, sound
cards, and graphics accelerators is growing at a
phenomenal rate. The demand for additional hardware
has led to an unprecedented craze for add-in cards and
peripherals. While all this growth has been a tremendous
boon, it has had its downside as well. The PC has become
so sophisticated that new bus structures have been
defined, new protocols have been introduced and new
system configurations have emerged. All these changes
have made an already complex tool more difficult to use
by the PC user.

With the advent of Plug and Play (PnP), it seems a
solution is in sight. Simply put, Plug and Play is a way of
adding new features to a system without the usual
headaches—like reconfiguring switches and jumpers,
updating system configuration files, or other frustrating
things. PnP enables a system to automatically configure
system components, peripherals, and add-in devices just
prior to boot time. The basic input/output system (BIOS)
of PnP is responsible for the majority of the auto-
configuration of the system.

With its previous history of changes and the obvious
future changes that will take place as a result of PnP, it
only makes sense to store the BIOS on a medium that
allows the most flexible means of updating, while
maintaining a high level of reliability. Of course, all this
has to be accomplished without adding to system costs or
making it more difficult for PC users to get their work
done. A PnP BIOS based on Intel’s boot block flash
meets all of these demands and more. The PnP
Specification, for instance, requires nonvolatile storage
for old bus standards; the parameter blocks of the boot
block flash were designed for such a function. As far as
recovery code is concerned, the hardware-lockable boot
block area of the boot block flash memory provides
unparalleled data protection and guarantees system
recovery. The inherent updateability of the boot block
flash memory, while in-system, reduces cost by
supporting easy code changes and eliminating sockets.

This application note provides a methodology for
implementing a flash memory PnP BIOS using Intel’s
boot block flash. Emphasis is placed on PnP
requirements, hardware, and software considerations.
Section 2 discusses the current BIOS paradigm and its
future. Section 3 provides an understanding of the Plug
and Play architecture. Section 4 gives a high-level
overview of the boot block products. Section 5 discusses
implementation while Section 6 looks at alternative
solutions.

2.0 BENEFITS OF A PnP BOOT
BLOCK FLASH BIOS

Perhaps you are wondering why flash is the medium of
choice advocated in this application note as the means
for storing system BIOS, particularly for Plug and Play?
From a PC user’s perspective, a PnP flash BIOS enables
users to install new hardware without having to call the
support number. This translates to ease-of-use:

• Easily updatable code assuring optimal BIOS
performance

• No need to edit the CONFIG.SYS file.

• No need to determine system type and match,
somehow, to jumper settings.

• No need to investigate available system resources and
muddle through reassigning them.

• No need to fiddle with system memory reallocation.

• No need to buy a new system every time something
changes (increases system’s useful lifespan).

Plug and Play can make the usual experience of adding
new functionality to an existing system as easy as:

1. Turn the system off.

2. Insert the new device.

3. Turn the system on.

PnP flash BIOS can also extend the life of the PC. By
enabling simple updates to the BIOS (simply insert the
upgrade disk and the software programs the new BIOS),
the user can get more out of their PC investment.

AP-608 E

2

From an OEM or system manufacturer’s standpoint, a
PnP flash BIOS enables the following benefits:

• Decreases overall technical support cost

• Eliminates the need for excessive EPROM
inventories.

• Reduces the need for sockets since flash can be
soldered onto the motherboard and updated in-system

• Minimizes system chip count and system cost.

• Reduces support costs.

• Improves end-user perception of product
upgradeability and ease-of-use.

When new features are added to the BIOS, a simple disk
sent to the user or a connection to an on-line network is
all it takes for the user to achieve the upgrade. This has
one very important benefit for the OEM/manufacturer—
it strengthens user faith in the product (and its
manufacturer) and enhances their perception of the
product’s ease-of-use—which can be a great
differentiator. Additionally, since each user no longer
needs to call the technical support line as often, this
costly overhead can be reduced, saving even more
money.

All these benefits are a result of the capabilities that a
flash PnP BIOS enables. Looking back to the original PC,
it was a fairly simple machine (by today’s standards)
with simple code designed to perform computational
math functions, database creation and management, and
word processing. Even though the BIOS code was

elementary, few people understood it (or needed to).
Since that time, the PC BIOS has continued to evolve in
order to accommodate the growing needs of the PC user.

2.1 The Old BIOS Paradigm

In the original PC architecture, the BIOS code was fairly
straightforward and required little memory space—about
32 KB total. BIOS code provided the lowest-level of
interface between the operating system and the hardware.
It was located at the top of memory for the 8088 system
(the original PC had a memory limit of
1 MB). Even though only 32 KB were required, the PC
designers knew the benefit of “breathing room” and, with
great foresight, reserved a total of 128 KB (from hex
address E0000h to FFFFFh) for BIOS code storage, as
shown in Figure 1. When the AT was launched in 1984,
its BIOS functions were extended by another
32 KB, thereby using half of the total BIOS space
available.

However, the introduction of BIOS created a crutch that
has been integrated into the PC: every new system
hardware component that was not already supported in
the BIOS required a new BIOS to be generated, or at
least an upgrade of the existing BIOS. This meant OEMs
and system manufacturers needed to keep abundant
quantities of ROMs and EPROMs handy to
accommodate new BIOS versions. This was a
cumbersome and expensive solution, but it was soon
accepted as the norm. As long as the frequency of change
to the BIOS remained minimal, this solution was
adequate.

E AP-608

3

Boot Code

BIOS Parameters

Configuration Utilities

Main BIOS Code,
Runtime Services,

Drivers, etc.

Boot Code

BIOS Parameters

Configuration Utilities

Main BIOS Code,
Runtime Services,

Drivers, etc.

Additional BIOS
ServiceS

BIOS Code
(64 KB)

Additional
BIOS Space

(64 KB)

Adapter and
Graphic Space

(256 KB)

User Area
(638.75 KB)

BIOS Data Area
(256 Bytes)

BIOS Stack Area
(256 Bytes)

Interrupt Vector Table
(768 Bytes)

FFFFFh

F0000h

E0000h

A0000h

00500h

00400h

00300h

00000h

8 KB

4 KB

112 KB

16 KB

96 KB

128 KB

4 KB

8 KB

8 KB

1 MB DOS Memory Map

28F001B-T
Boot Block Flash

28F002B-T
Boot Block Flash

2161_01

Figure 1. Possible BIOS Segmentations Using Flash Components (1-Mbit or 2-Mbit)

2.2 Beyond the 128 KB Limit

Since then, BIOS code has undergone continual
development, including the addition of custom features
to enhance system flexibility and more complex set-up
routines. Today’s BIOS includes support for previously
“advanced” features such as system configuration
analysis (diagnostics), power management, networking
capability and I/O support for devices with extremely
high transfer rates. This expansion continued until the
AT BIOS eventually consumed the entire reserved BIOS
space—all 128 KB!

So now what? With the definition of new bus
specifications (EISA, VL, PCI, to name a few) and the
further proliferation of features such as ROM versions of
application software, standard I/O port connections and
enhanced video BIOS, the potential for future BIOS
changes looms larger than ever, and the frequency of
change seems no less daunting. A further look at the
1-MB memory map of the PC indicates that BIOS needs
to prepare for more change and remain open-minded
about the future (and it would not hurt any if the BIOS

acquired more memory space either—but this would
mean changing the architecture of the standard PC).

Today, PnP BIOS requirements may extend beyond
128 KB. A standard system BIOS consumes roughly
64 KB; PnP support is another 12 KB; automatic power
management support adds 2 to 10 KB; PCI (Peripheral
Components Interconnect) extensions hoard some
20 KB of the BIOS; and on-board VGA (Video Graphics
Adapter) controllers utilize an extra 30 KB to 40 KB of
space. The potential size of the BIOS for such a system is
almost 150 KB. Although most of this code may be
compressed, certain code segments cannot; besides even
compression has its limits. Since new developments for
the PC show no signs of abatement, it seems clear that a
means of updating as well as expanding BIOS quickly
and easily has become a necessity. Plug and Play is only
one of the many technologies that can be implemented
better with flash. As users realize the benefits of PnP, the
demand generated will drive the number of Plug and Play
systems upward.

AP-608 E

4

3.0 PLUG AND PLAY

The Plug and Play architecture is intended to alleviate
configuration woes and provide end-users with an easy
means of expanding the capability of their PC. To
support PnP, several new components need to be added
to the host system and add-in cards. For instance, a new
type of add-in card capable of auto-configuration is
required. Additionally, system firmware and software is
necessary to supervise the allocation of system resources
and carry out the configuration of these new add-in
cards. For widespread acceptance, PnP has to support all
the major bus structures. PnP executes on the PCI bus by
design. The PnP-ISA extensions enable Plug and Play
functionality on the ISA bus while maintaining support
for traditional (non-PnP) add-in cards—affectionately
referred to as legacy devices. All systems that claim PnP
support must recognize the existence of legacy devices
and auto-configure new PnP devices around these static
devices. On-going development will soon qualify Plug
and Play on the VL, EISA and MCA bus structures as
well as the PCMCIA interface.

3.1 PnP Components

For a system to be fully PnP-compliant, four basic
elements are required:

1. System/PnP BIOS

2. PnP operating system

3. PnP hardware devices

4. PnP application software

While waiting for full-featured PnP operating systems
like Windows* 95, Windows NT and PnP versions of
OS/2*, solutions are available from individual vendors,
including Phoenix Technologies, SystemSoft, AMI,
Award Software, and Intel. In addition, the requirements
for PnP implementation vary slightly depending on
which bus architecture is being utilized. Even though
Plug and Play is an extension of PCI, it will revolutionize
standard buses like ISA and EISA by making them more
user-friendly. The software architecture for supporting
PnP consists of the following components (see Figure 2):

1. Platform BIOS: interfaces to the PnP BIOS
Extensions block; provides error reporting, buffer
allocation and platform-specific configuration;
provides ESCD interface.

2. PnP BIOS Extensions: auto-configures PCI cards,
add-in cards, and system board devices during power-
up as part of the power-on self test (POST) procedure;
provides run-time support to system.

3. Extended System Configuration Data (ESCD): a data
structure designed to store configuration information
for all system devices, including the last working
system configuration; the ESCD must be stored in a
nonvolatile area.

E AP-608

5

PCI

ESCD

PnP Aware
Applications

MS-DOS* / Windows* 3.1 / OS/2*

Other

Platform
BIOS

ISA
Configuration Utility

Configuration Manager
(PnP-ISA, PCI,Other)

PnP Device Driver I/F Other I/F

PnP BIOS
Extensions

PnP
ISA

Applications

O/S

Configuration
Software

Drivers

BIOS

2161_02

NOTE:
The area enclosed in the dotted-line box references modules that can be incorporated into the PnP operating system, e.g.,
Windows 95, OS/2.

Figure 2. Plug and Play Software Architecture Components.
Note the many layers that depend on the ESCD. The parameter blocks of the boot block

flash memory enable this nonvolatile storage capability of Plug and Play.

The following components are operating system
dependent:

4. Configuration Manager (CM): a DOS/Win device
driver that auto-configures any ISA add-in cards not
configured by the PnP BIOS Extensions during
system power-on self test (POST); provides other
device drivers and PnP-aware applications like the
ICU access to configuration information for all
system devices (two VxDs provide similar access
privileges to PnP-aware drivers and applications
running under windows); provides interfaces for
PCMCIA software to get configuration data, but does
not provide configuration services.

5. ISA Configuration Utility (ICU)1: a utility designed to
assist users in selecting conflict-free configurations
for legacy ISA add-in cards; advises end-users on

1 The Intel PnP Kit R1.21 and R1.23 update include both
DOS and Windows versions of the ICU (release R1.3
and R1.4 are Windows only at this time). Other
configuration kits are also available: SystemSoft offers
PnPView and Phoenix Technologies offers Phoenix
System Essential.

resource settings and saves this new information into
the extended system configuration data (ESCD) for
future use by PnP BIOS Extensions or the CM;
supports manual configuration of PnP devices.
(Caution: it is best to know what you are doing before
embarking down this road—advanced user’s haven.)

Of the components listed above, the platform BIOS, PnP
BIOS extensions, and ESCD are the system critical
portions without which PnP support would be
incomplete. The configuration manager and the ISA
configuration utility provide functionality that may be
incorporated into the firmware of the operating system.
The PnP BIOS and the ESCD are the components that
initialize the system when power is applied.

3.2 PnP Functionality

As already mentioned, the PnP BIOS is an essential part
of the PnP system. The traditional system BIOS does not
address resource management. Its knowledge is limited
to hard-wired device, only. In a PnP environment, the

AP-608 E

6

system BIOS knows what resources are being used by
system board devices and peripherals. During POST, the
system BIOS communicates this information to the PnP
BIOS, which then detects any PnP hardware devices and
initializes them. PnP BIOS also adds the capability of
runtime configuration; the system can now dynamically
change the resources allocated to system board devices
and add-in peripherals (if they have been so designed)
after the operating system has been loaded. Working in
tandem with the existing system BIOS, the PnP BIOS can
detect newly installed devices during the POST and
communicate this information to the system at runtime
(see Figure 3).

Furthermore, the PnP BIOS is capable of event
management. Through its event management interfaces,
the PnP BIOS can alert the system about new devices,
like a notebook docking station, added or removed
during runtime.

The POST procedure of the PnP BIOS identifies, tests,
and configures the system before passing control to the
operating system. The POST process must maintain
previous POST compatibility, configure all legacy
devices known to the PnP BIOS, arbitrate resources,
initialize the IPL (Initial Program Load—this is how the
operating system is launched), and support both PnP and
non-PnP operating systems. Upon completion of the
POST process, the BIOS attempts to have all necessary
system devices initialized and enabled before the
operating system is loaded; the PnP BIOS aspires further
to provide the operating system a conflict-free
environment in which to boot.

The key to a conflict-free operating environment is
effective management of system resources; unfortunately
there is no definitive directive on how system resources
should be allocated. The firmware of most devices does
not contain information on how much memory the
device will need. Even if this knowledge was available,
there is no consistent way of extracting this information.
The PnP BIOS Specification identifies three methods for
attaining effective resource management: static resource
allocation, dynamic resource allocation, and combined
resource allocation. The choice of which is used depends
on the devices that are being supported by the system.

• Static Resource Allocation: This method advocates
the allocation of system resources based on the Last
Working Configuration (LWC) and is best for
systems that have many legacy or static devices that
must be resourced. As its name implies, the resource
allocation for all configurable devices is
predetermined and fixed. This information on the

specific resources assigned to all configurable
devices must be stored in some nonvolatile location
until needed. The ESCD is the structure specified for
storing this information. The ESCD in this allocation
scheme requires updateability (in case a new device is
added and the resource allocations have to be
adjusted) and nonvolatility (so the information is
always available to the system BIOS during POST).
As long as new devices are not added, or previous
ones removed, conflict detection and resolution
(CDR) is not necessary and the LWC is used at each
boot. However, the capability to perform CDR must
be available when it is needed.

• Dynamic Resource Allocation: This approach
assumes that all PnP devices know exactly how much
space they will require and what resources will be
needed. This approach is best suited for systems with
few static devices or a system whose configuration
changes frequently. A complete knowledge of which
legacy devices are being used and what resources
they consume is necessary to insure true conflict-free
operation. The legacy device information (and any
locked PnP card configuration) should be stored in
nonvolatile memory. The principle benefits of this
approach are its minimal nonvolatile memory
requirements and the flexibility of support for PnP
devices. Each boot could potentially yield a different
configuration and PnP devices could be added or
removed without changing the legacy information in
the ESCD. The CDR algorithm will run each time a
new system configuration has to be determined.

• Combined Static and Dynamic Resource Allocation:
This method bases resource allocation on the last
working configuration (stored in the ESCD) and also
probes other devices, whose information is not
contained in the ESCD, for their resource needs. A
balanced environment is the primary target for this
type of allocation. The system dynamically caters to
its new requirements, shuffling previous resource
assignments as necessary to satisfy as many devices
as possible. Once a new conflict-free environment is
established, the system updates the ESCD with the
new configuration and checks against this new
information during the next boot or system reset. As
with the dynamic scheme, every new system
configuration that must be determined requires some
kind of CDR algorithm in order to insure a conflict-
free operating environment.

E AP-608

7

Non-PnP BIOS ISA Configuration

BIOS

POST

BOOT

Power On

Plug and Play logical devices
required for boot come up active
using defaults.

Plug and Play logical devices
not required for boot come up
inactive.

1. Isolate a PnP card.
2. Assign a handle.
3. Read resource data.
4. Repeat #1 - #3 until all cards done.
5. Arbitrate system resources for Pnp
 cards.
6. Configure and activate each card.

O/S Plug 'n Play Support

PnP BIOS ISA Configuration

Power On

PnP BIOS will. . .
1. Isolate a PnP card.
2. Assign a handle.
3. Read resource data.
4. Repeat #1 - #3 until all cards
 are done.
5. For each logical boot device:
 a) Check ESCD for conflict-free
 assignments.
 b) Activate the logical device.
6. Optionally, configure all other
 logical devices and activate or
 leave inactive.

Plug and Play logical devices
required for boot come up active
using defaults.

Plug and Play logical devices
not required for boot come up
inactive.

POST

BOOT

1. Get PnP information from BIOS.
2. Read resource data for all cards.
3. Arbitrate system resources.
4. Assign conflict-free resources for
 for all inactive logical devices.
5. Activate all logical devices just
 confirmed.
6. Load device drivers.

O/S Plug 'n Play Support

2161_03

Figure 3. Possible PnP/Non-PnP BIOS ISA Add-In Card Configuration Flow. Note the importance of the
ESCD in the Plug and Play Configuration Flow

Without an ESCD, the PnP BIOS must perform resource
allocation as well as conflict detection and resolution
each and every time the system is booted, and any
locking of devices must be done by the supporting PnP
operating system. Although the need for nonvolatile

storage cannot be disputed, the amount of storage
required depends on whether or not the PnP system
needs real time updates. Ultimately, it will be decided by
the methodology selected for resource management. A
static or dynamic allocation scheme requires a fixed

AP-608 E

8

amount of nonvolatile memory for the ESCD and other
BIOS parameters. A combined scheme for allocation
constantly adds or removes from the ESCD data
structure. Other parameters may need to be updated as a
result. Regardless of the storage method chosen, the
BIOS must know how to resolve any untimely
interruption of a crucial system or BIOS function. The
underlying mechanism for appeasing all these
requirements is flash, and Intel’s boot block flash is the
solution for today’s demands and tomorrow’s
inclinations.

3.3 Locked Devices & Bitmap
Storage

The ESCD has the further capability of locking particular
resources allocated to a particular device. This allocation
is maintained no matter how often the system
configuration is changed. All future system
configurations are performed around the resources
assigned to this locked device. This capability is useful
for performance reasons or advanced applications such
as server or network.

A bitmap structure for storing configuration information
is not capable of locking due to the limited information it
contains. Compared to an ESCD storage structure, a
bitmap contains bits which give only binary information,
e.g., which I/O range is being used or which interrupts
and DMAs are unavailable. Although the bitmap storage
structure uses less nonvolatile memory, it does not
contain the detailed information needed for full Plug and
Play support. For instance, you could not utilize the
robust allocation algorithms of the operating system with
a bitmap structure. In addition to not supporting locking,
the bitmap structure also does not allow device enabling
and disabling, which is essential for disabling PnP
devices in non-PnP environments.

4.0 INTEL’S BOOT BLOCK: THE
PnP FLASH BIOS SOLUTION

With the background information on Plug and Play
explained in the previous sections, a full analysis of the
Intel boot block and how it meets the needs of Plug and
Play follows. Included is a description of the boot block
family of products, how they meet the PnP requirements,
and a hardware design example.

The Intel boot block (BB) flash memory products are
particularly well suited for BIOS applications. Boot block
flash is segmented into a lockable boot block, two
parameter blocks and one or more main blocks. All boot

block devices are manufactured on Intel’s ETOX™ flash
memory process technology. An on-chip Write State
Machine (WSM) provides automated program and erase
algorithms with an SRAM-compatible write interface.
The key feature of the boot block architecture that
differentiates it from other flash memories is its
hardware-lockable boot block, which allows system
recovery from fatal crashes. Additional features of boot
block flash include:

• Hardware write protection via pin

• Hardware locking of boot block

• Hardware pin for system reset during write

• High performance reads (for speedy access to data)

• Deep power-down mode (a key feature for “green”
PCs)

• Extended cycling capability (100,000 block/erase
cycles)

Armed with this impressive array of features, Intel’s boot
block flash memory tackles the PnP BIOS challenge and
prevails with a winning solution. Boot block flash
memory meets the needs of the Plug and Play BIOS, the
PnP data storage area (ESCD), and the PnP BIOS boot
code.

The main block(s) of the boot block flash can be used to
house PnP BIOS code. This code will doubtless include
the standard AT BIOS code (all 64 Kbytes) as well as the
PnP specific additions to the standard BIOS, an extra 10
Kbytes–20 Kbytes. Any additional features that
particular OEMs or vendors wish to implement
(i.e., power management, virus protection, PCI, etc.) will
exhaust more memory. The main block of the 1-Mb boot
block is 112 KB; the 2-Mb has one 96-KB main block
and one 128-KB block. The 4-Mb boot block is similar to
the 2-Mb except it has three 128-KB main blocks. The
choice of which boot block to use depends on BIOS
specifications and other system requirements. For some
systems, the 1-Mb boot block is sufficient. However,
other systems have advanced features that require more
memory, for example:

• Improved help files

• System diagnostics code

• Foreign language support

• Integrated SCSI subsystems

• USB support

For these applications, a 2-Mb boot block is the prudent
choice. With twice the memory space as the standard PC
memory map allots to BIOS, the 2-Mb boot block flash

E AP-608

9

offers plenty of head room—just what a growing PC
needs.

The previous section touched on some of the methods
available for resource management and the amount of
nonvolatile memory necessary for each approach. Boot
block flash solves the issue of the ESCD for each of the
possible allocation schemes.

The static allocation scheme stores the resource
requirements for all system and add-in devices within the
ESCD. These system configurations can be programmed
into one of the parameter blocks of the boot block flash
as the ESCD. Parameter blocks are either 4 KB (1-Mb
boot block flash) or 8 KB (2-Mb and 4-Mb boot block
flash) in size. The ESCD Specification calls for 4 KB of
nonvolatile memory for the ESCD. Of course, an OEM
may elect to define its own version of the ESCD, but that
structure will still need to be stored in some nonvolatile
location. If the OEM or system manufacturer decides to
include additional features within the ESCD (or keep a
second copy of the ESCD for recovery purposes), the
other parameter block can certainly be used for this
purpose.

With dynamic resource allocation, the boot block
architecture’s parameter block is an excellent choice for
storing the resource information of legacy devices. When
systems are being put together, all devices on that system
can be pre-assigned specific resources and this
information is saved into the ESCD. This implies that
some conflict resolution protocol or intelligent allocation
algorithm needs to be implemented to assign resources to
any devices added to the system by the end-user. This
protocol can be included in the BIOS or as part of the
operating system.

For the combined approach, the dual parameter blocks of
the boot block family again come into play. Using this
feature of the boot block architecture, two versions of
working system configurations can be saved. This means
that the last two working configurations are always
available to the system, further insuring recovery in case
of irreconcilable conflicts. If this is not desired, then the
ESCD can be written alternatively to each parameter
block, thereby minimizing the number of writes to the
same location and extending the life of the flash
component.

Finally, the hardware-lockable boot block of the flash
architecture is ideal for BIOS boot code. The boot code is
the first piece of code executed each and every time the
system is turned on or rebooted. Boot code consists of a
jump vector, checksum routine and recovery code. The
jump vector, which is 16 bytes long, is the beginning
address of the main BIOS. This is the address jumped to

after the checksum routine returns a valid checksum,
indicating that the current BIOS is good. If the checksum
routine does not validate the goodness of the available
BIOS, the recovery code is then used to load a new
BIOS.

In the AT system, the boot code was usually no more
than 8 KB in size. However, the improvements made to
start-up routines, checksum routines and recovery code
to keep up with the constantly changing times have
forced this boot code to grown outside of its intended
limit. Further PC enhancements will advance rather than
curb this growth. The boot block area of the 1-Mb flash,
with its 8 KB size, is the consummate solution for storage
of the standard boot code. The 16 KB size of the 2-Mb
and 4-Mb boot block is the answer to the growing needs
of today, and the unyielding promise of tomorrow, by
enabling the boot code to expand beyond itself to better
serve the user.

Since this boot code is so important to the operation of
the system, it is easy to understand why it needs to be
protected. Storing it within the hardware locked boot
block provides maximum protection to the system. If a
reset occurs during reprogramming of the flash, for
instance (the dog has been known to run over the power
cord at the most inopportune times), a hardware-locked
boot code means that system recovery is not only
possible, it is guaranteed! This capability is an asset to
OEMs users alike. The user no longer needs to suffer
long delays following a system crash; OEMs (and system
manufacturers) no longer need to incur the cost of
person-dependent recovery. The user does not feel
helpless and out of control and the OEM saves money
and gains a faithful customer in the process.

5.0 IMPLEMENTING A PNP FLASH
BIOS USING A 2-Mb BOOT
BLOCK

By now it is evident that Intel’s boot block flash memory
is an ideal solution for implementing PnP BIOS within a
system. However, there are implementation criteria that
need to be explained:

• How does this hardware-locking of the boot block
work?

• How does one connect the flash memory to a system?

• What about address mapping?

• How does one utilize a 256-KB BIOS within a
defined 128-KB BIOS space?

These are just some of the implementation concerns that
need to be addressed. The following section will shed

AP-608 E

10

some light on these questions and provide an example
implementation of a PnP flash BIOS.

5.1 Overview of the 2-Mb Boot
Block

Figure 1 showed that either a 1-Mb or 2-Mb flash device
can be used to implement BIOS. The choice of device
depends on the contents of the BIOS and the level of
sophistication desired in the design. The 1-Mb boot block
flash memory is an established standard for
implementing flash BIOS, not just for PnP. However,
more BIOS space will be needed to support
standardization of current features (like power
management and virus aids) and impending future
enhancements (like Windows 95 and Desktop
Management Interfaces*, DMI). As consumers clamor
for “more bang for the buck,” more features and
functions will be integrated into the standard PC. The
migration beyond a 128-KB BIOS is inevitable. Already,
some vendors have adopted code compression of BIOS
in order to adhere to this 128-KB space limitation. This is
a viable alternative that requires additional code
decompression algorithms and consumes additional
RAM space to store the full BIOS. Fortunately, Intel
provides a secure means of code storage as well as a
built-in growth path with its boot block architecture.

Within this implementation section, references to the
flash BIOS device assume the 28F002B boot block flash.
A similar approach can be followed to implement a
similar solution using the 1-Mb boot block. However,
some of the techniques included in this design example
will not be applicable. The organization and addressing
scheme of the 28F002B device, along with that of the
1-Mb boot block (as reference), is depicted is Figure 4.
The pinout for the Thin Small Outline Package (TSOP)
and Plastic Small Outline Package (PSOP) of the
28F002B are shown in the Appendix. A table listing the
functions of each of the pins identified in the pin
diagrams is also available in the Appendix. The five,
independently erasable blocks consist of the hardware-
lockable boot block (16 KB), the two parameter blocks
(8 KB each), and two main blocks (a 96-KB block and a
128-KB block). The hardware-lockable boot block can
be located at either the top (28F002B-T) or bottom
(28F002B-B) of the 1-MB memory map, enabling easy
interface to all Intel architecture microprocessors as well
as embedded processor like the i960® processor
(KA/SA) and non-Intel microprocessors that support
location of the BIOS memory area at the low address.

E AP-608

11

8-Kbyte Parameter Block

8-Kbyte Parameter Block

96-Kbyte Main Block

16-Kbyte Boot Block

128-Kbyte Main Block

4-Kbyte Parameter Block

8-Kbyte Boot Block

4-Kbyte Parameter Block

112-Kbyte Main Block

3FFFFh

3C000h
3BFFFh

3A000h
39FFFh
38000h
37FFFh

20000h
1FFFFh

00000h

1FFFFh

1E000h
1D000h
1C000H

00000h

28F002B-T Memory Map 28F001B-T Memory Map

2161_04

Figure 4. Architectural Organization of 28F002B-T and 28F001B-T Flash Memory Devices

The 16-KB boot block is intended for storage of the
system critical BIOS boot code. This block is unlocked
when the RP# pin is between the specified range for
VPPH; after unlocking, program and erase operations can
be performed. Taking the RP# pin below the specified
minimum value for VPPH locks this block, disabling
program and erase functions. The two parameter blocks
can contain supplementary boot code, user information
(like logo files), or system configuration information
(ESCD). They are intended for storage of frequently
updated system parameters or configurations. In addition
to the ESCD, the nonvolatile parameter blocks can be
used to retain a copy of the CMOS setup or to store/track
add-in card addresses, DMA channels, or interrupt
values/level. The main blocks may be used for the
storage of the main PnP BIOS code and runtime services.
The WE# input provides write protection for the entire
flash memory device. The VPP pin offers additional write
protection since standard boot block flash requires VPPH
be between 11.4V and 12.6V before any Program or
Erase command sequences are recognized.

Sometimes, however, design constraints make it difficult
to provide 12V ± 5% to the flash memory. It was to

accommodate situations such as these that Intel designed
SmartVoltage flash memory. SmartVoltage (SVT) boot
block products include VPP sense circuitry which allows
both 12V and 5V program and erase. In addition, read
capability is available at both 5V and 3.3V. These
features provide additional design benefits and
implementation flexibility to serve multiple
environments. Higher assembly line throughput, for
example, can be achieved using 12V VPP whereas some
in-system programming layout and trace difficulties can
be greatly eased with a 5V VPP. When the VPP input of a
SmartVoltage device is connected to 5V, the range for
VPPH is 4.5V to 5.5V. The SVT devices even include a
dedicated write protect pin for locking and/or unlocking
the boot block with a logic signal. The combination of
SmartVoltage and the boot block architecture provides a
robust solution that eliminates design barriers and
quickens system time-to-market.

A complete solution cannot be achieved without mention
of available package options. The boot block products
are offered in PDIP, PLCC, PSOP, and TSOP form
factors. Due to handling similarities in the manufacturing

AP-608 E

12

flow, more vendors are changing from the previous
PLCC package standard to the smaller PSOP package.

5.2 PnP Boot Block Flash BIOS
Implementation (Hardware)

In order to implement a PnP flash BIOS, certain
hardware criteria must be met. For standard boot block
flash and SmartVoltage boot block in 12V mode, there
must be a means for raising VPP to 12V and lowering it
to normal levels after programming or erasure is
complete. There must also exist a method for write-
enabling the entire flash device. A way of gating the RP#
input is necessary to insure the integrity of the program
signal for the boot block (usually a POWERGOOD
signal is appropriate). Bi-directional transceivers or data
buffers may be needed for the DQ pins. Lastly, there
must be a means for relocating the recovery code after
the system boots when a 2-Mb density boot block flash is
used.

5.2.1 BIOS BOOT CODE RELOCATION

Following a system reset or power-on, the typical system
first goes to the high memory area of the 1-MB memory
map, where the boot code is stored. The checksum
routine (or whatever means of verification is employed)
is run to verify the status of the BIOS currently available
to the system. If the main BIOS is determined to be good,
this code proceeds to initialize the system and its
peripherals and passes control to the operating system; as
mentioned earlier, this is done by jumping to the address
pointed to by the jump vector. If, however, the main
BIOS is found to be corrupted or unusable (i.e., the
checksum value read does not match the expected value),
the BIOS recovery code must reconstruct a new BIOS.
The recovery code reconstructs the BIOS by reading the
BIOS update file from a floppy or COM port (modem),
erasing all the other blocks (except the boot block),
reprogramming the flash with the new BIOS data, and
initiating a RESET to reboot the system. As a result, there
are two modes of operation in which the system can
function: boot mode and runtime mode.

In boot mode, which occurs at power-up, the system
expects the kernel code to be located at physical address
FE000h–FFFFFh. The system then validates the status of
main BIOS. If this check results in a good BIOS, the
system is initialized and control is transferred to the
operating system via the jump vector. At this point
runtime mode is entered; the system now expects the
main BIOS to be located at physical address E0000h–
FFFFFh (see Figure 5). The 1-Mb boot block maps
directly into this 128-KB space allocated for BIOS usage.

The 2-Mb boot block, however, must be able to

E AP-608

13

switch between its upper 128-KB block (which includes
the boot and parameter blocks) and its lower 128-KB
block (which is where the main BIOS could be stored).

The system initialization routine and the configuration
utilities should be located in the upper 128-KB block of
the 2-Mb boot block. The lower 128-KB block should be
used for runtime BIOS services and other advanced
features. Alternatively, the upper 128-KB main block
may store the initialization routine as well as the bulk of
the runtime services or functions. The lower 128-KB
block can then be used for additional advanced functions
or esoteric service routines that are used infrequently.

To achieve this swapping between the upper and lower
128-KB blocks, several methods can be applied. A small
piece of logic can be added to the board to swap the
address ranges; an easier approach is to simply invert the
A17 input to the flash. For runtime mode operation, A17 is
maintained at logic low, thus mapping the lower 128-KB
block of the 2-Mb boot block to the 128-KB BIOS area
in main memory. During recovery, the polarity of A17
can be flipped to shift the kernel code to the F segment,
i.e., swap the lower 128-KB block for the upper 128-KB
block. A keyboard sequence, motherboard switch, or

jumper can be used to toggle A17. The hardware example
in Figure 6 illustrates the use of this tactic. Another
approach would be to locate the flash BIOS at a high
memory area (above 1 MB) and use BIOS extension calls
to access the runtime BIOS services in the other 128-KB
block. This method, however, takes quite a bit of time
because of the overhead associated with the software
BIOS call (saving status, return location after call, etc.).
Note that depending on the particular BIOS
implementation (i.e., vendor, platform, etc.), the
addresses indicated in this example may change slightly.

When the flash memory is being reprogrammed, it is
necessary to relocate the BIOS recovery code to RAM
before proceeding, as Figure 5 illustrates. Although the
flash memory allows suspension of an erase cycle to
permit reading of another block, attempting to read one
of the flash blocks while a write to another block is in
progress is not permitted. This is a characteristic of all
flash products currently on the market today. As a result,
the BIOS recovery code must be copied to RAM and
executed out of RAM in order to reprogram the flash
memory with the new BIOS code.

AP-608 E

14

System Init.
Power-On Self Test (POST)

BIOS Recover Code

ESCD

Configuration Utilities

Additional Boot
BIOS, Drivers, etc.

I/O Support, Drivers,
Runtime BIOS Services,
Additional Card Config.

28F002B-T Upper Memory Area: BIOS Space

System RAM

BOOT RUNTIME UPDATE

3FFFFh

3C000h

3B000h

38000h

20000h

00000h

FF000h

F8000h

F0000h

E8000h

E0000h

2161_05

Figure 5. BIOS Relocation for 2-Mb Boot Block

5.2.2 VPP GENERATION AND WRITE
PROTECTION

The VPP pin enables programming and erasure of the
flash device. In addition to this, VPP also provides write
protection of the flash memory blocks. If VPP is below its
required level, no Program or Erase command sequence,
whether valid or not, will have any affect on the flash. If
code (or data) security is of paramount importance to a
particular design then a flash memory device with a
dedicated VPP pin is the best choice.

As for PnP, the BIOS will be tweaked from time to time
by vendors, new features will be added, and standard
routines will be enhanced. One particular allocation
scheme of PnP requires that the ESCD be re-written each
time a new system device is added. Although flash
memory enables all these benefits, none of them can be
achieved without the generation of the programming

voltage, VPP. It is imperative that VPP be generated
cleanly to avoid incorrect programming or erase as well
as spurious writes (which can lead to unwanted system
crashes). Keep in mind that a clean VCC is as important
for fail-safe flash operation as a clean VPP.

The IBM PC technical reference manual specifies a 12V
supply with a tolerance of + 5% to – 4%. The VPP
specifications of the boot block flash memory align to
this standard. If the power supply employed in the design
meets the IBM specification and has CMOS logic, the
12V supply from the power supply can be tied directly to
the 28F002B. This approach, however, is not
recommended since it can degrade program/erase
performance or unfavorably affect reliability. In most
desktops, an unregulated 12V supply exists in addition to
a 5V. It is recommended that 5V be used to obtain the
12V ± 5% rail. In addition to being more efficient and
more economical than the unregulated method, this

E AP-608

15

approach does not require a minimum load to maintain
the regulation, as is necessary when buffering an
unregulated supply using modular solutions. Likewise,
VPP can be generated by regulating (or stepping down)
from a higher voltage. Additional information on VPP
generation strategies can be found in Application
Note 357: “Power Supply Solutions for Flash Memory,”
(order # 292092) and the technical paper entitled “Small
and Low-Cost Power Supply Solutions for Intel’s Flash
Memory Products,” (order # 297534).

Of course, if a 5V environment is necessary,
SmartVoltage is the irrefutable choice. These voltage
sensing devices allow manufacturers or OEMs to choose
either a 12V or 5V VPP level, depending on their specific
design needs. In this way, the extra write protection
provided by having a separate VPP pin is retained and the
appropriate hardware environment can be maintained.
When VPP falls below the specified value for VPPL
(VPPLK for SmartVoltage devices), program and erase
cycles to the flash device are prohibited (ignored),
although the device can still be read normally. Additional
software protection for VPP can be added by requiring a
password before enabling VPP to proper program/erase
levels. The RP# pin, gated by the POWERGOOD signal
of the power supply and the system RESET# pin,
provides further write protection for the information
stored within the boot block.

5.2.3 HARDWARE DESIGN EXAMPLE

Figure 6 shows an example design for implementing a
flash memory-based BIOS within a PC motherboard.
Specific signal generation is discussed in the following
sections. The VPP generation circuit used can drive
200 mA of VPP current with an efficiency rating of 88%.
Even though a transceiver may not be necessary, it is
specified in this example as reference. Standard PCs
expect a ROM-based BIOS and do not enable the data
bus to the BIOS ROM during write sequences (in fact,
standard PCs do not generate the write enable signal
when the address decoded references the BIOS area).
The transceiver is used to allow reading and writing of
the flash BIOS within specified timings.

5.2.3.1 VPP Generation Circuit

The LT1301 used in Figure 6 is a micropower step-up
DC converter available in an 8-pin surface mount
package. The input of the LT1301 is capable of selecting
between 5V or 12V outputs, ideal for use with
SmartVoltage flash memory. Since series inductance in
the filter capacitor and diode switching transients may
cause high frequency noise spikes at the output, an
optional filter design is included with the example.

The Max662A provides a regulated output voltage at
30 mA from a 5V ± 5% power supply. It uses internal
charge pumps and external capacitors to generate 12V,
eliminating inductors. Regulation is provided by a pulse
skipping scheme that monitors the output voltage level
and turns on the charge pumps when the output voltage
starts to droop.

Both solutions offer a shutdown pin for protection
against accidental erasure of the flash memory.
Additionally, good PC-board layout practices can also
eliminate this potential problem.

5.2.3.2 RP#

This section gives a sample implementation of the PnP
flash BIOS. The block diagram that supports this
implementation is shown in Figure 6. The RP# gating
methodology described in the previous section is
implemented in this sample design; the PWRGOOD
signal (or VCC input) and the hardware generated
RESET# signal are monitored for appropriate voltage
levels using a voltage monitor. This scheme masks
invalid bus conditions from the flash device, thus
providing additional buffering against accidental erasure.
As one might expect, the flash memory defaults to read
array mode. It may also be desirable to gate RP# with a
General Purpose Input/Output (GPIO) line to enable
shutting off the BIOS after it has been shadowed. A
jumper to 12V (with some kind of protection, like
decoupling capacitors or buffer circuit) can be used to
unlock the boot block. This control may also be
accomplished via software interrupt, although this is a
less secure means than the straight hardware method. The
SmartVoltage boot block products support this type of
boot block locking and unlocking; however, there is a
separate WP# pin that permits locking and unlocking of
the boot block with 5V if 12V is not being supplied to the
flash memory.

AP-608 E

16

5.2.3.3 WE#

The WE# signal generated by the processor usually
cannot be used in this implementation because the
processor does not expect this area to be writeable (i.e., it
thinks the BIOS is stored in a ROM). Therefore, the WE#
signal must be generated externally using the bus
definition signals and some discrete components. A write
condition to the BIOS is established when the M/IO#
(memory or I/O) signal indicates memory and the
MEMW/R# (memory write or read) signal indicates
write. Figure 6 illustrates this scheme. Further write
protection for the BIOS can be achieved by gating the
WE# signal with a GPIO line, effectively disabling writes
to the flash BIOS unless permitted by the BIOS update
algorithm. I/O port bits can be ANDed with the actual
write pin to control the generation of the WE# signal to
the flash memory. The bits used should be both readable
and writeable. Flash memory devices that do not have a
WE# pin suffer from more frequent spurious writes. Such
memories use the CE#, OE#, and VPP pins to decode a
write sequence. Because the CE# input is decoded from
switching address pins, it is not unheard of for this input
to incur glitches. With VPP at specified tolerance levels,
this glitching can initiate writes—hardly a favorable state
when updating BIOS code.

5.2.3.4 CE#

The CE# input is defined by the address condition that
enables the flash device. No access to the flash chip will
be permitted if the CE# input is deasserted. This input
can be generated multiple ways as well. Chipsets often
take care of this type of decoding internally, returning the
lone chip select signal on one of their output pins. If a
chipset is not used, µPLD or decoder can be used to
generate the CE# input based on the address inputs used
to indicate the flash memory device. Boot block products
allow both CE# controlled program/erase as well as WE#

controlled program/erase. The logic is such that
whichever is asserted first controls the current
program/erase sequence; data is latched on the
deassertion (rising edge) of that signal. The WSM begins
operation when that signal is deasserted (see Command
User Interface, Section 5.3.2.2, for more details).

5.2.3.5 OE#

Whenever a read cycle is performed, the OE# input
needs to be asserted. OE# is therefore gated by a memory
read to the flash when it is enabled. This example uses
the MEMW/R# signal to control the generation of OE#. It
may be necessary to invert this signal in order to provide
the correct signal polarity to this input. As with the WE#
input, I/O bits as well as discrete components (that
define, in this case, a read cycle) can be used.

5.2.3.6 Address Inversion for 2-Mb Boot
Block

The address inversion scheme described earlier is used in
this example. This input to the flash can also be gated by
I/O port control bits if a software implementation is more
appropriate. This example uses the Boot/Runtime Mode
(B/RM#) selection pin (which may be software
generated—controlled, say, by the checksum value) to
control the inversion of A17. Alternatively, a
programmable device (like a µPLD) can be used to
actually decode the high order address bits and achieve
the same result as the bit inversion.

Some of the features employed in this example may be
incorporated into a chipset, and therefore, the external
circuitry may be unnecessary. The CE# input, for
example, is available on most chipsets as a BIOSCS#
output and can be hooked directly to the CE# input of the
flash memory.

E AP-608

17

A[0:16]

DQ[0:7]

OE#

A

CE#

RP#

XCEIVER

SA[0:16]

SD[0:7]

MEMW/R#

SA17

B/RM#

BIOS ADDR
CONDITION

12V

5V

12V

RESET#WE#
MEMW/R#

Monitor
(MAX705)

M/IO#

ADDR

DCDR

17

VCC

Flash
Memory

Low V CC

VPP

C
2:

 4
7

 Fµ
 /

16
V

D1: 1N5817

R1: 1Ω, 5%

R2: 1Ω, 5%

GND PGND

SW

SEL
SHDN
SENSE

8

6

5

1

2

4
3

7

Optional
 Filter

LT1301CS8

VIN(3V - 10V)

12V/200 mA

V IN
ILIM

 /
16

V
C

1:
 1

00
 F

µ

L1
: 2

2
 Hµ

C
3:

 0
.1

 F
 µ

SHDN

C1+

C1-

GND

C2-

C2+

Vout

Vcc

MAX662A

A

A

4.75V - 5.5V

A

C1: 0.22µF C2: 0.22µF

C
4:

 2
.2

µ F

C
3:

 1
.0

µ F

12V/30 mA

+

+

2161_06

NOTES (LT1302CS8): NOTES (MAX662A):
Input Range: 3.0V to 10V Input Range: 4.75V - 5.5V
Output Current: Up to 200 mA @ VIN = 5V Output Current: Up to 30 mA @ VIN = 5V
Typical Efficiency: 88% @ ILOAD = 200 mA, VIN = 5V Typical Efficiency: 74% @ ILOAD = 30 mA, VIN = 5V
Switching Frequency: 155 Khz Switching Frequency: 500KHz
Operating Quiescent Current: 120 µA (typical) Operating Quiescent Current: ~320 µA
Shutdown Feature Shutdown Feature
Shutdown Quiescent Current: 15 µA (max.) Shutdown Quiescent Current: ~70 µA
Rise time from shutdown: 1.2 ms (typical) Rise time from shutdown: ~500 µs (typical)

Figure 6. PnP Boot Block Flash BIOS Hardware Implementation Example

AP-608 E

18

5.3 PnP Boot Block Flash BIOS
Implementation (Software)

In order to update the PnP BIOS, some type of flash
programming utility must be employed. This utility
cannot program the boot block due to the hardware
protection provided by the RP# pin (or the WP# pin on
SmartVoltage flash memory), thereby preserving the
boot or recovery code contained therein. In most cases,
however, this programming utility will be unique for
each system because it is dependent on the hardware
used in the design. The method of raising and lowering
VPP, for instance, is dependent on hardware, as is the
methodology for disabling shadow RAM or cache. Since
reprogramming of the flash memory will result in a
reboot, it is not necessary to keep track of system status
information, (like shadow status, cache status, power
management status, cursor position, etc.).

Boot block devices have on-board programming and
erase algorithms with a built-in SRAM-compatible
interface for simplified software creation and debugging.
This is accomplished through the on-chip write state
machine (WSM), status and command registers. These
registers perform all of the necessary actions, from VPP
monitoring to erase suspend. The WSM even times the
programming pulses, obviating the need for program
timers and preconditions blocks as part of its erase
process, eliminating the need to “0” program prior to
erase.

5.3.1 PROGRAMMING CONSIDERATIONS

Due to the difficulty of discussing every possible PnP
flash programming utility in this application note, a
generic programming utility that can work on all
platforms will be examined. Inherent to this approach is
an interface between the programming utility and the PnP
BIOS. This interface is accomplished by selecting a
ROM BIOS interrupt number and assigning a function
number through which all flash-specific functions can be
accessed. Table 1 lists some possible functions that might
be defined for the interface. Table 4, in the Appendix,
provides a list of the ROM BIOS interrupts currently
used or preassigned. Once an available (or unused)
interrupt number and/or function has been determined,
the flash programming functions can then be defined. For
this example, assume interrupt 17, function 0Fh has been
selected for implementing the flash programming
subfunctions.

Table 1. Generic Subfunctions for Flash
Programming Utility

Subfunction Description

00h Validate Checksum

01h Raise Programming Voltage (VPP)

02h Lower Programming Voltage (VPP)

03h Flash Write Enable

04h Flash Write Disable

05h - FEh Reserved for Future Use

FFh Generate System RESET

The generic specification is as follows:

Input: AH = 0Fh

AL = Subfunction

Output: If CARRY FLAG set = Error

If CARRY FLAG clear = Success
 AL = 85h

(If 85h is defined as a subfunction in the future, a new
return value must be specified.)

The carry flag was chosen because most instruction sets
include specific instructions for setting and clearing this
bit. The overflow or zero flag may be used in place of the
carry flag. Likewise, a register value may be returned in
case of an error (as is done with the success case in this
example). The methodology may be changed but the
function must be preserved, i.e., regardless of how it is
done, there must be some way of informing the system of
a successful or unsuccessful instruction execution.

A few caveats of which to be aware:

1. A PnP BIOS version subfunction may be defined
for distinction or to enable/disable features not
supported in every system

2. If both a flash chip and an EPROM exist on the
system board (for example SCSI or keyboard
BIOS), two additional subfunctions need to be
defined to select the flash memory instead of the
EPROM.

3. The Validate Checksum function can be defined
many ways, but basically it needs to be able to
compare the checksum of the current BIOS (this

E AP-608

19

may need to be calculated) with the saved
checksum value. If they match, then boot can
continue; otherwise, a new BIOS needs to be
uploaded.

4. Keep in mind that all registers used by these
subfunctions will be destroyed. If their value needs
to be maintained, the register should be pushed
onto the stack (or saved) prior to use and then
restored afterwards.

Subfunction 00h: Validate Checksum—checks the
checksum of the loaded BIOS against that stored in
memory. If they match, it returns true, else it returns an
error and a new BIOS should be loaded.

Input: AH = 0Fh

AL = 00h

Output: CF set = Error

CF clear = Success

 AL = 85h

Subfunction 01h: Raise Programming Voltage (VPP)—
raises VPP to the required voltage level (in this case,
greater than 11.4V) and waits until the voltage is steady.

Input: AH = 0Fh

AL = 01h

Output: CF set = Error

CF clear = Success

 AL = 85h

If the boot block area of the flash memory is to be
accessed and software control of the RP# input is desired,
this function may be used to raise the voltage on the RP#
signal. Alternatively, another subfunction may be defined
to accomplish this purpose. Remember, however, that
software control of the RP# input is not recommended as
it eliminates the hardware protection feature of the boot
block .

Subfunction 02h: Lower Programming Voltage
(VCC)—lowers VPP to its normal level (in this case, less
than 6.5V) and waits until the voltage is steady.

Input: AH = 0Fh

AL = 02h

Output: CF set = Error

CF clear = Success

 AL = 85h

If access to the boot block area of the flash memory is
completed and software control of the RP# input is in

effect, this function may be used to lower the voltage on
the RP# signal. Alternatively, another subfunction may
be defined to accomplish this purpose. Remember,
however, that software control of the RP# input is not
recommended as it eliminates the hardware protection
feature of the boot block .

Subfunction 03h: Flash Memory Write Enable—
enables erase/program commands to the flash chip and
waits the required amount of time for stabilization (if
necessary).

Input: AH = 0Fh

AL = 03h

Output: CF set = Error

CF clear = Success

 AL = 85h

Subfunction 04h: Flash Memory Write Disable—
disables Erase/Program commands to the flash chip and
waits the required amount of time for stabilization (if
necessary).

Input: AH = 0Fh

AL = 04h

Output: CF set = Error

CF clear = Success

 AL = 85h

Subfunction FFh: Generate System RESET—issues
the RESET command necessary to reboot the system
after the flash memory has been altered.

Input: AH = 0Fh

AL = FFh

Output: None

5.3.2 REPROGRAMMING
CONSIDERATIONS

One of the prime benefits of a flash-based PnP BIOS is
the ability to do in-system updating. When a flash chip is
soldered directly onto a system board, there are two
methods available for reprogramming: in-system writing
(ISW) and on-board programming (OBP). The major
difference is in how VPP is supplied and whether the
programming process is controlled by the system or
some external hardware. The VPP voltage is supplied
locally and the system is responsible for reprogramming
with the ISW approach. With OBP, the external PROM
programmer supplies the necessary VPP for
programming, and controls the reprogramming process.
Cost, ease-of-implementation, and reprogramming

AP-608 E

20

environment are some of the trade-offs that must be
made when considering which methodology is best.
There are advantages to both methods. This application
note focuses on the ISW approach.

5.3.2.1 In-System Write Considerations

The following items are required to have an ISW capable
system for updating the PnP BIOS:

• Microprocessor or controller (to control the
reprogramming process)

• PnP BIOS boot code, communications software, and
PnP BIOS update algorithm

• Data import capability (floppy disk, serial, network,
etc.)

• VPP generator or regulator (12V products only)

VPP Generation

VPP generation has already been discussed in previous
sections, and since most ISW systems include voltage
divider circuits that provide a path to ground, ESD
protection is not needed for the VPP pin. If, however, a
system does not have this voltage divider circuitry (check
the schematics) or the VPP supply is switched directly, a
resistor to ground should be added to prevent damage
due to electrostatic discharge. The tolerance of the VPP
pin is also important to be wary of. Although 5%
tolerance is tighter than 10%, it usually yields a higher
programming time. Such a trade-off may be necessary to
make for certain applications. When using the
SmartVoltage devices in 12V mode, the same care must
be taken in generating VPP as with the standard boot
block. In the 5V mode of the SVT devices, however, this
extra protection is not necessary. Nonetheless, the VCC
signal should be as clean as the VPP signal.

Data Import Capability

The flash memory does not care how the new PnP update
code is fed to it—any convenient means of downloading
the necessary information is acceptable. This means the
flash memory will not be a barrier to completion if, for
instance, design constraints call for a parallel link instead
of a serial link. Even though most communication is
serial, error free serial communication still needs some
kind of buffering to allow for proper packet
reconstruction after transmission. The download time is
another factor in deciding on a data import methodology.
Although a serial interface, like JTAG, is easier to
implement, in practice it is actually slower than other
methods. An assembly line will see noticeable

differences in program time when using a JTAG interface
versus a parallel interface, for instance.

Reprogramming Routine

The PnP BIOS boot code stored in the boot block of the
flash memory should be able to handle remote updates
by the processor as well as basic communication and
reprogramming capabilities. This insures that any
interruption of the reprogramming process would be
recovered by resetting the flash and checking BIOS
status or some reprogramming flags. Keep in mind the
reprogramming routine must be relocated to RAM before
execution in the boot block of the flash.

Suppose the boot code begins execution after a system
reset or power-on and determines that an invalid PnP
BIOS is loaded in the system. This code should begin the
reprogramming process by preparing the flash device for
erasure and establishing a connection to the
reprogramming protocol, perhaps through an interrupt,
say R_INTR. Once this connection is established, the
reprogramming can commence. Some kind of valid (or
complete) signal needs to be provided to the boot code to
let it know that reprogramming is complete, say an
R_DONE interrupt from the update protocol. Should this
reprogramming be interrupted, the boot code should be
able to recover by recognizing that a valid BIOS still has
not been loaded and re-initiating the reprogram
algorithm.

In system reprogramming of the system BIOS is one of
the many advantages that flash memory brings to BIOS
world. The algorithm needed to accomplish this
reprogramming will vary from vendor to vendor. Rather
than advocate any one method of implementation, the
flowchart in Figure 7 is provided to serve as a guide. This
enables flexibility of design while insuring that all
necessary components are incorporated into the
reprogramming code. Even though the flowchart may not
indicate so, user consideration should be embedded in
the update routine, i.e., status bars, confirmation prompts,
etc.

Communications Software

Whatever means is used to download the information to
be programmed should guarantee accurate data
transmission. The protocol employed can be a simple
read-back technique or a complex error-free
communications protocol. The simple read-back
methodology consists of the CPU indicating to the

E AP-608

21

system that it wishes to update the BIOS by asserting the
R_INTR interrupt. Once the PnP BIOS acknowledges
this request, it prepares the flash device for updating and
transfers control to the processor. The flash memory then
waits for the R_DONE interrupt. Once the
reprogramming is complete, the system should resend the
update code to verify the programming sequence.

5.3.2.2 Command User Interface

The built-in Command User Interface (CUI) of the boot
block (and all Intel second-generation flash devices)

provides a standard interface to the internal Write State
Machine (WSM) of the flash memory. Table 2 lists the
commands available through the CUI and the number of
cycles each requires. The CUI simplifies processor
interfacing by granting full read/write functionality to the
CE#, WE#, and OE# inputs. Raising VPP to VPPH or
lowering it to VPPL (VPPLK for SmartVoltage) toggles the
flash memory between read/write mode and read-only
mode. When in read-only mode, only the first three
commands listed in Table 2 are accessible. In read/write
mode, all commands are permitted.

Inform User:
Erase Flash;

Reprogram Flash

Yes No

Start

Inform User;
Prompt for File

or Exit

Initialize
System

Access BIOS
Update Files

Reboot
System

Is
Current BIOS

OK?

Transfer Control
to Main BIOS

Display Update Options;
Prompt User to Choose;

Load File to Memory

Is
File

Valid?

No

Yes

2161_07

Figure 7. Flowchart for Update Algorithm.
Note that although this is a fairly generic algorithm, similar flows
have been implemented by BIOS vendors and OEMs since 1991.

AP-608 E

22

Table 2. CUI Commands for the 28F200/002B Flash Memory

Command # of First Bus Cycle Second Bus Cycle

Cycles Oper Addr Data Oper Addr Data

Read Array/Reset 1 Write X FFh

Intelligent Identifier 3 Write X 90h Read IA IID

Read Status Register 2 Write X 70h Read X SRD

Clear Status Register 1 Write X 50h

Erase Setup/Erase Confirm 2 Write BA 20h Write BA D0h

Word/Byte Write Setup/Write 2 Write WA 40h Write WA WD

Erase Suspend/Erase Resume 2 Write X B0h Write X D0h

Alternate Word/Byte Write
Setup/Write

2 Write WA 10h Write WA WD

NOTE:
To avoid excess current usage, the high order 8-bits of the data bus should be tied to VCC or VSS if a 16-bit wide data bus is
being used (16-bit data bus only valid for the 28F200B devices)

BA = Block Address to be erased

WA = Address to be programmed

WD = Data to be programmed at address WA

IA = Identifier Address: 00h for manufacturer code; 01h for device code
(following this command, two read operations access the manufacturer and device codes)

IID = Intelligent Identifier Data

SRD = Status Register Data

Read Array/Reset (FFh): This single command points
the read path at the memory array. If the processor
performs a CE#/OE#-controlled read following a two-
write sequence, the device will output the status register
contents. If the read command is given following an
Erase Setup command, the device is reset to read the
array. Two sequential Read Array commands is required
to place the device in read array mode after write setup.
If the system leaves VPP turned on during a system reset,
incorporate a command register device reset into the
hardware initialization routine. This is a safeguard in case
the flash device is being programmed or erased when the
system reset occurs.

Intelligent Identifier (90h): This commands points the
output path to the Intelligent Identifier circuitry. Only
values at address 0 and 1 can be read (only address A0 is
valid in this mode). All other inputs are ignored.

Read Status Register (70h): After this command, the
subsequent read will output the contents of the status
register, regardless of the value on the address pins. This
is one of two commands that can be issued while the
WSM is operating. The device automatically enters this
mode following write (program) or erase completion.

Clear Status Register (50h): This command clears the
program status and erase status bits of the status register.
The WSM is only allowed to set these bits when it is
performing one of these tasks; however, it cannot clear
them. This is to allow synchronization with the
processor.

Erase Setup (20h): This command prepares the flash
memory for erasure and waits for the Erase Confirm
command. If the next command is not the Erase Confirm
command, then the program status and erase status bits
of the status register are set. The device is placed in read
status register mode and awaits the next command.

E AP-608

23

Erase Confirm (D0h): If the previous command is
verified to be the Erase Setup command, the CUI enables
the WSM, latches the address and data lines and responds
only to the Read Status Register and Erase Suspend
commands. While the WSM is operating, toggling the
OE# input causes the device to output Status Register
information.

Erase Suspend (B0h): This command is only valid when
the WSM is executing an Erase command sequence.
Once it has been acknowledged, the CUI instructs the
WSM to suspend its current erase operation; the CUI
then waits for the Read Status Register or Erase Resume
commands, ignoring all other commands. When the
WSM responds to the CUI that it has suspended erase
operations (by setting the WSM status bit in the Status
register), the Read Array command can also be
recognized by the CUI. Even though the address and data
latches are locked, the address lines can still drive the
read path. The WSM will continue to run after the
suspend.

Erase Resume (D0h): This command causes the CUI to
clear the WSM status bit in the Status Register and
instructs the WSM to resume the last suspended erase
operation. This is only done if an Erase Suspend
command was previously issued; otherwise, this
command has no affect.

More information on the specific state of input pins and
the actual bus definitions for these commands can be
found in the datasheets.

6.0 DESIGNING FOR THE FUTURE

Due to the abundance of healthy competition in the flash
market, vendors and OEMs always seek out alternative
solutions for designs. Most of the discussions seem
centered around three areas: programming voltage, write
protection, and blocking architecture. Intel is committed
to the boot block architecture and has invested
considerable time and resources into proliferating the
family to meet market demands.

6.1 The 5V-Only Question

Many system manufacturers are concerned with the cost,
space and analog design necessary to accommodate the
12V requirement for program or erase of a flash memory.

is is a justified concern, one that is answerable a number
of ways. The question that must be answered, however, is
not “What new changes are needed to support an on-
board 12V supply?” but rather, “What is the best solution
for the problem of reprogramming in-system?” Intel set
out to answer the latter question—the result is the
SmartVoltage (SVT) boot block products.

Simply put, SmartVoltage flash memory supports either
the 12V or the 5V paradigm. Manufacturers and OEMs
can now decide which method is best for their particular
environment and proceed with their choice without
having to purchase separate components. An OEM might
have some platforms that need 12V to support highest
performance write systems. Low-end systems, however,
are typically more power and cost-sensitive.
SmartVoltage supports both implementations, allowing
the OEM to make the trade-offs necessary for the
intended market. The desired program/erase speed is one
of the considerations that will determine which choice is
best for a particular application, since performing
program/erase at 12V is faster typically than at 5V.

With the move from 12V / 5V to 5V / 3V on the horizon,
it is easy to see how SmartVoltage technology will
enable all types of system capabilities with its dual
supply capability. The same SmartVoltage device can be
programmed in the manufacturing flow with 12V for
improved throughput. When the product is in the field
and 12V is no longer available, the same SmartVoltage
device adapts to the environment, enabling updates using
a 5V VPP supply and 3.3V or 5V VCC supply. This is the
type of flexibility and ease of design that SmartVoltage
flash memory products will drive.

6.1.1 DESIGNING FOR SmartVoltage

SmartVoltage brings 3.3V and 5V technology to the boot
block family. Although both devices are pin compatible,
it is necessary to know that some previously unused pins
are now being used. If you plan to migrate your designs
to SmartVoltage, you need to be aware of the
implications to your design.

The DU pin on the standard 2-Mb and 4-Mb boot block
parts is the WP# pin on the SmartVoltage devices.
Floating this pin is not good design practice if migrating
to SVT is in the plan. The solution is to connect this pin
to VCC, GND, or a control pin as per the design.
SmartVoltage devices use the WP# pin in conjunction
with the RP# pin to control boot block locking and
unlocking as well as array protection. For backward
compatibility to BX products, connecting the DU pin to
GND is recommended.

AP-608 E

24

SVT Write Protection

VPP RP# WP# Write Protection

VIL X X All Blocks Locked

VPPLK VIL X All Blocks Locked

VPPLK VHH X All Blocks Unlocked

VPPLK VIH VIL Boot Block Locked

VPPLK VIH VIH All Blocks Unlocked

In addition to being backwards-compatible to the
standard boot block products, SVT products include
other features. In the event that a 12V trace is not
supplied to the VPP input, there is a 5V tolerant WP# pin
that allows the boot block to be locked/unlocked without
the need for high voltage. Only one of these locking
schemes needs to be utilized; the internal circuitry is
smart enough to figure out which is being used and
adjusts accordingly, shifting VIL and VIH levels to match
the supply source. Unlike other architectures, there is no
need to apply 12V to some of the input pins to unlock
blocks or access certain features. SmartVoltage offers
uncompromised 5V-only technology. SmartVoltage is
even capable of 3.3V read and will have 2.7V read
capability in the future.

7.0 SUMMARY

PC users have always felt that the computer should be as
simple to use as possible. To them, it was common sense
that if they added something new to the system, it should
simply work. In their opinion, if something changed in
the system, the system should correct itself to adapt to
this change, even if they (the user) caused this change.
From their perspective, for all the money they spend on
the computer, they shouldn’t have to worry about how to
fix it too. We have all shared some of these thoughts, but
up until now, it has always seemed just beyond our
reach.

Plug and Play promises to bring some of these long
sought-after requests to fruition. The prospect of
alleviating installation frustrations for end-users is very
compelling, especially for the end-user. This concept

even has appeal for manufacturers and designers alike,
promising cost savings, consumer confidence in their
products, and product differentiation. As it turns out, one
of the ways of enabling this saving grace is using boot
block flash to implement the system BIOS.

In this application note, the features of boot block flash,
as it relates to the PnP BIOS, have been carefully laid
out. First the needs of Plug and Play were outlined:

1. System BIOS storage

2. Nonvolatile area for system configuration database

3. Recovery code for updateability

4. Backwards compatibility to established standards

Then the pertinent issues for implementing this design
were examined—from hardware lockability to generating
programming voltages; from software requirements to
BIOS recovery code; from implementation specific
options to reprogramming algorithms. An example
implementation was also provided, which included both
hardware and software considerations. Even the benefits
to the user as well as the manufacturer were explored.
The solution to the BIOS challenges brought about by
Plug and Play have been met. Boot block flash caters to
all the requirements of a PnP BIOS without
compromising design flexibility or creativity.

Plug and Play is more than just a term used to mean
making the PC more like a Mac (what foolishness—you
cannot even add hardware to a Mac). It is a real
specification that will change the way PCs are used. As
the buzzword garners momentum, its implementation
will become widespread. This expansion will bring forth
more people delving into the make-up of PnP and
attempting to “tweak” it for differing purposes. BIOS
must be able to support the current standards and
conform to all the new techniques and implementations
yet to come. Intel’s boot block flash offers the best
solution to this quiet revolution.

E AP-608

25

8.0 ADDITIONAL INFORMATION

8.1 References

For more information the concepts and ideas presented in
this application note, the reader is directed to the
following reference materials for further reading.

Order Number Document

292077 AP-341: “Designing an Updateable BIOS Using Flash Memory”

292092 AP-357: “Power Supply Solutions for Flash Memory”

292098 AP-363: “Extended Flash BIOS Concepts for Portable PCs”

292148 AP-604: “Using Intel’s Boot Block Flash Memory Parameter Blocks to
Replace EEPROM”

290406 28F001BX-T/28F001BX-B 1M CMOS Flash Memory Datasheet

290448 28F200BX-T/B, 28F002BX-T/B 2-Mbit Boot Block Flash Memory Family
Datasheet

290531 2-Mbit SmartVoltage Boot Block Flash Memory Familyt

Contact Intel/Distribution
 Sales Office

Plug and Play BIOS Specification v1.0A by Compaq, Phoenix, & Intel,
May 1994

Contact Intel/Distribution
 Sales Office

Extended System Configuration Data Specification v1.02A by Compaq,
Phoenix, & Intel, May 1994

Contact Intel/Distribution
 Sales Office

Plug and Play ISA Specification v1.0A by Microsoft and Intel, May 1994

Contact Intel/Distribution
 Sales Office

Plug and Play BIOS Extensions Design Guide v1.2 by Intel, May 1994

Designing with Flash Memory by Brian Dipert and Markus Levy, 1993 Annabooks Publishers

PC Interrupts by Ralf Brown and Jim Kyle, 1991 Addison-Wesley

 “Transforming the PC: Plug and Play” by Tom Halfhill, September 1994 Byte Magazine

Plug and Play SCSI Specification by Adaptec, DEC, et. al., March 1994

AP-608 E

26

APPENDIX A
PINOUTS, LEAD DESCRIPTIONS AND

BIOS-SPECIFIC INTERRUPTS

28F002BX
40-LEAD TSOP
10 mm x 20 mm

TOP VIEW

32
31
30
29
28
27
26
25
24
23
22
21

33
34
35
36
37
38
39
40

20
19

17
18

1
2
3
4
5
6
7
8
9

10
11
12
13
14

16
15

A1

A2
A3

RP#
WE#

VPP

A16
A15

A7
A6
A5
A4

A14
A13

A8

A9

A11
A12

DU

DQ7

CE#

OE#
GND

A0

DQ6
DQ5
DQ4

DQ2
DQ1
DQ0

VCC

DQ3

A17
GND

NC

A10
NC
NC

NC

VCC

 (WP# for SVT)

2161_08

Figure 8. 40-Lead TSOP 28F002BX Flash Device Pinout

28F200BX
44-Lead PSOP

(0.525" x 1.110")
13.33 mm x 27.94 mm

TOP VIEW

GND

WE#
RP#

BYTE#

A 8
A 9

A 11
A 12
A 13
A 14

A 16

DQ 7
DQ 14
DQ 6
DQ 13

DQ 12

DQ 4
VCC

DQ 5

A 10

A 15

32
31
30
29
28
27
26
25
24
23

33
34
35
36
37
38
39
40
41
42
43
44

CE#

DU

GND
OE#

A 7

A 5

A 6

A 4
A 3
A 2
A 1

A 0

DQ 0
DQ 8
DQ 1
DQ 9
DQ 2
DQ 10
DQ 3
DQ 11 22

21
20
19

17
18

1
2
3
4
5
6
7
8
9

10
11
12
13
14

16
15

VPP

NC

DQ15 -1/A

(WP# for SVT)

2161_09

Figure 9. 44-Lead PSOP 28F002BX Flash Device Pinout

E AP-608

27

Table 3. Definition of 28F002B Pins

Symbol Name and Function

A0–A17 ADDRESS INPUT PINS: Address inputs for memory addresses. Addresses are internally
latched during a write cycle (on the rising edge of the WE# pulse).

A9 ADDRESS INPUT 9: When A9 is at 12V, the signature mode is accessed. In this mode, A0

decodes between the manufacturer and device IDs.

DQ0–DQ7 DATA INPUT/OUTPUT PINS: Inputs array data on the second CE# and WE# cycle during a
program command. Inputs commands to the Command User Interface when CE# and WE#
are active. Data is internally latched during write and program cycles. Outputs array,
intelligent identifier, and status register data. The data pins float to tri-state when the chip is
deselected or outputs are disabled.

CE# CHIP ENABLE: Activates the device’s control logic, input buffers, decoders, and sense
amplifiers. When this active low signal is at logic high, it disables the memory device and
reduces power consumption to standby levels. When CE# is logic low, the memory device is
enabled.

RP# RESET/DEEP POWER-DOWN: When this signal is at logic high, VIH (6.4V max.), it locks the
boot block from program and erase. When RP# is 11.4V min., the boot block is unlocked and
can be programmed or erased. When RP# is at logic low, VIL, the boot block is locked, deep
power-down mode is engaged and the WSM prevents all blocks from being programmed or
erased. When RP# transitions from low to high, the device entered the read-array mode.

OE# OUTPUT ENABLE: Gates the device’s outputs through the data buffers during a read cycle.
This signal is active low.

WE# WRITE ENABLE: Controls writes to the Command Register and array blocks. This signal is
active low. Address and data are latched on the rising edge of WE# pulse.

VPP PROGRAM/ERASE POWER SUPPLY: 12V ± 10%, 12V ± 5%

VCC DEVICE POWER SUPPLY: 5V ± 10%, 5V ± 5%

GND GROUND: Ground for all internal circuitry.

NC NO CONNECT: Pin may be driven or left floating.

DU DO NOT USE PIN: This pin is replaced by the WP# pin on the SmartVoltage products. To
insure upgrade to SVT, connect this pin to VCC, GND, or a control pin as necessary.

AP-608 E

28

Table 4. Full Listing of BIOS-Specific Interrupts

Interrupt Number Function

05 Print Screen

10 Function 00h - 13h: Standard Video Functions

Function 14h - 15h: LCD Functions

Function 1Ah - 1Ch: VGA Functions

Function 30h: 3270PC Function

Function 40h - 4Fh: Hercules VGA Functions

Function 6Ah - 70h: Various VGA Functions

Function 71h - 73h: Tandy 2000 Functions

Function 80h - 82h: DESQview v2.0x Functions

Function BFh: Compaq Notebook Functions

Function CCh - CDh: UltraVision BIOS Functions

Function EFh: Extended Hercules Functions

Function F0h - F7h: EGA RIL Functions

Function FAh: EGA RIL Function

Function FFh: DJ G032.EXE Extender Function

11 Get Equipment List

12 Get Memory Size

15 Function 00h - 03h: Cassette (PC & PCjr) Functions

Function 04h - 05h: PS & PS2 System ABIOS Table

Function 0Fh: PS/2 Format ESDI Drive

Function 20h - 21h: O/S Functions

Function 40h - 44h: System Functions

Function 4Fh: PS/2 Keyboard Intercept

Function 53h: AMIBIOS APM Functions

Function 80h - 89h: O/S & System Functions

Function 90h - 91h: O/S Functions

Function C0h: Get system Configuration

Function C1h - C2h: PS/2 BIOS Functions

Function C3h - C5h: O/S & System Functions

Function C6h - CFh: PS/2 Model 95 Functions

Function D8h: AMIBIOS EISA Support

E AP-608

29

Table 4. Full Listing of BIOS-Specific Interrupts (Continued)

Interrupt Number Function

16 Function 00h - 05h: Keyboard Functions

Function 10h - 12h: Extended Keyboard Functions

Function 12h: AT & PS/2 Extended keyboard Functions

Function F0h - F4h: AMIBIOS CPU & Cache Controller Functions

17 Function 00h - 02h: Printer Functions

18 Start Cassette Basic (Genuine IBM Machines Only)

19 System Bootstrap Loader

1A Function 00h - 0Bh: Real-Time Clock Functions

Function 80h, 83h-90h: AMIBIOS Socket Functions

Function 95h-A1h, AEh: AMIBIOS Socket Function

Function B1h: AMIBIOS PCI Functions

1B Control-Break Handler

1C System Timer Tick

	Title Page
	1.0 INTRODUCTION
	2.0 BENEFITS OF A PnP BOOT
	2.1 The Old BIOS Paradigm
	2.2 Beyond the 128 KB Limit

	Figures
	C3:
	Figure 1. Possible BIOS Segmentations Using Flash Components (1-Mbit or 2-Mbit)
	Figure 2. Plug and Play Software Architecture Components.
	Figure 3. Possible PnP/Non-PnP BIOS ISA Add-In Card Configuration Flow.
	Figure 4. Architectural Organization of 28F002B-T and 28F001B-T Flash Memory Devices
	Figure 5. BIOS Relocation for 2-Mb Boot Block
	Figure 7. Flowchart for Update Algorithm.
	Figure 8. 40-Lead TSOP 28F002BX Flash Device Pinout
	Figure 9. 44-Lead PSOP 28F002BX Flash Device Pinout

	3.0 PLUG AND PLAY
	3.1 PnP Components
	3.2 PnP Functionality
	3.3 Locked Devices & Bitmap

	4.0 INTEL’S BOOT BLOCK:
	5.0 IMPLEMENTING A PNP FLASH
	5.1 Overview of the 2-Mb Boot
	5.2 PnP Boot Block Flash BIOS Implementation (Hardware)
	5.2.1 BIOS BOOT CODE RELOCATION
	5.2.2 VPP GENERATION AND WRITE
	5.2.3 HARDWARE DESIGN EXAMPLE
	5.2.3.2 RP#
	5.2.3.3 WE#
	5.2.3.4 CE#
	5.2.3.5 OE#
	5.2.3.6 Address Inversion for 2-Mb Boot

	5.3 PnP Boot Block Flash BIOS Implementation (Software)
	5.3.1 PROGRAMMING CONSIDERATIONS
	5.3.2 REPROGRAMMING
	5.3.2.1 In-System Write Considerations
	5.3.2.2 Command User Interface

	Table 2. CUI Commands for the 28F200/002B Flash Memory
	Table 3. Definition of 28F002B Pins
	Table 4. Full Listing of BIOS-Specific Interrupts
	6.0 DESIGNING FOR THE FUTURE
	6.1 The 5V-Only Question
	6.1.1

	7.0 SUMMARY
	8.0 ADDITIONAL INFORMATION
	8.1 References

