



# Space Trajectory Analysis (STA)

# An Astrodynamics software suite

By: G. Schouten, Delft University of Technology Guusje.Schouten@gmail.com

# Introduction(1)



- STA stands for "Space Trajectory Analysis"
- The STA project is an educational software project concerned with the development of a software suite able to mimic a portion of the functionalities of the COTS Satellite Tool Kit (STK)
- This new <u>Space Trajectory Analysis</u> (STA) tool shall provide a framework for education in astrodynamics at University level
- The software kit shall support the analysis phase of a space mission, including concept and requirements definition

# Introduction(2)



- STA project is an original idea of the Technical Directorate of ESA (TEC-ECM). It was born in Aug 2005
- Technical University of Delft in Netherlands supports this development by partnershipping with ESA and leading the software development
- STA development is based on open source, state of the art, astrodynamics routines
- One of the main STA requirement is that it shall be compatible with tools used at ESA like MATLAB, ASTOS, DCAP, SCILAB, etc
- STA design and development shall follow ESA standards (ECSS)

# **STA functionalities (1)**



- The ability to simulate for a range of trajectories including:
  - Ascent, Re-entry, Descent and landing trajectories
  - Orbits around planets and moons
  - Interplanetary trajectories
  - Rendezvous trajectories
  - Spacecraft constellations
- The ability to provide calculations in the field of:
  - Spacecraft tracking
  - Attitude analysis
  - Visibility analysis
  - Close-approach analysis
  - Orbit determination
  - Position and velocity of solar system bodies

# **STA functionalities (2)**



- The ability to allow the user to define the problem to be solved using a space scenario consisting of a given group of space "objects" in a given "scenario"
- The ability to show results in 2D, 3D environment containing the scenario elements and the resulting trajectory(ies)
- The ability to show the results to the user in the form of plots and reports and to allow the user to decide on the content and type of these
- The ability to import and export the results of the calculations to 3rd party products, such as MATLAB, ASTOS
- It shall run on Win, MACOSX, Linux

# Celestia as a 3D engine for STA



- Celestia is 3D planetarium software which allows a user to fly among celestial bodies
- Allows a user to travel throughout the solar system, to any of over 100,000 stars, or even beyond the galaxy
- It is able to handle 3D visuals in an efficient manner
- Celestia does not use a space scenario, nor does it handle 2D visuals
- It is open source and supported by an active community for maintenance and upgrades



# **Present Blocks in Celestia**



GUI to control the application Graphical User Interface (GUI) Creation of the 3D Visualization layer solar system Rough computation of "Celestia" core position of all space objects

# **Future Building Blocks: STA**



Graphical User's Interface (GUI)

Plotting layer

3<sup>rd</sup> Products layer

Network communications layer

Astrodynamics core

GUI front-end of the add-ons

Plots including 2D, histograms, 3D, fill, image,...

Link with products like MATLAB, ASTOS, SciLab, GNUplot, Octave, DCAP

Socket communications to de-couple computational parts of the software tool

Math routines to compute from entry to rendezvous and docking, ascent, interplanetary, ...



| Common look-and-feel GUI     |                        |  |
|------------------------------|------------------------|--|
| GUI                          | GUI                    |  |
| Plotting layer               | 3D visualisation layer |  |
| Third products layer         |                        |  |
| Network communications layer | "Celestia" core        |  |
| Astrodynamics core           |                        |  |
| Database layer               |                        |  |

#### **STA building blocks (2)**



- STA 3D graphics engine is based on "Celestia"
- Most elementary astrodynamics building blocks already exist (orbit propagation routines, coverage analysis, analysis modules, etc)
- Interfaces between the already existing pieces need are being developed, and validated
- A graphical User Interface is well underway

### **STA Views**



#### **STA Menu**

STA File Edit Script Calculate Location Direction Time Travel Display Views Favorites History Window Help



**STA Splash Window** 



**STA** application icon

#### STA3D view







# Interplanetary module

An STA module to analyse interplanetary trajectories

# Interplanetary module: Functional Requirements



- It shall be able to simulate interplanetary spacecraft trajectories
- It shall be able to incorporate 6 planetary swing-by's in the simulation of an interplanetary trajectory
- It shall be able to incorporate impulsive and finite spacecraft maneuvers into the interplanetary trajectory simulation
- It shall be able to simulate interplanetary trajectories having as destination:
  - A planet or a planet's moon
  - An asteroid or comet
  - A Lagrange point
- It shall be able to use three methods to solve for the interplanetary trajectory problem, which are:
  - Lambert targeting
  - Numerical propagation
  - Optimisation

# Interplanetary Module: GUI(1)





# Interplanetary Module: GUI(2)





# Interplanetary module: Input



### Input:

| Fly-By                 |                                                                                                                                         |
|------------------------|-----------------------------------------------------------------------------------------------------------------------------------------|
| ☑ FlyBy 1              | ☐ FlyBy 4                                                                                                                               |
| Venus                  | Mercury                                                                                                                                 |
| 4/15/2008 1:00:00 AM   | 1/ 1/2006 1:00:00 AM 🗘                                                                                                                  |
| Periapsis:             | Periapsis:                                                                                                                              |
| ✓ FlyBy 2              | ☐ FlyBy S                                                                                                                               |
| Earth                  | Mercury                                                                                                                                 |
| 4/16/2010 1:00:00 AM 🕏 | 1/ 1/2006 1:00:00 AM 🗘                                                                                                                  |
| Periapsis:             | Periapsis:                                                                                                                              |
| ☐ FlyBy 3              | ☐ FlyBy 6                                                                                                                               |
| Mercury                | Mercury                                                                                                                                 |
| 1/ 1/2006 1:00:00 AM   | 1/ 1/2006 1:00:00 AM 🗘                                                                                                                  |
| Periapsis:             | Periapsis:                                                                                                                              |
|                        | Venus  4/15/2008 1:00:00 AM ♣  Periapsis:  FlyBy 2  Earth  4/16/2010 1:00:00 AM ♣  Periapsis:  FlyBy 3  Mercury  1/ 1/2006 1:00:00 AM ♣ |

# **Interplanetary module: Calculations**



- Ability to calculate conic section between planets using the Lambert targeting technique
  - Calculation of conic section from planet center to planet center in a specified time
- Ability to calculate the required velocity impulse at each of the planets
- Ability to optimise the results using a Genetic algorithm
  - Optimisation wrt required velocity impulse and/or transfer time
  - Optimization work is still in progress...

# Interplanetary module: Output



- Generation of a report containing
  - -Input
  - Keplerian elements of all conic sections
  - Required velocity impulse
  - State vector wrt time
- Generation of a "Celestia" type \*.xyz file to plot the spacecraft trajectory

# **Interplanetary module: Improvements**



- Finish the optimisation routines
- Include multiple revolutions in Lambert routine
- Include finite spacecraft maneuvers
- Include Moon's, asteroids, comets and Lagrange points as targets
- Include Numerical integration technique





# ExoMars Example

# **Mission to Mars**

# Resulting trajectory within Celestia









# **3D View: ExoMars**





#### **Lambert routines validation**



- Compare the calculated state vector with results from COTS like STK or POINT
- Largest error is 14000 km for a conic section
- Error is 0.005% of total chord length between Earth and Mars









# How to proceed?



- Improve the interplanetary module with optimization techniques
- Extend the functionalities of the STA tool to other missions like:
  - Rendezvous
  - Atmopsheric fligth
- Incorporate the concept of space "scenario" within the tool





# Thank you for your attendance:

Any Questions?