
Topological Representations of Vector Fields

Holger Theisel1, Christian Rössl2, and Tino Weinkauf3
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Summary. This chapter gives an overview on topological methods for vector field
processing. After introducing topological features for 2D and 3D vector fields, we
discuss how to extract and use them as visualization tools for complex flow phe-
nomena. We do so both for static and dynamic fields. Finally, we introduce further
applications of topological methods for compressing, simplifying, comparing, and
constructing vector fields.

1 Introduction

Vector fields appear in many areas of science, engineering, and industry. In
recent years, a variety of methods to process, model, analyze and visualize
vector fields have been developed. Similar to other areas of Computer Graph-
ics, a common challenge is the dramatically increasing size and complexity of
the vector fields. One common approach to processing vector fields is feature

extraction [24]. Features represent certain interesting objects or structures in
the vector field like topological features, vortex core lines, or shock waves. The
idea of feature extraction is to detect, extract and track these features and
use them instead of the whole data set for further processing.

Among the feature extraction techniques, topological methods have gained
a rather high popularity because they offer to describe even complex flow
behaviors by only a limited number of graphical primitives. The main idea of
them is to segment the vector field into areas of different flow behavior.

Topological structures are well-studied in the context of dynamical systems
and partial differential equations [1, 3, 10]. However, in recent years they
attracted the Visualization community, leading to a quite intensive research
on how to use them as visualization tools.

In this chapter, we give an overview of topological methods for vector field
processing. The main class of applications we have in mind is the visualization
of flow structures (sections 2–4). In addition, we discuss further applications
of topological methods for vector fields (section 5).



2 Holger Theisel, Christian Rössl, and Tino Weinkauf

2 Topological features of 2D vector fields

2.1 Concepts

To describe topological features of 2D vector fields in detail, we start with a
steady 2D vector field

v(x, y) =

(

u(x, y)
v(x, y)

)

(1)

and assume v to be continuous and differentiable. Then the Jacobian matrix

Jv is a 2×2 matrix which is defined in every point of the domain of the vector
field by

Jv(x, y) = (vx,vy) =

(

ux(x, y) uy(x, y)
vx(x, y) vy(x, y)

)

. (2)

The determinant of Jv is called Jacobian of v.
A point x0 ∈ E2 is called a critical point if v(x0) = (0, 0)T = 0 and

v(x) 6= 0 for any x 6= x0 in a certain neighborhood of x0.
A stream line s(t) of the vector field v is a curve in the domain of v with

ṡ(t) = v(s(t)) (3)

for any t of the domain of s. In (3), ṡ denotes the tangent vector of s. Con-
sidering the vector field v as the velocity field of a steady flow, a stream line
describes the path of a massless particle set out at a certain location in the
flow.

Stream lines do not intersect each other (except for critical points of v).
Given a point in the flow, there is one and only one stream line through it
(except for critical points of v).

Classification of critical points

To classify a critical point in a 2D steady vector field, sectors of different
flow behavior around it have to be considered. Three kinds of sectors can be
distinguished ([7]):

• In a parabolic sector either all stream lines end, or all stream lines originate,
in the critical point. Figure 1a shows an example.

• In a hyperbolic sector all stream lines pass by the critical point, except
for two stream lines being the boundaries of the sector. One of these two
stream lines ends in the critical point while the other one originates in it.
Figure 1b shows an example.

• In an elliptic sector all stream lines originate and end in the critical point.
Figure 1c shows an example.
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Fig. 1. Sectors of a critical point; a) parabolic sector; b) hyperbolic sector; c)
elliptic sector (from [42]).
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Fig. 2. a) general critical point; b) stream line separating two hyperbolic sectors.

A critical point in a 2D vector field is completely classified by specifying
number and order of all sectors around it. Consider figure 2a for an example.
This critical point consists of 7 sectors in the following order: hyperbolic,
elliptic, hyperbolic, elliptic, parabolic, hyperbolic, hyperbolic.

The different sectors are delimited by stream lines originating or ending in
the critical point. Figure 2b shows such a stream line delimiting two hyperbolic
sectors.

Each critical point can be assigned an index:

index = 1 +
ne − nh

2
(4)

where ne is the number of elliptic sectors and nh is the number of hyperbolic
sectors. The index can also be interpreted as the number of counterclockwise
revolutions made by the vectors of v while travelling counterclockwise on a
closed curve around the critical point (the closed curve must be so tight to
the critical point that no other critical point is inside it).

The index can be considered as an overview of the complexity of a critical
point but does not cover the complete classification: there are critical points
with different sectors but the same index. An further introduction to the
classification of 2D critical points and their indices can be found in [7].
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A critical point x0 in the vector field v is called a first-order critical point if
the Jacobian does not vanish in x0; otherwise the critical point is called high-

order critical point. As shown in [13] and [14], the classification of critical
points x0 = (x0, y0) in the vector field v simplifies if x0 is a first order critical
point. In this case a first order Taylor expansion

vT1,x0
=

(

ux(x0) uy(x0)
vx(x0) vy(x0)

)

·

(

x − x0

y − y0

)

(5)

of the flow around x0 is sufficient to obtain the complete classification of it.
(5) ensures that

Jv(x0) = JvT1,x0
(x0). (6)

It turns out that for det(Jv(x0)) < 0, the critical point x0 consists of 4
hyperbolic sectors and therefore has an index of -1. A critical point of this
classification is called a saddle point. In this case the eigenvectors of Jv(x0)
denote the delimiters of the hyperbolic areas around x0. For det(Jv(x0)) > 0,
the critical point x0 consists of one parabolic sector and therefore has an index
of +1.

This classification of a first order critical point x0 with an index of +1
can be refined by considering the eigenvalues of Jv(x0). Let R1, R2 be the
real parts of the eigenvalues of Jv(x0), and let I1, I2 be the imaginary parts
of the eigenvalues of Jv(x0). Then the refined classification following [13] is
shown in figure 3. Note that positive real parts denote a repelling behavior of
the flow while negative real parts indicate an attracting behavior. Non-zero
imaginary parts denote a circulating behavior of the flow. [23] detects and

Fig. 3. Classification of first order critical points; R1, R2 denote the real parts of
the eigenvalues of the Jacobian matrix while I1, I2 denotes its imaginary parts (from
[13]).

classifies critical points using a discrete Hodge decomposition.

Boundary switch points

Vector fields are usually defined over a limited domain. Along its boundary
curves, the vector field has either an inflow or an outflow behavior. Boundary
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switch points separate these areas. A boundary switch point is a point on the
boundary curve with the property that the tangent of the boundary curve is
parallel to the vector of the field there. Two kinds of boundary switch points
can be distinguished: inbound or outbound points. At an inbound point, the
stream line starting there in forward and backward direction goes into the
domain of v, while for an outbound point it leaves the domain immediately.
Figure 4 (a) and (b) give an illustration.

A1

(a) (b) (c) (d)

A2

A3

Fig. 4. (a) inbound boundary switch point; (b) outbound boundary switch point;
(c) separatrix from inbound boundary switch points divides the domain into 3 sectors
A1, A2, A3; (d) an isolated closed stream line divides the domain into 2 sectors.

Separatrices

Separatrices are stream lines which divide the domain of v into areas of dif-
ferent flow behavior. Different types of separatrices are possible:

• Each tangent curve originating/ ending in the critical point and separating
two sectors there is a separatrix. Figure 2b illustrates a separatrix which
separates two hyperbolic sectors of a critical point.

• Stream lines from inbound boundary switch points divide the domain into
3 different areas. Figure 4(c) gives an illustration.

• Isolated closed stream lines are separatrices. Figure 4(d) gives an illustra-
tion.

2.2 Visualizing 2D topology

After the introduction of topological methods as a visualization tool for 2D
vector fields in [13], an intensive research has been done in this field. [26] treats
higher order critical points. In [5], separatrices starting from boundary switch
points are discussed. [46] and [37] give methods to detect closed separatrices.
To visualize the topology of a 2D vector field, critical points, boundary switch
points, and separatrices have to be extracted. Critical points can be extracted
directly (in case of a piecewise (bi-)linear vector field) or numerically. Also,
boundary switch points can be found by a closed solution.

Most visualization approaches consider only first order critical points.
Then the starting directions of the separatrices are the eigendirections of the
Jacobian matrices at the saddle points.
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For integrating stream lines (for instance separatrices), usually numerical
methods are applied4. Standard is a fourth order Runge-Kutta integration
[27]. Figure 5 shows an example of a topological skeleton of a 2D vector field

Fig. 5. Topological skeleton of the skin friction data set.

describing the skin friction on a face of a cylinder5.
Isolated closed stream lines can only be extracted and visualized by a

global analysis of the vector field. [46] uses the underlying grid structure of
a piecewise linear vector field: each grid cell is analyzed concerning the re-
entering behavior of the stream lines starting at its boundaries. [37] presents
an approach which uses the fact that searching isolated stream lines in 2D
vector fields corresponds to intersecting stream surfaces in certain 3D vector
fields. Figure 6 gives an illustration.

(b)(a)

Fig. 6. (a) detected closed stream lines in a 2D vector field; (b) to get them, certain
stream surfaces of a 3D vector field are integrated and intersected (from [37]).

4 Only for piecewise linear vector fields, a closed solution exists [21].
5 The data set was generated by R.W.C.P. Verstappen and A.E.P. Veldman of the

University of Groningen (the Netherlands).
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3 Topological Features of 3D Vector Fields

3.1 Concepts

Topological structures of 3D vector fields are well-understood in the visual-
ization community for many years [14, 2, 4, 22]. In this section, we collect the
most important concepts and properties.

Critical points

Given a 3D vector field v : IE3 → IR3, a first order critical point x0 (i.e., a
point x0 with v(x0) = 0 and det(Jv(x0)) 6= 0, where Jv(x) = ∇v(x) is the
Jacobian matrix of v, can be classified by an eigenvalue/eigenvector analysis
of Jv(x0). Let λ1, λ2, λ3 be the eigenvalues of Jv(x0) ordered according to
their real parts, i.e. Re(λ1) ≤ Re(λ2) ≤ Re(λ3). Furthermore, let e1, e2, e3

be the corresponding eigenvectors, and let f1, f2, f3 be the eigenvectors of the
transposed Jacobian (Jv(x0))

T corresponding to λ1, λ2, λ3. (Note that J and
JT have the same eigenvalues but not necessarily the same eigenvectors.)
Concerning the real parts of the eigenvalues, the following classification of
critical points is possible:

• sources: 0 < Re(λ1) ≤ Re(λ2) ≤ Re(λ3)
• repelling saddles: Re(λ1) < 0 < Re(λ2) ≤ Re(λ3)
• attracting saddles: Re(λ1) ≤ Re(λ2) < 0 < Re(λ3)
• sinks: Re(λ1) ≤ Re(λ2) ≤ Re(λ3) < 0

Each of these classes can be further divided into two stable6 subclasses by
deciding if imaginary parts in the eigenvalues are present. Since vector fields
usually consist of a finite number of critical points, an iconic representation
is the appropriate visualization approach. Several icons have been proposed
in the literature, see [14, 9, 19, 11]. In the following we describe the differ-
ent classes of critical points as well as the icons which were used in [36, 43]
for their visual representation. These icons were colored depending on the
flow behavior: Attracting parts (inflow) are colored blue, while repelling parts
(outflow) are colored red.

Sources and Sinks

A source xSo is characterized by the fact that in its neighborhood all stream
lines diverge from xSo. The two stable subclasses are repelling nodes and
repelling foci.

A repelling node is characterized by the absence of imaginary parts in
λ1, λ2, λ3, and e1, e2, e3 are linearly independent (Figure 7a). To visualize a

6 A critical point in v is called stable if a small perturbation of v does not change
the classification of the critical point.
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Fig. 7. Sources and sinks; (a) repelling node and (b) its icon; (c) repelling focus
and (d) its icon; (e) attracting node and (f) its icon; (g) attracting focus and (h) its
icon (from [43]).

repelling node, we use a red ellipsoid with a shape determined by the eigen-
vectors and eigenvalues of the Jacobian (Figure 7b).

A repelling focus is characterized by the presence of two eigenvalues with
imaginary parts, say λ2, λ3. In this case, the only real eigenvector e1 of J

describes the direction of straight outflow. In addition, there is a plane in
which a 2D repelling focus behavior appears. This plane is perpendicular to
the only real eigenvector f1 of JT (Figure 7c). As an icon, we used a red
double cone representing the outflow plane and the outflow direction by its
shape (Figure 7d).

A sink xSi can be considered as an inverse source: in its neighborhood all
stream lines converge to xSi. The two subcases are attracting nodes (Figures
7e-f) and attracting foci (Figures 7g-h).

Repelling Saddles and Attracting Saddles

A repelling saddle xR has one direction of inflow behavior (called inflow di-

rection) and a plane in which a 2D outflow behavior occurs (called outflow

plane through xR). For all other directions around xR, the stream lines do not
touch xR. The two stable subclasses are repelling node saddles and repelling
focus saddles.

A repelling node saddle has no imaginary parts in λ1, λ2, λ3, and e1, e2, e3

are linearly independent (Figure 8a). Its icon includes a red ellipse denoting
the outflow plane defined by e2, e3 and λ2, λ3, while a blue arrow pointing to
the center of the ellipse represents the inflow direction (Figure 8b).

A repelling focus saddle is characterized by Im(λ2) = −Im(λ3) 6= 0. Here,
the only real eigenvector e1 of J describes the inflow direction. The only real
eigenvector f1 of JT describes the plane with the 2D repelling focus behavior
(Figures 8c-d).
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An attracting saddle xA can be interpreted as an inverse version of a
repelling saddle. It has one direction of outflow behavior (outflow direction)
and a plane in which a 2D inflow behavior appears (inflow plane through xA).
The two stable subclasses are attracting node saddles without imaginary parts
of the eigenvalues (Figures 8e-f) and attracting focus saddles (Figures 8g-h).

e1 e1

f1

a) b)

e2

e3

b) c) d)

e1

e3

f3

e)

e2

e3
f) g) h)

Fig. 8. Repelling and attracting saddles; (a) repelling node saddle and (b) its icon;
(c) repelling focus saddle and (d) its icon; (e) attracting node saddle and (f) its icon;
(g) attracting focus saddle and (h) its icon (from [43]).

Unstable Critical Points

In addition to the kinds of critical points described above, a number of un-
stable versions of sources, sinks and repelling/attracting saddles exist. Also,
two further classes of unstable critical points exist which do not belong to
any of the above-mentioned classes: attracting centers and repelling centers.
A repelling center is characterized by Re(λ1) = Re(λ2) = 0 < Re(λ3) and
Im(λ1) = −Im(λ2) 6= 0. It consists of one direction e3 of outflow behavior
and one plane perpendicular to f3 with a 2D circulating behavior. An attract-
ing center has Re(λ1) < 0 = Re(λ2) = Re(λ3) and Im(λ2) = −Im(λ3) 6= 0.
The inflow direction is defined by e1 and the 2D circulating behavior can be
found in the plane perpendicular to f1.

Boundary switch curves

Consider the 3D vector field v in the domain

D = (xmin, xmax) × (ymin, ymax) × (zmin, zmax) (7)

with xmin < xmax, ymin < ymax, zmin < zmax. The boundary surfaces of
D (which are the 6 faces of the bounding box) consist of outflow and inflow
areas which are separated by boundary switch curves. Boundary switch curves
consist of all points on the boundary where the flow direction is tangential to
the boundary surface. Figure 9(a) illustrates an example of the boundary plane



10 Holger Theisel, Christian Rössl, and Tino Weinkauf

(a)

(b)

(c)

Fig. 9. (a) boundary plane z = zmin consisting of an inflow area (blue), an outflow
area (red), and their separating boundary switch curve; shown are 4 vectors of v

on the boundary switch curve, and one each in the inflow and outflow area; (b)
inbound point p0 on a boundary switch curve: v(p0) points into the inflow area,
v̇(p0) points inside D; shown is a part of the stream line starting in p0 both in
forward and backward integration; (c) outbound point p0 on a boundary switch
curve; v(p0) points into the outflow area, v̇(p0) points outside D; shown is a stream
line close to p0 starting in the inflow area and leaving D in the outflow area.

z = zmin consisting of one inflow and one outflow area. (In the following we
illustrate the concept of boundary switch curves only on the boundary plane
z = zmin. Similar statements hold for the 5 remaining boundary planes of D.)

Given a point p0 on a boundary switch curve, two cases are possible con-
cerning the stream line starting at p0:

• Starting from p0, the stream line integration moves inside D for both
backward and forward integration. We call this point an inbound point on
the boundary switch curve (Figure 9(b)).

• Starting from p0, the stream line integration moves outside D for both
backward and forward integration. Therefore, this stream line in D consists
only of p0 itself. We call this point an outbound point (Figure 9(c)).

Separatrices

Separatrices are curves or surfaces which separate regions of different flow be-
havior. Since around sources and sinks a homogeneous flow behavior is present
(either a complete outflow or inflow), sources and sinks do not contribute to
separatrices. A repelling saddle xR creates two separatrices: one separation
curve (which is a stream line starting in xR in the inflow direction by back-
ward integration) and a separation surface (which is a stream surface starting
in the outflow plane by forward integration). Separatrices are also emanating
from inbound segments of boundary switch curves.
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(a) (b) (c)

Fig. 10. Topological representations of the benzene data set with 184 critical
points; (a) iconic representation; (b) separation surfaces starting from saddles; (c)
separation surfaces starting from saddles and boundary switch curves (from [36, 43]).

Figure 10 shows the topological visualization of a data set describing the
electrostatic field of a Benzene molecule7. Figure 10(a) shows the iconic repre-
sentation of all 184 critical points. Figure 10(b) shows the critical points and
the separation surfaces starting from the saddles, while figure 10(c) addition-
ally shows the separatrices emanating from boundary switch curves.

Saddle- and boundary switch connectors

A saddle connector is the intersection curve between a separation surface
starting from an attracting saddle and a separation surface starting from a
repelling saddle. Figure 11(a),(b) give an illustration.

(a) (b) (c)

Fig. 11. (a) separation surfaces of two saddles; (b) the intersection of the separa-
tion surfaces is the saddle connector; (c) finding the intersection of two separation
surfaces one comes from a saddle, while the other one comes from a boundary switch
curve (from [36, 43]).

Boundary switch connectors are the intersection curves of separation sur-
faces starting from saddles or boundary switch curves. Figure 11(c) illustrates
this. Concerning the different kinds of separation surfaces, 4 kinds of boundary
switch connectors are possible. They are shown in figure 12

7 This data set was calculated on a 1013 regular grid using the fractional charges
method described in [28].
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Fig. 12. Cases of intersection curves of separation surfaces: a) saddle connectors;
b)-e) boundary switch connectors (from [43]).

3.2 Visualizing 3D topology

Given a 3D vector field v, the critical points can be extracted directly (if
v is piecewise linear) or numerically. Then the classification is done by an
eigenvalue/eigenvector analysis of the Jacobian matrix.

Stream surfaces are obtained by a numerical stream surface integration [15,
25]. A standard approach is a 4th order Runge-Kutta integration. The result
is a triangular mesh representing the stream surface which can be represented
in a semitransparent way (figures 10(b),(c)).

Saddle connectors can serve as a visual alternative to visualizing separa-
tion surfaces since they tend to hide themselves and other features and thus
produce cluttered visual representations (figures 10(b),(c)). In order to extract
saddle connectors, stream surfaces have to be intersected. To do so, the front
of the evolving stream surfaces are observed for intersection. Figure 13 gives
an illustration. Boundary switch connectors are extracted in a similar way.

Example:

Figures 14a–d visualize a snapshot of a transitional wake behind a circular
cylinder [48]. This flow exhibits periodic vortex shedding leading to the well
known von Kármán vortex street. This phenomenon plays an important role
in many industrial applications, like mixing in heat exchangers or mass flow
measurements with vortex counters. However, this vortex shedding can lead
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(a)

(b)

(c) (d)

Fig. 13. Extracting a saddle connector: (a) simultaneously observe fronts of evolv-
ing stream surfaces; (b) stream line integration from intersection point gives saddle
connector; (c) closeup shortly before intersection is found; (d) intersection is found
(from [36]).

to undesirable periodic forces on obstacles, like chimneys, buildings, bridges
and submarine towers.

This data set was derived from a direct numerical simulation of the Navier-
Stokes equation by Gerd Mutschke [20]. The data resolves the so-called ‘mode
A’ of the 3D transition at a Reynolds number of 200 and at a spanwise wave-
length of 4 diameters. The figures display a small near-wake region of a large
computational domain. All 13 critical points are contained in the shown do-
main and on its boundaries 13 boundary switch curves are observed. Together
they span the topological skeleton of the incompressible velocity field.

The inspection of figure 14a suggests a high amount of circulating flow
behavior in the data set, but due to the occlusion effects introduced by the
separation surfaces neither the flow behavior on the boundaries nor the critical
points can be seen easily. This complicates further examinations to a high
degree.

The simplified topological skeletons shown in Figures 14b–d enable to re-
duce this high-dimensional data set to a simple conceptual flow representation
from which qualitative conclusions can be drawn. Using connectors, the skele-
ton elucidates the symmetry of the mode A with respect to a plane which is
perpendicular to the cylinder axis. The high number of spanwise and trans-
verse running connectors of a single snapshot already indicate the experimen-
tally observed good mixing properties of vortex shedding.

4 Topological features of time-dependent vector fields

Up to now we treated the topology of steady (time-independent) vector
fields by segmenting areas of similar behavior of the stream lines. For time-
dependent vector fields, there are two important classes of characteristic
curves: stream lines and path lines. Hence, two different kinds of topologies
can be obtained: a stream line and a path line oriented topology. We explain
both concepts for 2D time-dependent vector fields and mention that – except
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(c)

(a) (b)

(d)

Fig. 14. Flow behind a circular cylinder: (a) separation surfaces emanating
from boundary switch curves and saddles; (b) boundary switch connectors between
boundary switch curves; (c) boundary switch connectors between saddle points and
boundary switch curves; (d) saddle connectors and both types of boundary switch
connectors (from [43]).

for some special configurations [8] – the topology of 3D time-dependent vector
field is rather unsolved.

Given a 2D time-dependent vector field

v(x, y, t) =

(

u(x, y, t)
v(x, y, t)

)

, (8)

where (x, y) describe the 2D domain and t is the temporal component, stream
and path lines are generally different classes of curves. Stream lines are the
tangent curves of v for a fixed time t, while path lines describe the paths of
massless particles in v over time. To capture both types of lines, we define
two 3D vector fields and consider their topological behavior.

To treat stream lines and path lines of v, we consider

s(x, y, t) =





u(x, y, t)
v(x, y, t)

0



 , p(x, y, t) =





u(x, y, t)
v(x, y, t)

1



 . (9)

Both s and p can be seen as a steady 3D vector field. The stream lines of
s coincide with the stream lines of v, since any integration step in s keeps
the time component unchanged. Any (x, y)-slice through s represents v at a
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constant time. The stream lines of p coincide with the path lines of v: given
a starting point (x0, t0), one step of a simple Euler approximation of p would
be

(

x1

t1

)

=

(

x0

t0

)

+ d p(x0, t0) =

(

x0 + d v(x0, t0)
t0 + d

)

(10)

which does not only change the location but also goes forward in time.8 Figure
15 illustrates s and p for a simple example vector field v. Note that in all

(a) (b)

Fig. 15. Characteristic curves of a simple 2D time-dependent vector field shown
as illuminated field lines: Stream lines of s correspond to the stream lines in v; (b)
stream lines of p correspond to the path lines in v.

figures throughout this section the coordinate system is shown as follows:
red/green coordinate axes denote the (x, y)-domain, the blue axis shows the
time component.

Now the problem of finding a stream line and path line oriented topology
is simply reduced to finding the topological skeletons of s and p respectively.
Unfortunately, neither for s nor for p the classical vector field topology ex-
traction techniques for 3D vector fields are applicable: s consists of critical
lines while p does not have any critical points at all.

4.1 Stream line oriented topology

Stream line oriented topology is well-understood in the visualization commu-
nity ([14], [1], [3]). In addition to track the topological features over time,

8 For the actual integration one may use a fourth-order Runge-Kutta method.
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bifurcations have to be extracted. Bifurcations are the events of structural
changes of the flow behavior at a certain time. We can distinguish between
local and global bifurcations depending on whether a local or a global analysis
is necessary to extract them.

Tracking critical points

Critical points are important topological features of steady vector fields.
Tracking their location over time is necessary for capturing the topological
behavior of v. This is equivalent to extracting the zero lines of s, where all
points on these lines are zero points of v at a certain time. To do so, one can
either extract and connect the zeros on the faces of an underlying prism cell
grid ([41]), or a feature flow field integration from a start zero point of s is
applied. The feature flow field for tracking critical points is a 3D vector field f

which points into the direction where all components of s remain unchanged.
[34] shows that

f(x, y, t) =





det(vy,vt)
det(vt,vx)
det(vx,vy)



 . (11)

Starting a stream line integration of f from a point x0 with s(x0) = (0, 0, 0)T ,
all points x on this stream line fulfill s(x) = (0, 0, 0)T as well.

To extract all critical lines of s, an appropriate number of starting points is
needed. We get them by considering all critical points at the boundaries of the
domain of s (which can easily be obtained as critical points of 2D vector fields)
and by additionally considering all fold bifurcations of v. A fold bifurcation
appears if at a certain time t a critical point appears, and in the same moment
splits up to a saddle and source/sink/center.9 Fold bifurcations can be found as
the zeros of the following system of equations: [u = 0, v = 0, det(vx,vy) = 0]
which can be solved numerically.

Another important class of local bifurcations are Hopf bifurcations denot-
ing locations where a sink becomes a source or vice versa. Thus, this denotes
the location of a center, i.e. a critical point with a vanishing divergence and a
positive Jacobian. Hopf bifurcations can be extracted similar to fold bifurca-
tions by numerically solving the system [u = 0, v = 0, div(v) = ux + vy = 0]
for (x, y, t) and selecting all isolated solutions with positive Jacobian.

Another part of the topological skeleton of v are the separation curves
starting from saddle points. It is a well-known fact that a saddle of a 2D
vector field creates 4 separation curves by starting the integration into the
directions of the eigenvectors of the Jacobian matrix. While the saddle moves
over time in v, their swept surfaces form 4 stream surfaces dividing s into areas
of different flow behavior. Figure 16(a),(b) gives an illustration of a simple vec-
tor field containing all topological feature mentioned above. In this figure (as

9 Or the other way around: a saddle and a source/sink/center collapse and disap-
pear.
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(a) (b)

(c) (d)

Fig. 16. (a),(b) topological visualization of a simple 2D time-dependent vector
field consisting of sink, source, saddle, fold and Hopf bifurcation - one of each type:
(a) critical lines of s, LIC plane through Hopf bifurcation; (b) separation surfaces
created by the moving saddle. (c),(d) Extracting saddle connections: (c) separation
surfaces starting from critical lines of s; (d) saddle connection as the intersection of
these surfaces (from [38]).

well as in the following figures) we use the following color coding: the critical
lines of s are color coded according to the inflow/outflow behavior of the rep-
resented critical points in v: a red/blue/green/yellow line segment represents
a source/sink/center/saddle critical point respectively. The same color coding
is used for particular critical points which are visualized as small spheres. This
means that a Hopf bifurcation is shown as a small green sphere. Furthermore,
fold bifurcations are shown as gray sphere, while particular stream lines of
s are shown as gray lines. For integrated separation surfaces we color code
according to the integration direction as red (forward integration) or blue
(backward integration) surfaces.

Saddle connections

Saddle connections are global bifurcations which appear when two separatrices
starting from saddle points collapse, i.e. when a separatrix of one saddle ends
in another saddle. To extract them, we modify the idea of saddle connectors
of 3D vector fields [36]: instead of starting the integration of one separation
surface at each saddle of a 3D vector field, we start in the critical lines of s

which represent a moving saddle. In fact, we start four stream surface integra-
tions10 at the critical lines of s into the directions of the eigenvectors of the

10 Two forwards and two backwards.
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Jacobian matrix. The rest of the algorithm is similar to saddle connectors [36]
and yields all saddle connections in v. Figure 16(c),(d) give an illustration.

A special case of saddle connections is the so-called periodic blue sky bifur-

cation ([1]) where two separatrices of the same saddle collapse. The algorithm
described above to extract saddle connections automatically extracts these
bifurcations as well. Figure 17 illustrates this.

(a) (b)

(c) (d)

Fig. 17. Periodic blue sky bifurcation: (a) critical lines of s and two LIC planes; (b)
separation surfaces shortly after their intersection; (c) two separation curves of the
same saddle collapse; (d) tracked closed stream line starting from Hopf bifurcation.
(from [38])

Tracking closed stream lines

Closed stream lines are global topological features which evolve over time in
v. Doing so, several bifurcations can occur: a closed stream line may appear
or disappear, or two closed stream lines may collapse and disappear. The last
case is called cyclic fold bifurcation.

To track isolated closed stream lines, an extraction in different time slices
and subsequent linking was demonstrated in [47]. [38] presents a solution based
on feature flow fields which works on space-time and can detect cyclic fold
bifurcations as well. Figure 17(d) given an illustration.

4.2 Path line oriented topology

Considering a path line oriented topology for visualization purposes is a rel-
atively new research area. Constructing a path line oriented topology means
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to consider the stream lines of p and segment p into regions of different flow
behavior of them. [38] introduces an approach which does the segmentation
based on local path line properties. This way the domain segmented into areas
where the path lines have attracting, repelling, or saddle like behavior.

4.3 An Example:

Figure 18 shows the visualization of a vector field describing the flow over a 2D
cavity11. 1000 time steps have been simulated using the compressible Navier-
Stokes equations; it exhibits a non-zero divergence inside the cavity, while
outside the cavity the flow tends to have a quasi-divergence-free behavior.
Figure 18 shows approximately one period, 100 time steps, of the full data
set. Figures 18 both reveal the overall movement of the topological structures,
the most dominating ones originating in or near the boundaries of the cavity
itself. The quasi-divergence-free behavior outside the cavity is confirmed by
the fact that a high number of Hopf bifurcations has been found in this area.

(a) (b)

Fig. 18. 2D time-dependent flow at a cavity: (a) stream line oriented topology of
the first 100 time steps; (b) path line oriented topology of the first 100 time steps
(from [38]).

5 Further applications of topological features

Topological features of vector fields have not only proved to be a valuable visu-
alization tool, they can also be used for other task in processing vector fields.

11 This data set was kindly provided by Mo Samimy and Edgar Caraballo (both
Ohio State University) [30] as well as Bernd R. Noack and Ivanka Pelivan (both
TU Berlin).
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Here we introduce approaches to compress, simplify, compare, and construct
vector fields based on topological methods.

5.1 Compressing vector fields

Flow data sets (i.e., vector fields) tend to be large and complex. This fact has
motivated an intensive research in simplifying and compressing vector fields.
For both challenges, topological concepts have been applied. Compression
techniques for vector fields are motivated by the necessity of transmitting
large flow data sets over networks with low bandwidth, or by the goal to
produce visualizations of the data in low-end machines with a small main
memory. For these cases the consideration of compressed vector fields makes
the process of visual analysis of the flow data more efficient and is sometimes
the only way to process the data in reasonable time rates at all.

The main idea of a (lossy) data compression is to reduce the amount of
data while keeping the important structures. Since generally the topological
skeleton is known to give a compact description of the global flow behavior,
topology preserving compression techniques are an obvious approach. Lodha
et al. [18, 17] introduce a compression technique for 2D vector fields which
prohibits strong changes of location and Jacobian matrix of the critical points.

Theisel et al. [32] introduce an approach which guarantees that the topol-
ogy of original and compressed vector field coincides both for critical points
and for the connectivity of the separatrices. It is shown that even under
these strong conditions high compression ratios for vector fields with com-
plex topologies are achieved. The method works on a piecewise linear vector
field over a triangulation. The vector field is interpreted as a piecewise tri-
angular mesh. Then a standard mesh reduction algorithm can be adapted to
this specific problem, i.e. the compression is achieved by iteratively applying
half-edge collapses. Before a half-edge collapse is carried out, it is checked that
it does not change the global topology of the vector field. As the theoretical
foundation of the algorithm in [32], it is shown that for local modifications of
a vector field, it is possible to decide entirely by a local analysis whether or
not the global topology is preserved.

Figure 19 shows the application of the compression algorithm to a data
set of a complex topology. Figure 19(a) shows the underlying triangular grid
of the data set consisting of 12,726 triangles. Figure 19(c) shows the topo-
logical skeleton consisting of 338 critical points, 34 boundary switch points,
and 714 separatrices. Figure 19(b) shows the underlying triangular grid after
applying the compression algorithm. This grid contains of 2,153 triangles. The
topological skeleton of the compressed vector field is shown in figure 19(d).

5.2 Topological simplification of vector fields

The topological skeleton of a vector field may be very complex due to the
presence of noise. In this case, unimportant topological features have to be
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a)

b)

c)

d)

Fig. 19. (a) piecewise triangular domain of the original data set; (b) piecewise
triangular domain of the compressed data set; (c) topological skeleton of original
data set; (d) topological skeleton of compressed data set (from [32]).

removed. This is done by a topological simplification. The simplest way to do
so is to apply a smoothing of the vector field before extracting the topology
([6]). More involved techniques start with the original topological skeleton and
repeatedly apply local modifications of the skeleton and/or the underlying
vector field in order to remove unimportant critical points. They are based on
the index theorem for vector fields which ensures that the sum of the indices
of the critical points remains constant in the modified area. (See [7] or another
textbook on vector analysis for an introduction of the index of critical points
and the index theorem.)
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De Leeuw and van Liere [5] denote the importance of a critical point
(source or sink) by computing the area from which the flow ends in forward
or backward integration. Based on this area metric, the unimportant critical
points are repeatedly collapsed to more important critical points in the neigh-
borhood. [6] finds couples of first order critical points by considering distance
and connectivity of them. Then the unimportant critical points are pairwise
removed. Tricoche et al. [40] use a similar approach but provide a way of
consistently updating the underlying vector field.

Theisel et al. [31] solve the coupling problem of critical points by a feature
flow field approach. This gives not only the couples of critical points but
also provides them and the separatrices with an importance weight. Then
topological features with an importance below a certain threshold can be
removed. Figure 20 gives an illustration.

Tricoche et al. [39] present another approach to simplifying the topology
of 2D vector fields by replacing clusters of first order critical points with a
higher order critical point. Weinkauf et al. [45] extend this to 3D vector fields.
Figure 21 illustrates this.

5.3 Topological comparison of vector fields

To deal with the increasing size and complexity of the vector fields, a num-
ber of reconstruction, compression and simplification techniques have been
introduced. All these techniques rely on certain distance measures between
vector fields: the original and the derived vector field have to be compared to
guarantee a sufficient similarity between them. Hence the definition of useful
metrics on vector fields plays a crucial role in the applications above. The
first approaches on metrics (distance measures) of vector fields consider local
deviations of direction and magnitude of the flow vectors in a certain number
of sample points ([12], [29]). These distance functions give a fast comparison
of the vector field but do not take any structural information of the vector
fields into consideration.

A first approach to define a topology based distance function was given
in [16]. Given two vector fields v1 and v2, all critical points are extracted
and coupled. Then the distance of the vector fields is obtained as sum of the
distances of the corresponding critical points in v1 and v2. To compute the
distance between two critical points, a number approaches exist [16, 35]. To
couple the points, [33] proposes to use feature flow fields: a time-dependent
vector field v = (1− t)v1 + tv2 is constructed in which the critical points are
tracked by a stream line integration of (11).

We demonstrate the application of topological comparison on a real data
set. Figure 22(a) shows the visualization of a 2D flow in a bay area of the
Baltic Sea near Greifswald, Germany (Greifswalder Bodden) at two different
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Fig. 20. Important topological features for different thresholds w0; the image upper
left (w0 = 0) shows the complete topological skeleton. (from [31]).

time steps12. The data set can be considered as a collection of 25 vector fields
v0, ...,v24. To evaluate the temporal behavior of the topology, the topological
distance of each time step with all other time steps is computed. As an ex-
ample, figure 22(a) illustrates the computation of the distance of the vector
fields v5 and v10. Shown are the topological skeletons of v5 and v10 as well
as the integration of the stream lines of the feature flow field starting in the

12 This data set was obtained by a numerical simulation on a regular 115× 103 grid
at 25 time steps. It was created by the Department of Mathematics, University
of Rostock (Germany).
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(a) (b)

Fig. 21. Topological representations of the electrostatic field of the Benzene
molecule: (a) 184 first order critical points. The box around the molecule represents
the chosen area for topological simplification. (b) Topologically simplified represen-
tation with one higher order critical point elucidates the far field behavior of the
benzene (from [45]).

critical point. We can see that most of the points find their partners in the
other vector field. Figures 22(b),(c) show magnifications of figure 22(a). Figure
22(d) shows the color coded distance matrix of all vector fields v0, ...,v24. The
distance varied between 0 and a maximal value of 104.5 (which was detected
between v3 and v24). The distance was linearly color coded in such a way
that a zero distance corresponds to black while the maximal distance corre-
sponds to white. Figure 22(d) shows that the distance matrix is symmetric
and with a zero main diagonal. The most important observation which can
be made from figure 22(d) is that the distance of two vector fields vi and vj

is approximately proportional to the distance ‖i− j‖ of the time indices. This
means that the rate of change of the topology is approximately linear over
time. This result is particularly interesting if the number of critical points in
the vector fields v0, ...,v24 is considered. They are (in this order) 65, 71, 71,
68, 65, 71, 63, 62, 66, 64, 65, 63, 70, 70, 51, 61, 52, 50, 56, 52, 63, 62, 72, 65.
This shows that there is no correlation between the number of critical points
and the topological distance: both v0 and v24 have the same number 65 of
critical points but a maximal topological distance.

(a) (b) (c) (d)

Fig. 22. (a) coupling the critical points of the v5 and v10 of the bay data set by
integrating the stream lines of f ; (b),(c): magnifications of (a); (d) distance matrix
between v0, ..., v24 (from [33]).
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5.4 Constructing vector fields

The vector fields considered in flow visualization are usually obtained by a
simulation or measurement process. Nevertheless they can also be obtained by
construction. Applications of this approach are vector fields used for pattern
matching, optimizing flow, education and testing new visualization techniques.

The approach of constructing vector fields is strongly related to the ideas
of constructing curves and surfaces in the context of CAGD (Computer Aided
Geometric Design). There the curves/surfaces are designed by creating a skele-
ton of control polygons (for instance Bezier- or B-spline polygons). This skele-
ton contains the relevant information of the curve/surface in an intuitive way.
[30] presents an approach to transform the CAGD methods to the construc-
tion of 2D vector fields. To do so, first the topological skeleton of a vector field
is constructed by a number of control polygons. As a second step, a piecewise
linear vector field of exactly the specified topology is automatically created.
Figure 23 gives an example.

a) c)b) d)

Fig. 23. Constructing a 2D vector field; a) topological skeleton of a vector field
containing a number of higher order critical points; b) piecewise linear vector field
describing the constructed topological features, i.e. the critical points and separa-
trices; c) complete piecewise linear vector field; d) curvature plot (from [30]).

An approach to constructing 3D vector fields is presented in [44]. There,
the skeleton is modeled by interactively moving a number of control polygons
determining location and characterization of the (first or higher order) crit-
ical points and the saddle connectors. Then a piecewise linear vector field is
automatically constructed which has the same topological skeleton as mod-
eled before. This approach is based on a complete segmentation of the areas
around critical points into sectors of different flow behavior. Based on this,
an approach to visualizing higher order critical points of 3D vector fields is
presented.

Figure 24(a) shows a modeled topological skeleton consisting of 6 critical
points and 8 connectors. Each of the critical points consists of two hyper-
bolic sectors and is actually a first order saddle point. Each of the connectors
was defined by specifying start and end point and omitting any intermedi-
ate points. Thus, each connector consists of one cubic segment. Figure 24(b)
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shows the result of the tetrahedrization of the critical points and the con-
nectors. In this figure we can clearly see that each connector is constructed
in one tetrahedron. Figure 24(c) shows the complete tetrahedrization of the
piecewise linear vector field consisting of 256 tetrahedra. Figures 24(d) and
24(e) show different visualizations of the newly constructed vector field. Figure
24(d) shows a stream surface integration of the separation surfaces. They are
color coded in red (outflow surface) and blue (inflow surface). Figure 24(e)
shows the extraction of saddle connectors [36] revealing that they coincide
with the modeled connectors of figure 24(a). In addition, figure 24(e) shows a
number of illuminated stream lines [49].

(a) (b) (c)

(d) (e)

Fig. 24. Constructed 3D vector field: (a) Modeled topological skeleton; (b) Tetra-
hedrization of critical points and connectors; (c) Complete tetrahedrization; (d)
Separation surfaces of constructed vector field, view from top; (e) Saddle connectors
and stream lines of constructed vector field (from [44]).

6 Conclusions

In this chapter we have shown that topological methods provide a useful
framework for the visual analysis of vector fields. However, there is a number
of open problems which are still rather unsolved. Firstly, an appropriate visual
representation of the topological skeleton of 3D time-dependent vector fields
is still a challenge. Secondly, the path line oriented topological representation
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of time-dependent vector fields remains an open problems. Because of this we
expect an active ongoing research in the field in the next years.
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32. H. Theisel, Ch. Rössl, and H.-P. Seidel. Compression of 2D vector fields under
guaranteed topology preservation. Computer Graphics Forum (Eurographics
2003), 22(3):333–342, 2003.
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