CYCLES IN GRAPHS AND DERANGEMENTS

MEHDI HASSANI

1. Introduction

My intention in writing this paper is hidden in the following combinatorial relations:

$$
\begin{align*}
& d_{n}=n!\sum_{i=0}^{n} \frac{(-1)^{i}}{i!} \tag{1.1}\\
& w_{n}=(n-2)!\sum_{i=0}^{n-2} \frac{1}{i!} \quad(n \geq 2) \tag{1.2}
\end{align*}
$$

Where d_{n} is the number of derangements of n distinct objects (see [1,2,3]), and w_{n} is the number of distinct paths between any pair of vertices in a complete graph on n vertices. Considering the well-known expansion $e^{x}=\sum_{i=0}^{\infty} \frac{x^{i}}{i!}$ for $x=-1, x=1$ respectively, we can get the following approximate formulas:

$$
d_{n} \approx \frac{n!}{e} \quad w_{n} \approx e(n-2)!
$$

Undoubtedly, the following question has come to mind:
Are there any closed form formulas related to (1.1) and (1.2)?
Here, we give an affirmative answer to this question by the following interesting formulas.

2. Two Interesting Formulas About e

Theorem 2.1. For every positive integer $n \geq 1$,

$$
\begin{equation*}
\sum_{i=0}^{n} \frac{n!}{i!}=\lfloor e n!\rfloor \tag{2.1}
\end{equation*}
$$

Proof. Since $n \geq 1$,

$$
\frac{1}{n!}>\frac{1}{(n+1)!}+\frac{1}{(n+2)!}+\cdots=\sum_{i=0}^{\infty} \frac{1}{i!}-\sum_{i=0}^{n} \frac{1}{i!}>0
$$

and so

$$
0<e n!-\sum_{i=0}^{n} \frac{n!}{i!}<1
$$

Since $\sum_{i=0}^{n} \frac{n!}{i!}$ is an integer, the irrationality of e and the truth of the theorem both follow.

Theorem 2.2. For every positive integer $n \geq 1$ and $m \in\left[\frac{1}{3}, \frac{1}{2}\right]$,

$$
\begin{equation*}
d_{n}=\left\lfloor\frac{n!}{e}+m\right\rfloor . \tag{2.2}
\end{equation*}
$$

Proof. We know

$$
d_{n}=n!\left(1-\frac{1}{1!}+\cdots+\frac{(-1)^{n}}{n!}\right)=\frac{n!}{e}+(-1)^{n}\left(\frac{1}{n+1}-\frac{1}{(n+1)(n+2)}+\cdots\right)
$$

so

$$
\left|d_{n}-\frac{n!}{e}\right|<\frac{1}{n+1}, \quad(\forall n \in \mathbb{N})
$$

If n is even, $d_{n}>\frac{n!}{e}$ and $d_{n}=\left\lfloor\frac{n!}{e}+m\right\rfloor$ provided $\frac{1}{n+1} \leq m \leq 1$. If n is odd, $d_{n}<\frac{n!}{e}$ and $d_{n}=\left\lfloor\frac{n!}{e}+m\right\rfloor$ provided $0<\frac{1}{n+1}+m \leq 1$. So we require $\frac{1}{3} \leq m \leq 1$ and $0 \leq m \leq \frac{1}{2}$.

Note and Problem 1. From Theorems (2.1) and (2.2), we obtain

$$
\begin{aligned}
n!\sum_{i=0}^{n} \frac{1^{i}}{i!} & =\lfloor e n!\rfloor \\
n!\sum_{i=0}^{n} \frac{(-1)^{i}}{i!} & =\left\lfloor e^{-1} n!+m\right\rfloor, \quad m \in\left[\frac{1}{3}, \frac{1}{2}\right] .
\end{aligned}
$$

Now, suppose x is a real number, is there interval I_{x}, such that

$$
n!\sum_{i=0}^{n} \frac{x^{i}}{i!}=\left\lfloor e^{x} n!+m\right\rfloor, \quad m \in I_{x} ?
$$

for example we know $0 \in I_{1}$ and $\left[\frac{1}{3}, \frac{1}{2}\right] \subseteq I_{-1}$. Relations (2.1) and (2.2) are useful for counting. In next theorems you can see some of their usefulness.

3. Paths and Cycles In Complete Graphs

Theorem 3.1. The number of paths between every pair of vertices in a complete graph on n vertices $(n>2)$, is:

$$
w_{n}=\lfloor e(n-2)!\rfloor,
$$

and sum of their lengths is:

$$
L_{w}(n)=1+(n-2)\lfloor e(n-2)!\rfloor .
$$

Proof. Suppose u and v are two vertices in a complete graph on n vertices. For counting number of paths between u and v, we classify them according their length; a path of length i has the following form:

$$
u \overbrace{\bigcirc \bigcirc \bigcirc \cdots \bigcirc}^{(i-1)-\text { vertices }} v .
$$

So, the number of paths of length i is:

$$
w(i)=\frac{(n-2)!}{(n-1-i)!}
$$

and since $1 \leq i \leq n-1$ and applying Theorem (2.1) with $n>2$, we obtain

$$
w_{n}=\sum_{i=1}^{n-1} w(i)=\sum_{i=1}^{n-1} \frac{(n-2)!}{(n-1-i)!}=\sum_{i=0}^{n-2} \frac{(n-2)!}{i!}=\lfloor e(n-2)!\rfloor .
$$

Also
$L_{w}(n)=\sum_{i=1}^{n-1} i w(i)=\sum_{i=1}^{n-1} \frac{i(n-2)!}{(n-1-i)!}=1+(n-2) \sum_{i=0}^{n-2} \frac{(n-2)!}{i!}=1+(n-2)\lfloor e(n-2)!\rfloor$.
This completes the proof.
Similarly we can prove next theorem.
Theorem 3.2. The number of cycles through every vertex in a complete graph on n vertices $(n>2)$, is:

$$
c_{n}=\lfloor e(n-1)!\rfloor-n
$$

and sum of their lengths is:

$$
L_{c}(n)=\lfloor e n!\rfloor-\lfloor e(n-1)!\rfloor-2 n+1 .
$$

Note and Problem 2. We know that a complete graph on n vertices is regular of degree $n-1$. Can we have similar formulas about k-regular graphs?

4. A New Formula For Number of Derangements

Theorem 4.1. The number of derangements of n distinct objects is:

$$
d_{n}=\left\lfloor\frac{n!+1}{e}\right\rfloor .
$$

Proof. Apply theorem (2.2) with $m=\frac{1}{e}$.
Obviously, we have other formulas for the number of derangements. For example we know that d_{n} is the nearest integer to $\frac{n!}{e}$ and the following formula holds.

$$
d_{n}= \begin{cases}\left\lfloor\frac{n!}{e}\right\rfloor & n \text { is odd } \\ \left\lfloor\frac{n!}{e}\right\rfloor+1 & n \text { is even. }\end{cases}
$$

These all follow from (1.1) and (2.2). Also since $\left|d_{n}-\frac{n!}{e}\right|<\frac{1}{n+1}$ we have $d_{n}-\frac{n!}{e} \rightarrow 0$, that $d_{n}=\left\lfloor\frac{n!}{e}+\epsilon\right\rfloor$ for sufficiently large n for any $\epsilon>0$.
But it seems that $d_{n}=\left\lfloor\frac{n!+1}{e}\right\rfloor$ is the best closed formula for derangements.
Acknowledgment. I would like to express my gratitude to M. Bayat, H. Teimoori, D. Hebri and referee for their valuable guidance and comments.

References

[1] N.L.Biggs, Discrete Mathematics, Oxford 1985, p. 73
Institute for Advanced Studies in Basic Sciences, P.O. Box 45195-159, Zanjan, Iran.
E-mail address: mhassani@iasbs.ac.ir

