
Grouping in XML

Stelios Paparizos1, Shurug Al-Khalifa1, H.V. Jagadish1, Laks Lakshmanan2,
Andrew Nierman1, Divesh Srivastava3, and Yuqing Wu1

1 University of Michigan, Ann Arbor, MI, USA
{spapariz, shurug, jag, andrewdn, yuwu}@umich.edu†
2 University of British Columbia, Vancouver, BC, Canada

laks@cs.ubc.ca
3 AT&T Labs Research, Florham Park, NJ, USA

divesh@research.att.com

Abstract. XML permits repeated and missing sub-elements, and miss-
ing attributes. We discuss the consequent implications on grouping, both
with respect to specification and with respect to implementation. The
techniques described here have been implemented in the TIMBER native
XML database system being developed at the University of Michigan.

1 Introduction

Consider a bibliographic database, such as the well-known DBLP repository [5].
Articles have authors, but the number of authors is not the same for each article.
Some articles have one author, others have two, three, or more. Yet other articles
may have no authors at all. A major strength of XML is that this sort of variation
in the data is expressed effortlessly.
Now consider a simple query that seeks to output, for each DBLP author,

titles of articles he or she is an author of (in our bibliography database). A
possible XQuery statement for this query is shown below. (In fact, this query is
a small variation on use case number 1.1.9.4 Q4 in the XQuery specification [4])

FOR $a IN distinct-values(document(“bib.xml”)//author)
RETURN

<authorpubs>
{ $a }
{
FOR $b IN document(“bib.xml”)//article
WHERE $a = $b/author
RETURN $b/title

}
</authorpubs>

Query 1. Group by author query (After XQuery use case 1.1.9.4 Q4.)

† Supported in part by NSF, under grants IIS-9986030, DMI-0075447, and IIS-0208852

A.B. Chaudhri et al. (Eds.): EDBT 2002 Workshops, LNCS 2490, pp. 128–147, 2002.
c© Springer-Verlag Berlin Heidelberg 2002

Grouping in XML 129

A direct implementation of this query as written would involve two distinct
retrievals from the bibliography database, one for authors and one for articles,
followed by a join. In XML, given that links are already in place between each
article and its authors, one expects that a more efficient implementation might
be possible.
The rich structure of XML allows complex grouping specification. For exam-

ple, we could modify the above query to group not by author but by author’s
institution. This results in a modified query as follows:

FOR $i IN distinct-values(document(“bib.xml”)//institution)
RETURN

<instpubs>
{ $i }
{
FOR $b IN document(“bib.xml”)//article
WHERE $i = $b/author/institution
RETURN $b/title

}
</instpubs>

The trend initiated by the above query can be extended further, with ar-
bitrary expressions used for grouping. For instance, we may be interested in
grouping by both author and institution, as follows:

FOR $i IN distinct-values(document(“bib.xml”)//institution)
RETURN

<instpubs>
{ $i }
{
FOR $a IN distinct-values((document(“bib.xml”)//author)
WHERE $i = $a/institution
RETURN

<authorpubs>
{ $a }
{
FOR $b IN document(“bib.xml”)//article
WHERE $a = $b/author
RETURN $b/title

}
</authorpubs>

}
</instpubs>

In short, queries that appear to have “grouping” in them are expressed in
XQuery without explicit use of a grouping construct. Introducing such a con-
struct appears to be non-trivial on account of the richness and heterogeneity of
XML. Yet, explicitly recognizing the grouping operation can lead to more effi-
cient query evaluation. In this paper, we study the issues involved in the use of

130 S. Paparizos et al.

grouping in XML query, and the benefits to be derived therefrom. We do it in the
context of the TIMBER[23] native XML database system being implemented at
the University of Michigan, and the TAX algebra on which it is based.
We discuss how to specify grouping in Sec 3 after a brief introduction to TAX

in Sec. 2. We show how to use the grouping operator in a variety of contexts
in Sec. 4. In particular, we demonstrate powerful algebraic rewriting rules that
can result in the unnesting of XQuery expressions, and the efficient evaluation of
queries with grouping. We turn to implementation concerns in Sec. 5 and present
experimental results in Sec. 6. A discussion of related work in Sec. 7 is followed
by conclusions in Sec. 8.

2 Tree Algebra

An XML document is a tree, with each edge in the tree representing element
nesting (or containment). XML also permits references, which are represented as
non-tree edges, and may be used in some queries. These are important to handle,
and our algebra is able to express these. However, there is a qualitative difference
between these reference edges, which are handled as “joins”, and containment
edges, which are handled as part of a “selection”.
To be able to obtain efficient processing on large databases, we require set-

at-a-time processing of data. In other words, we require a bulk algebra that
can manipulate sets of trees: each operator on this algebra would take one or
more sets of trees as input and produce a set of trees as output. Using relational
algebra as a guide, we can attempt to develop a suite of operators suited to
manipulating trees instead of tuples. We have devised such an algebra, called
TAX. Details can be found in [8].
The biggest challenge in devising this algebra is the heterogeneity allowed by

XML and XQuery. Each tuple in a relation has identical structure – given a set
of tuples from some relation in relational algebra, we can reference components
of each tuple unambiguously by attribute name or position. Trees have a more
complex structure than tuples. More importantly, sub-elements can often be
missing or repeated in XML. As such, it is not possible to reference components
of a tree by position or even name. For example, in a bibliographic XML tree,
consider a particular book sub-tree, with nested (multiple) author sub-elements.
We should be able to impose a predicate of our choice on the first author, on
every author, on some (at least one) author, and so on. Each of these possibilities
could be required in some application, and these choices are not equivalent.
We solve this problem through the use of pattern trees to specify homogeneous

tuples of node bindings. For example, a query that looks for articles that have an
(at least one) author and a title containing the word “Transaction” is expressed
by a pattern tree shown in Figure 1. Matching the pattern tree to the DBLP
database, the result is a set of sub-trees rooted at article, each with author and
title. A small sample is shown in Figure 2. Such a returned structure, we call a
witness tree, since it bears witness to the success of the pattern match on the
input tree of interest. The set of witness trees produced through the matching

Grouping in XML 131

$1

$2 $3

pc pc

$1.tag = article &
$2.tag = title &
$2.content = “*Transaction*” &
$3.tag = author

Selection pattern tree for a simple query

Fig. 1. Pattern Tree for a Query

Sample matching sub-trees for the DBLP dataset

article

title:
Transaction

Mng ...

author:
Silberschatz

article

title:
Overview of
Transaction

Mng

author:
Silberschatz

author:
Garcia-
Molina

author:
Thompson

article

title:
Overview of
Transaction

Mng

article

title:
Transaction

Mng ...

Fig. 2. Witness Trees that Result from a Pattern Match

of a pattern tree are all homogeneous: we can name nodes in the pattern trees,
and use these names to refer to the bound nodes in the input data set for each
witness tree. A vital property of this technique is that the pattern tree specifies
exactly the portion of structure that is of interest in a particular context – all
variations of structure irrelevant to the query at hand are rendered immaterial. In
short, one can operate on heterogeneous sets of data as if they were completely
homogeneous, as long as the places where the elements of the set differ are
immaterial to the operation.
The crucial variable-binding FOR clause (and also the LET clause) of XQuery

uses a notation almost identical to XPath, which by itself is also used sometimes
to query XML data. The key difference between a pattern tree and an XPath
expressions is that one XPath expression binds exactly one variable, whereas a
single pattern tree can bind as many variables as there are nodes in the pattern
tree. As such, when an XQuery expression is translated into the tree algebra, the
entire sequence of multiple FOR clauses can frequently be folded into a single
pattern tree expression.
All operators in TAX take collections of data trees as input, and produce a

collection of data trees as output. TAX is thus a “proper” algebra, with compos-
ability and closure. The notion of pattern tree play a pivotal role in many of the
operators. Below we give a sample of TAX operators by describe briefly a couple
of them, selection and projection. Further details and additional operators can
be found in [8].

Selection: The obvious analog in TAX for relational selection is for selection
applied to a collection of trees to return the input trees that satisfy a specified
selection predicate (specified via a pattern). However, this in itself may not

132 S. Paparizos et al.

preserve all the information of interest. Since individual trees can be large,
we may be interested not just in knowing that some tree satisfied a given
selection predicate, but also the manner of such satisfaction: the “how” in
addition to the “what”. In other words, we may wish to return the relevant
witness tree(s) rather than just a single bit with each data tree in the input
to the selection operator.
Selection in TAX takes a collection C as input, and a pattern P and adorn-
ment sl as parameters, and returns an output collection. Each data tree
in the output is the witness tree induced by some embedding of P into C,
modified as possibly prescribed in sl. The adornment list, sl, lists nodes
from P for which not just the nodes themselves, but all descendants, are to
be returned in the output. If this adornment list is empty, then just the wit-
ness trees are returned. Contents of all nodes are preserved from the input.
Also, the relative order among nodes in the input is preserved in the output.
Because a specified pattern can match many times in a single tree, selection
in TAX is a one-many operation. This notion of selection is strictly more
general than relational selection.

Projection: For trees, projection may be regarded as eliminating nodes other
than those specified. In the substructure resulting from node elimination,
we would expect the (partial) hierarchical relationships between surviving
nodes that existed in the input collection to be preserved.
Projection in TAX takes a collection C as input and a pattern tree P and a
projection list pl as parameters. A projection list is a list of node labels ap-
pearing in the pattern P, possibly adorned with ∗. All nodes in the projection
list will be returned. A node labeled with a ∗ means that all its descendants
will be included in the output. Contents of all nodes are preserved from the
input. The relative order among nodes is preserved in the output.
A single input tree could contribute to zero, one, or more output trees in a
projection. This number could be zero, if there is no witness to the specified
pattern in the given input tree. It could be more than one, if some of the
nodes retained from the witnesses to the specified pattern do not have any
ancestor-descendant relationships. This notion of projection is strictly more
general than relational projection. If we wish to ensure that projection results
in no more than one output tree for each input tree, all we have to do is
to include the pattern tree’s root node in the projection list and add a
constraint predicate that the pattern tree’s root must be matched only to
data tree roots.

In relational algebra, one is dealing with “rectangular” tables, so that se-
lection and projection are orthogonal operations: one chooses rows, the other
chooses columns. With trees, we do not have the same “rectangular” structure
to our data. As such selection and projection are not so obviously orthogonal.
Yet, they are very different and independent operations, and are generalizations
of their respective relational counterparts.

Grouping in XML 133

3 The Specification of Grouping

In relational databases, tuples in a relation are often grouped together by par-
titioning the relation on selected attributes – each tuple in a group has the
same values for the specified grouping attributes. A source of potential diffi-
culty in trees, is that grouping may not induce a partitioning due to repeated
sub-elements. If a book has multiple authors, then grouping books by author
will result in this book being repeated as a member of multiple groups.
A deeper point to make is that grouping and aggregation are not separable

in relational database systems. The reason is that these operators cause a “type
violation”: a grouping operator maps a set of tuples to a set of sets of tuples,
and an aggregation operator does the inverse. The flexibility of XML permits
grouping and aggregation to be included within the formal tree algebra, at the
logical level, as distinct operators. In fact, we will see that grouping has a natural
direct role to play for restructuring data trees, orthogonally to aggregation.
The objective is to split a collection into subsets of (not necessarily disjoint)

data trees and represent each subset as an ordered tree in some meaningful way.
As a motivating example, consider a collection of article elements each including
its title, authors and so on. We may wish to group this collection by author,
thus generating subsets of article elements authored by a given author. Multiple
authorship naturally leads to overlapping subsets.
We can represent each subset in any desired manner, e.g., by the alphabetical

order of the titles or by the year of publication, and so forth. There is no (value-
based) aggregation involved in this task, which involves splitting the collection
into subsets and ordering trees within a subset in a specified way. We formalize
this as follows.
The groupby operator γ takes a collection as input and the following param-

eters.

– A pattern tree P; this is the pattern used for grouping. Corresponding to
each witness tree Tj of P, we keep track of the source tree Ij from which it
was obtained.

– A grouping basis that lists elements (by label in P), and/or attributes of
elements, whose values are used to partition the set W of witness trees of P
against the collection C. Element labels may possibly be followed by a ‘*’.

– An ordering list , each component of which comprises an order direction and
an element or element attribute (specified by label in P) with values drawn
from an ordered domain. The order direction is either ascending or de-
scending. This ordering list is used to order members of a group for output,
based on the values of the component elements and attributes, considered in
the order specified.

The output tree Si corresponding to each group Wi is formed as follows:
the root of Si has tag tax group root and two children; its left child � has tag
tax grouping basis, and one child for each element in the grouping basis above,
appearing in the same order as in the grouping basis; if a grouping basis item is

134 S. Paparizos et al.

title:
Transaction

Mng ...

author:
Silberschatz

author:
Garcia-Molina

title:
Transaction

Mng ...

author:
Thompson

TAX group root

TAX
grouping

basis
TAX group subroot

article article

TAX group root

TAX
grouping

basis

TAX group
subroot

article

title:
Overview of
Transaction

Mng

title:
Overview of
Transaction

Mng

author:
Silberschatz

author:
Silberschatz

author:
Garcia-Molina

TAX group root

TAX
grouping

basis

TAX group
subroot

article

author:
Thompson

Fig. 3. Grouping the witness trees of Figure 2 by author ($3.content in the pat-
tern tree, shown in Figure 1), and ordering each group by descending order of Title
(descending $2.content)

$i or $i.attr, then the corresponding child is a match of this node; if the item
is $i*, then in addition to the said match, the subtree of the input tree rooted
at the matching node is also included in the output; its right child r has tag
tax group subroot; its children are the roots of source trees corresponding to
witness trees in Wi, ordered according to the ordering list. Source trees having
more than one witness tree will clearly appear more than once.
If the DBLP database has grouping applied to it based on the pattern tree of

Figure 1, grouped by author, and ordered (descending) by title, a fragment of the
result obtained is shown in Figure 3. Note that articles with two authors appear
in two groups, once for each author. In each group, the operation arranges the
grouped source trees in decreasing (alphabetical) order of the title subelement.
Grouping, as described above, is already a very powerful operator. We actu-

ally have several dimensions in which we can make it even more powerful. For
instance, one could use a generic function mapping trees to values rather than an
attribute list to perform the needed grouping, one can have a more sophisticated
ordering function, and so forth. We do not describe these enhancements in this
paper.

4 The Use of Grouping

4.1 Parsing Queries with Grouping

We presented, as Query 1, at the beginning of this paper, an example XQuery
expression to compute “For each author in the database, list the author’s name
and the titles of all articles by that author, grouped inside an authorpubs ele-
ment”. We discuss here how this query is parsed and converted into an algebraic
expression in TAX.
Unfortunately a parser cannot detect the logical grouping in the XQuery

statement right away. It will “näıvely” try to interpret it as a join. Then a
second pass will be necessary to provide a rewrite optimization using TAX’s
more efficient GROUPBY operator. Below we describe this procedure in detail.

Grouping in XML 135

$1

$2 $4

ad

$1.tag = TAX_prod_root &
$2.tag = doc_root &
$3.tag = author &
$4.tag = doc_root &
$5.tag = article &
$6.tag = author &
$3.content = $6.content

$1

$2

ad
$1.tag = doc_root &
$2.tag = author

“outer”
pattern tree

$1.tag = article &
$2.tag = title

“inner” projection
pattern tree

“join-plan” pattern tree

(a)
(c)

(b)

$5

$6

pc
pc

pc

$1

$2

pc

$3

pc

Fig. 4. Pattern trees used during the näıve parse of Query 1

Näıve Parsing

1. The outer combination of FOR/WHERE clauses will generate a pattern tree
(“outer” pattern tree). A selection will be applied on the database1 using
this pattern tree; the selection list consists of the bound variables in XQuery.
Then a projection2 is applied using the same pattern tree; the projection list
includes all nodes of the tree and has * for each bound variable. Following
the projection there will be a duplicate elimination based on the content of
the bound variable. For Query 1 the pattern tree is shown in Figure 4.a.
The selection list is $2, the projection list is $1 and $2*, and the duplicate
elimination is based on $2.content.

2. The RETURN clause will now be processed. Each argument in the return
clause is processed at a time. Each argument can create one or multiple
pattern trees. Then the appropriate operators will be used taking as input
those pattern trees. In the common case a selection and a projection would
be used. But aggregate functions may appear here as well etc. At the end, the
appropriate stitching of the results will take place. For Query 1 the process
is the following.

{$a}: A pattern tree will be generated containing the author element, cor-
responding to the already bound variable $a, and the document root.
Then a selection and a projection would be applied on the outcome of
the “outer” selection using this pattern tree. The selection list is $2 (au-
thor) and the projection list $2* (author*).

Nested FLWR: The procedure for the nested FLWR statement is a lit-
tle bit more complicated. We will generate one pattern tree for the
FOR/WHERE combination and a different one for the RETURN clause.
a) The FOR/WHERE clauses will generate a pattern tree that de-
scribes a left outer join between all the authors of the database,
as selected already and bound to variable $a, and the authors of ar-
ticles. This pattern tree is shown in Figure 4.b. A left outer join is
generated using this pattern tree and applied on the outcome of the

1 The database is a single tree document
2 When a projection follows a selection using the same pattern tree, all the ancestor-
descendant edges of the tree will be changed to parent-child for the projection.

136 S. Paparizos et al.

$1

$2

pc
$1.tag = article &
$2.tag = author

Intermediate tree structure

TAX Group
root

TAX
Grouping

basis

author

TAX Group
subroot

...

GROUPBY
pattern tree

article

title

(c)

(b)
authoryear

article

title authoryear

$1

$2 $3

$4

$1.tag = TAX Group root &
$2.tag = TAX Grouping basis &
$3.tag = TAX Group subroot &
$4.tag = author &
$5.tag = article &
$6.tag = title

PL: $1,$4*, $6*

projection pattern tree(d)

pc

pc

$5

pc

pc

Initial
Pattern Tree

(a)

$6

$1

$2

pc

$1.tag = doc_root &
$2.tag = article

pc

Fig. 5. GROUPBY operator for Query 1. The generated input and the intermediate
tree structure

“outer” selection and the database. It uses a selection list $5. Fol-
lowing this join operation there will be a projection with projection
list $5* and then a duplicate elimination based on articles.

b) The RETURN clause will be processed one argument at a time. The
single argument in this case will generate a pattern tree for the titles
as shown in Figure 4.c. Using this pattern tree a selection and then
a projection will be applied on the outcome of the previous step.
The corresponding selection list is $2 and projection list $2*. The
output of this step will be returned to the processing of the “outer”
RETURN clause.

Stitching: The necessary stitching will take place using a full outer join
and then a renaming to generate the tag name for the answer.

Rewriting. One can argue that the naive implementation for Query 1 will be
inefficient because of the multiple selections over the database and the left outer
join used to compute a structural relationship that should already be “known”.
We next present a rewriting algorithm that transforms the TAX algebra expres-
sion described above. The algorithm consists of two phases. Phase 1 detects a
grouping query and Phase 2 rewrites the expression using the GROUPBY op-
erator. The rewritten expression can then be used as the basis of an execution
plan.
PHASE 1:

1. Check for a left outer join applied on the outcome of a previous selection
and the database.

2. Check to see if the left (“outer”) part of the join-plan pattern tree is a subset
of the right (“inner”) part. A tree V1, E1 is said to be a subset of a tree V2, E2
if V1 ⊆ V2 and E1 ⊆ E2∗, the transitive closure of E2.3

3 Each edge e in E1 may be a parent-child edge, or an ancestor-descendant edge. We
may place a mark on each edge of the latter type. Edges in the transitive closure,
derived as the composition of two or more base edges, must also have such a mark.

Grouping in XML 137

If all the conditions above are TRUE, then we have detected a grouping
operator, and we can apply the following rewrite rules.
PHASE 2:

1. Construct an initial pattern tree. The pattern tree is created from the right
“inner” subtree of the join plan pattern tree of the näıve parsing. The pattern
tree consists of the bound variables and includes their path starting from
the document root. The bound variables correspond to the elements in the
projection list that of the join plan projection. For Query 1 this pattern tree is
seen in Figure 5.a. We apply a selection using this pattern tree with selection
list the elements corresponding to the bound variables and a projection with
a projection list similar to the selection list. For Query 1 those lists will be
$2 and $2* respectively.

2. Construct the input for the GROUPBY operator.
– The input pattern tree will be generated from a subtree of the “inner”
pattern tree of näıve parsing. For Query 1 this is shown in Figure 5.b.

– The grouping basis will be generated using the join value of the “join-
plan” pattern tree of näıve parsing. For Query 1 this will correspond
to the author element or $2.content in the group by pattern tree of
Figure 5.b.

– The ordering list will be generated from the projection pattern tree of
the inner FLWR statement; only if sorting was requested by the user. So
for Query 1, there is an empty ordering list.

3. Apply the GROUPBY operator on the collection of trees generated from
step 1. This will create intermediate trees containing each grouping basis
element and the corresponding pattern tree matches for it. For Query 1 the
tree structure will be as in Figure 5.c.

4. A projection is necessary to extract from the intermediate grouping tree the
nodes necessary for the outcome. The projection pattern tree is generated
by the projection pattern trees from each argument of the RETURN clauses.
For query 1 this is shown in Figure 5.d.

5. After the final projection is applied the outcome consists of trees with an
dummy root and the authors associated with the appropriate titles. A rename
operator is necessary to change the dummy root to the tag specified in the
return clause. This is similar to the rename executed in näıve parsing.

Using an example. Let’s consider the sample database of Figure 6. Query 1
is executed on this database. Figures 7 and 8 show the generated collections of
trees during the näıve parsing phase of the query. TIMBER[23] would typically
transform the näıve plan to use the more efficient GROUPBY operator. First, a
selection and a projection will be applied on the database using the pattern tree
of Figure 5.a as described in phase 2 step 1. This will produce a collection of trees
containing all article elements and their entire sub-trees, as in Figure 9. Next the

Please note that for corresponding marked edges in E1 and E2, pc ⊆ ad, but not
ad ⊆ pc.

138 S. Paparizos et al.

book

p
u

b
lis

h
e

r:

M
o

rg
a

n
 K

a
u

fm
a

n

title
:

D
a

ta
b

a
s

e
 s

y
s

te
m

s

a
u

th
o

r: J
ill

y
e

a
r: 1

9
9

9

book

p
u

b
lis

h
e

r:

P
re

n
tic

e
 H

a
ll

title
:

E
-R

 D
ia

g
ra

m
s

a
u

th
o

r: J
ill

y
e

a
r: 1

9
9

5

a
u

th
o

r: J
a

c
k

title
:

Q
u

e
ry

in
g

 X
M

L

a
u

th
o

r: J
o

h
n

doc_root

article
title

:

X
M

L
 a

n
d

 th
e

 W
e

b

a
u

th
o

r: J
a

c
k

article

title
:

H
a

c
k

 H
T

M
L

a
u

th
o

r: J
o

h
n

article

a
u

th
o

r: J
ill

a
u

th
o

r: J
a

c
k

Fig. 6. Sample Database

input pattern tree to be used by the operator will be generated. For Query 1 this
is shown at Figure 5.b. The GROUPBY operator (grouping basis : $2.content)
will be applied on the generated collection of trees and the intermediate tree
structures of Figure 10 are produced. Then the projection is done using the final
projection pattern tree from Figure 5.d.

author: John author: Jillauthor: Jack

doc_root doc_root doc_root

Fig. 7. Applying the selection, projection and duplicate elimination using “outer”
pattern tree (Figure 4.a) onto the sample database

TAX_prod_root

author:
Jack

doc_root

article

title:
XML and
the Web

author:
Jack

author:
Jill

title:
Hack HTML

title:
Querying

XML

author:
John

author:
Jack

article

TAX_prod_root

author:
John

doc_root

article

author:
John

title:
Querying

XML

author:
John

author:
Jack

article

TAX_prod_root

author:
Jill

doc_root

article

title:
XML and
the Web

author:
Jack

author:
Jill

Fig. 8. Generating the left outer join

Grouping in XML 139

title:
Querying

XML

author:
John

title:
XML and
the Web

author:
Jack

title:
Hack HTML

author:
John

article

author:
Jill

author:
Jack

article article

Fig. 9. The collection of trees produced after applying the selection and projection as
described in phase 2 step 1 on the sample database of Figure 6

TAX Group root

TAX Group subroot

TAX
Grouping

basis

TAX Group rootTAX
Grouping

basis

TAX Group root

TAX Group
subroot

TAX
Grouping

basis

author:
Jack

article

title:
XML and
the Web

author:
Jack

author:
Jill

title:
Hack HTML

title:
Querying

XML

author:
John

author:
Jack

article
author:
John article

author:
John

title:
Querying

XML

author:
John

author:
Jack

article author:
Jill

article

title:
XML and
the Web

author:
Jack

author:
Jill

TAX Group
subroot

Fig. 10. The intermediate trees produced after applying the GROUPBY operator for
Query 1 to the collection of trees of Figure 9

4.2 Alternative Query Formulation

Using the set-binding property of the LET clause, Query 1 could equivalently
be expressed without nesting, as seen in Query 2. There is no easy way, at the
language level, to transform the more common nested expression of Query 1 into
the equivalent unnested expression of Query 2. However, at the algebra level, the
two expressions are easily seen to be equivalent. Let us walk through an algebraic
parsing of Query 2 to note the similarities and differences.

FOR $a IN distinct-values(document(“bib.xml”)//author)
LET $t := document(“bib.xml”)//article[author = $a]/title
RETURN

<authorpubs>
{$a} {$t}

</authorpubs>

Query 2. FLWR with no nesting that groups articles by author.

1. The FOR clause will generate an initial pattern tree, similar with the “outer”
pattern tree of the nested query. For Query 2 see Figure 11.a. A selection

140 S. Paparizos et al.

$1

$2

ad

$1.tag = doc_root &
$2.tag = author
SL:$2*

“outer”
pattern tree

$1

$2 $3

$4 $5

ad

pc

ad

pc

$1.tag = doc_root &
$2.tag = author &
$3.tag = article &
$4.tag = author &
$5.tag = title &
$2.content = $4.content
SL:$5*

“join-plan”
pattern tree

(a)

(b)

$1

$2

pc

$1.tag = doc_root &
$2.tag = article
PL:$2*

author projection
pattern tree(c)

$1

$2

$3

pc

pc

$1.tag = doc_root &
$2.tag = article &
$3.tag = title
PL:$3*

title projection
pattern tree(d)

Fig. 11. Grouping expressed without nesting. These are all the selection and projection
pattern trees generated during the naive parsing phase

will be applied on the database using this pattern tree and a selection list
that corresponds to the bound variable. For Query 2 the list is $2. Then a
projection4 will be applied on the outcome of the selection, with projection
list that corresponds to the bound variable. For Query 2 this is $2*. And
a duplicate elimination based on the bound variable element. For Query 2
based on the author element.

2. The LET clause will generate a left outer join pattern tree to be applied
on the outcome of the previous step and the database (similar with the left
outer join pattern tree of the nested query). For Query 2 this is shown in
Figure 11.b.

3. The RETURN clause will be again processed one argument at a time. Ap-
propriate pattern tree(s) will be generated for each argument and a selection
and a projection will be applied on the outcome of the previous step. For
Query 2 we will have two pattern trees, one for all authors and one for all
titles, as seen in Figures 11.c and 11.d.

4. A full outer join is necessary to stitch the return arguments together and
then a renaming to include the tag name.

As one can see this algorithm has lots of similarities with the näıve parsing
of the nested grouping query. The same kind of pattern trees are generated, with
minor differences, such as whether the title node is present in the left outer join
pattern tree. After the rewrite optimization, the GROUPBY obtained is identical
in both cases.
4 When a projection follows a selection using the same pattern tree, all the ancestor-
descendant edges of the tree will be changed to parent-child for the projection.

Grouping in XML 141

4.3 Aggregation

The purpose of aggregation is to map collections of values to aggregate or sum-
mary values. Common aggregate functions are MIN, MAX, COUNT, SUM, etc.
When generating summary values, we should specify exactly where the newly
computed value should be inserted, as the content of a new element (or value of
a new attribute). More precisely, the aggregation operator A takes a collection
as input and a pattern P, an aggregate function f1 and an update specification
as parameters. The update specification denotes where the aggregate value com-
puted should be inserted in the output trees. The exact set of possible ways of
specifying this insertion is an orthogonal issue and should anyway remain an ex-
tensible notion. We only give some examples of this specification. E.g., we might
want the computed aggregate value to be the last child of a specified node (after
lastChild($i)), or immediately preceding or following a specified node (precedes
($i)).
We assume the name of the attribute that is to carry the computed aggregate

value is indicated as aggAttr = f1($j.attr), or as aggAttr = f1($j), where
aggAttr is a new name and $j is the label of some node in P.
The semantics of the operator AaggAttr=f1($j.attr),afterlastChild($i)(C) is as fol-

lows. The output contains one tree corresponding to each input tree. It is iden-
tical to that input tree except a new right sibling is created, for the node in
the output data tree that is the right-most child of the node that matches the
pattern node labeled $i in P. This node has content v, where v is the computed
aggregate value.

5 Implementation of Grouping

The grouping operations described above, and the TAX algebra of which they
are part, have been implemented in the context of the TIMBER[23] native XML
database system at the University of Michigan. In this section, we first present
a brief overview of TIMBER and then focus on the implementation of grouping
specifically.

5.1 System Architecture

TIMBER is built on top of Shore [3], a popular back-end store that is responsi-
ble for disk memory management, buffering and concurrency control. XML data,
index and metadata are also stored in Shore through Data Manager, Index Man-
ager and Metadata Manager, respectively.
The overall architecture of TIMBER is shown in Figure 12. The Query Parser

transforms XQuery input into a TAX algebraic expression, performing trans-
formations of the sort described in Sec. 4.2. The Query Optimizer chooses an
evaluation plan for the query and hands off to the Query Evaluator. We focus on
the evaluation of the grouping operator here. There are two steps: first, the pat-
tern tree has to be matched to develop the requisite node bindings; second, the
relevant bound nodes have to be manipulated as per the grouping specification.
We consider each step below in turn.

142 S. Paparizos et al.

Query
XML

Query Parser

Data Parser

Data

Query Output
API

Data Storage Manager

Data
Manager

Index
Manager

Metadata
Manager

Query
Optimizer Query

Evaluator

Query
Result

XML Data

Loading Data Flow

Retrieval Data Flow

Fig. 12. TIMBER Architecture Overview

5.2 Pattern Tree Matching

A pattern tree, such as the one is Figure 1 explicitly specifies predicates at nodes
that must be satisfied by (candidate) matching nodes and also specifies structural
relationships between nodes that match. Each edge in the pattern tree specifies
one such structural relationship, which can either be “parent-child” (immediate
containment) or “ancestor-descendant” (containment).
The simplest way to find matches for a pattern tree is to scan the entire

database. By and large, a full database scan is not what one would like to perform
in response to a simple selection query. One would like to use appropriate indices
to examine a suitably small portion of the database. One possibility is to use an
index to locate one node in the pattern (most frequently the root of the pattern),
and then to scan the relevant part of the database for matches of the remaining
nodes. While this technique, for large databases, can require much less effort
than a full database scan, it can still be quite expensive.
Experimentally it has been shown [1,19] that under most circumstances it is

preferable to use all the indices available and independently locate candidates for
as many nodes in the pattern tree as possible. Structural containment relation-
ships between these candidate nodes is then determined in a subsequent phase,
one pattern tree edge at a time. For each such edge, we have a containment

Grouping in XML 143

“join condition” between nodes in the two candidate sets. We choose pairs of
nodes, one from each set, that jointly satisfy the containment predicate. We have
developed efficient single-pass containment join algorithms [1] whose asymptotic
cost is optimal.
The details of these algorithms is beyond the scope of this paper. The impor-

tant point to note is that sets of node bindings for pattern trees can be found
efficiently. Moreover, these node bindings can be found, in most cases, using in-
dices alone, without access to the actual data. The bindings are represented in
terms of node identifiers, obtained from the index look up.

5.3 Identifier Processing

RDBMS implementations of grouping typically rely on sorting (or possibly hash-
ing).5 We cannot use these implementations directly, since XML grouping does
not necessarily partition the set. One possibility is for us to replicate elements an
appropriate number of times, and to tag each replica with the correct grouping
variables to use. For example, a two-author book could be replicated to produce
two versions of the book node, with one author tagged in each replica as the one
to use for grouping purposes. Thereafter standard sorting (or hashing) based
techniques may be used.
The difficulty with this approach is that large amounts of data may be repli-

cated early in the process. Particularly, if the required end result is small, for
instance because the grouping is followed by aggregation, one would hope that
this replication could be avoided.
Our implementation uses a slight variation of the above approach that min-

imizes these disadvantages. Recall that the grouping basis (the list of variables
on the basis of which to group) consists of nodes identified by means of a pattern
tree match. The normal pattern tree match procedure will produce all possible
tuples of bindings for these grouping variables in the form of witness trees. There
is one witness tree per tuple of bindings, and all of these can be obtained using
5 When an index exists on the (first few) elements of the grouping basis, such an
index can be used to perform grouping in relational systems. In most cases, grouping
involves access to large parts of the relation, so that access to an unclustered list
of indexed entries is not efficient in the absence of additional engineering tricks.
In XML, the use of indices is further limited on two accounts. The first is type
heterogeneity – an index on value is built over some domain, and there could be
many different elements (and even element types) and attributes in the database
that are all rolled into one index. The grouping may only be with respect to some
of these. For example, to group books by the content of the author sub-element, we
require an index on the content of elements representing authors of books, as opposed
to authors of articles and authors of reports. The second difficulty with XML value
indices is that they only return the identifier of the node with the value in question,
whereas we would typically be interested in grouping some other (related) node. For
example, an index on book-authors, even if available, is likely to return the author
node identifier from which one would have to navigate to the book nodes, which we
wish to group.

144 S. Paparizos et al.

node identifiers only, without access to actual data. For example, the pattern
tree of Figure 1 applied to a small subset of the DBLP database produces one
witness tree for each book/author pair: there are two witness trees corresponding
to a book with two authors – one for each author. See Figure 2.
For elements/attributes in the grouping basis, we need to obtain values to be

able to perform the grouping. This requires a data look-up. We populate only
the grouping (and sorting) list values, and retain the remainder of the witness
tree in identifier form. A sorting based on these list values as key produces the
requisite grouping, with each group sorted as specified. Notice that the sorting is
performed with minimum information – only a witness tree identifier in addition
to the actual sort key.
In the final step of grouping, data can be populated in the grouped and sorted

witness trees, as required to produce output. Frequently, this data population
is not required, or only partially required, by the subsequent query evaluation
operators. For instance, in our running example, we wish to return only titles of
books grouped by author, so only the title nodes need be populated with values
– the other nodes, book, publisher, date, etc. can all be projected out. A more
compelling case is made when the grouping were to be followed by aggregation,
as is frequently the case. Suppose we are interested in the count of books written
by each author. We can perform the count without physically instantiating the
book elements.

6 Experiments

We have shown above that complex nested XQuery expressions can frequently
be expressed as single block tree algebra expressions with grouping. Here, we
assess the performance benefits of such rewriting. We do so by comparing the
performance of the TIMBER implementation of an algebraic expression with
grouping and the performance of the same system using a nested loops evaluation
plan obtained through a direct implementation of the corresponding XQuery
expression as written. We report results for the group by author query that was
introduced as a running example at the beginning of this paper.
We used the Journals portion of the DBLP data set for our experiments. The

data loaded comprised 4.6 million nodes, requiring almost 100 MB of storage.
We constructed an index on tag-name, so that given a tag, we could efficiently
list (by node identifier) all nodes with that tag. We ran our experiments on a
Pentium III machine running at 550 MHz. The experiments were run with the
database buffer pool size set at 32MB, using a page size of 8 KB. (In other words,
even though the machine we used had 256 MB of RAM, only 32 MB of this was
available to the query evaluation).
We executed the query in two different ways. The first is a “direct” execution

of the XQuery as written. We used the index to identify author nodes, as well
as to identify article-author pairs. Then we eliminate duplicates in the former
(by looking up the actual data values) and perform the requisite join with the
latter. For each author, we output the name (content of the node, which we have

Grouping in XML 145

already looked up), and for each article found to join with this author, we look
up the title, which we output. This process required 323.966 seconds to execute.
The second evaluation plan was the standard TIMBER plan, using the group-

ing operator. After we have grouped articles by author, we still have to look up
the title of each article for output. This plan required 178.607 seconds to execute:
a little over half of the direct execution.
Note that both plans require access to the data to look up the content of

author and title nodes. Moreover, all of this data is also produced in the output.
The content of title nodes is often fairly long. The difference between two dif-
ferent evaluation plans can be highlighted if this common cost were not present.
Consider, for instance, the following variant of the preceding query:

FOR $a IN distinct-values(document(“bib.xml”)//author)
LET $t := document(“bib.xml”)//article[author = $a]/title
RETURN

<authorpubs>
{$a} {count($t)}

</authorpubs>

We now seek to output only the count of journal articles for each author
rather than list all their titles. The size of output is considerably reduced. Also,
the data value look up is now confined to author content: the titles of articles
are no longer of interest.
We evaluated this modified query using the two plans described above, with

corresponding small changes. Now the direct XQuery evaluation required 155.564
seconds, while the grouping implementation went down to just 23.033 seconds.
In other words, the grouping-based implementation was more than 6 times as
fast!!

7 Related Work

Several mapping techniques have been proposed [7,10,16,17] to express tree-
based XML data to flat tables in a relational schema. Due to the possible absence
of attributes and sub-elements, and the possible repetition of sub-elements, XML
documents can have a very rich structure. It is hard to capture this structure
in a rigid relational table without dividing the document into very small stan-
dard “units” that can be represented as tuples in a table. Therefore, a simple
XML schema often produces a relational schema with many tables. Structural
information in the tree-based schema is modeled by joins between tables in the
relational schema. XML queries are converted into SQL queries over the rela-
tional tables, and even simple XML queries often get translated into expensive
sequences of joins in the underlying relational database. A typical translation [16]
of the schema of the DBLP bibliography would map the article elements to a ta-
ble, and store author elements as tuples in another table. To find the authors of
a specified article will then require a join between the two tables. More complex
queries will require multiple joins. Grouping is well understood in the relational

146 S. Paparizos et al.

context, but it is not obvious how to translate grouping at the XQuery level into
grouping on the underlying relational tables.
There also are several direct implementations of XML data management,

where XML data is not translated into relations [14,13,20,22,24,6,11,21,12,15,
9]. We are not aware of any of these having studied grouping facilities. In fact,
many of these are tuple-at-a-time (or navigational) implementations, so that the
question of set-oriented grouping does not arise.

8 Conclusion

Grouping is an important operation in relational databases, and made all the
more important in the context of XML due to the greater complexity of struc-
ture possible. However, this flexibility in structure raises challenges in both the
specification and the implementation of grouping.
We have described how the TAX tree algebra can be used to specify poten-

tially involved grouping constructs. We have also shown how queries that appear
to be nested in XQuery can be rewritten as a simple query with grouping in TAX.
We have described how grouping is implemented in the TIMBER native XML

database system currently being implemented at the University of Michigan.
We have demonstrated that the implementation of an explicit grouping operator
leads to significant performance benefits over an equivalent nested join query.

References

1. Shurug Al-Khalifa, H. V. Jagadish, Nick Koudas, Jignesh Patel, Divesh Srivastava,
and Yuqing Wu. Structural Joins: A Primitive for Efficient XML Query Pattern
Matching. In Proc. ICDE Conf., 2002.

2. D. Barbosa, A. Barta, A. Mendelzon, G. Mihaila, F. Rizzolo, and P. Rodriguez-
Gianolli. ToX - The Toronto XML Engine. Proc. Intl. Workshop on Information
Integration on the Web, Rio, 2001.

3. M. J. Carey, D. J. DeWitt, M. J. Franklin, N. E. Hall, M. L. McAuliffe, J. F.
Naughton, D. T. Schuh, M. H. Solomon, C. K. Tan, O. G. Tsatalos, S. J. White,
and M. J. Zwilling. Shoring up Persistent Applications. In Proc SIGMOD Conf.,
pages 383–394, 1994.

4. S. Boag, D. Chamberlin, M. Fernandez, D. Florescu, J. Robie, J. Simeon, and
M. Stefanescu. XQuery: A Query Language for XML. W3C Working Draft. Avail-
able from http://www.w3.org/TR/xquery

5. DBLP data set. Available at http://www.informatik.uni-trier.de/ley/db/index.html.
6. L. Fegaras and R. Elmasri. Query Engines for Web-Accessible XML Data. In Proc.

VLDB Conf., 2001.
7. D. Florescu and D. Kossman. Storing and Querying XML Data Using an RDBMS.

IEEE Data Engineering Bulletin, 22(3):27–34, 1999.
8. H. V. Jagadish, L. V. S. Lakshmanan, D. Srivastava, and K. Thompson. TAX: A
Tree Algebra for XML. In Proc. DBPL Conf., Rome, Italy, Sep. 2001.

9. Carl-Christian Kanne, Guido Moerkotte: Efficient Storage of XML Data. Poster
abstract in Proc. ICDE Conf., page 198, San Diego, CA, March 2000.

Grouping in XML 147

10. M. Klettke, H. Meyer. XML and Object-Relational Database Systems - Enhancing
Structural Mappings Based on Statistics. In Informal Proc. WebDB Workshop,
pages 151–170, 2000.

11. S. A. T. Lahiri and J. Widom. Ozone: Integrating Structured and Semistructured
Data. In Proc. DBPL Conf., Kinloch Rannoch, Scotland, Sep. 1999.

12. J. McHugh, S. Abiteboul, R. Goldman, D. Quass, and J. Widom. Lore: A Database
Management System for Semistructured Data. SIGMOD Record 26(3), pages 54–
66, 1997.

13. Microsoft XQuery Language Demo. Online at http://131.107.228.20/xquerydemo/
14. Arnaud Sahuguet. Kweelt: More Than Just “Yet Another Framework to Query

XML!”. Proc. SIGMOD Conf., Santa Barbara, CA, 2001. Software available from
http://db.cis.upenn.edu/Kweelt/.

15. Harald Schoning. Tamino - A DBMS designed for XML. In Proc. ICDE Conf.,
pp. 149–154, 2001.

16. J. Shanmugasundaram, K. Tufte, G. He, C. Zhang, D.DeWitt, and J.Naughton.
Relational Databases for Querying XML Documents: Limitations and Opportuni-
ties. In Proc. VLDB Conf. pages 302–314, Edinburgh, Scotland, Sep. 1999.

17. T. Shimura, M. Yoshikawa, and S. Uemura. Storage and Retrieval of XML Docu-
ments Using Object-Relational Databases. In Proc. DEXA Conf., 1999.

18. Yuqing Wu, Jignesh Patel, and H. V. Jagadish. Estimating Answer Sizes for XML
Queries. In Proc. EDBT Conf., Prague, Czech Republic, Mar. 2002.

19. C. Zhang, J. Naughton, D. Dewitt, Q. Luo, and G. Lohman. On Supporting Con-
tainment Queries in Relational Database Management systems. In Proc. SIGMOD
Conf., Santa Barbara, CA, 2001.

20. Tamino Developer Community QuiP, a W3C XQuery Prototype. Available at
http://www.softwareag.com/developer/quip.

21. eXcelon Corp. eXcelon XML platform. Available at
http://www.exceloncorp.com/platform/extinfserver.shtml.

22. X-Hive Corp. X-Hive/DB. Available at: http://www.x-hive.com.
23. University of Michigan, TIMBER native XML database. Available at

http://www.eecs.umich.edu/db/timber/
24. dbXML Group. dbXML Core. Available at: http://www.dbxml.org.

	Introduction
	Tree Algebra
	The Specification of Grouping
	The Use of Grouping
	Parsing Queries with Grouping
	Alternative Query Formulation
	Aggregation

	Implementation of Grouping
	System Architecture
	Pattern Tree Matching
	Identifier Processing

	Experiments
	Related Work
	Conclusion

