7.91 – Lecture #4 Michael Yaffe

Database Searching & Molecular Phylogenetics

<u>Outline</u>

- FASTA, Blast searching, Smith-Waterman
- Psi-Blast
- Review of Genomic DNA structure
- Substitution patterns and mutation rates
- Synonymous and non-Synonymous substitutions
- Jukes-Cantor Model
- Kimura's Two-Parameter Model
- Molecular Clocks
- Phylogenetic Trees rooted and unrooted
- Distance Matrix Methods
- Neighbor-Joining Method and Related Neighbor Methods
- Maximum Likelihood

Outline (cont)

- Parsimony
 Branch and Bound
 Heuristic Seaching
- Consensus Trees
- Software (PHYLIP, PAUP)
- The Tree of Life

Reading: Mount, p. 237-280, 283-286, 291-308

Problem is simple: I want to find homologues to my protein in the database How do I do it?

Do the obvious – compare my protein against every other protein in the database and look for local alignments by dynamic programming

Uh Oh!

....essentially an O(mn) problem

Still, this can be done - \sim 50x slower than Blast/FASTA, Smith-Waterman algorithm... SSEARCH (ftp.virginia.edu/pub/fasta) – do it locally!

But in the old days, needed a faster method... 2 approaches – Blast, FASTA – both heuristic (i.e. tried and true) – almost always finds related Proteins but cannot guarantee optimal solution

FASTA: Basic Idea

1- Search for matching sequence patterns or words Called k-tuples, which are exact matches of "k" characters between the two sequences

i.e. <u>RW</u> = 2-tuple

Seq 1: AHFYRWNKLCV Seq 2: DRWNLFCVATYWE

FASTA: Basic Idea <u>2- Repeat for all possible k-tuples</u> i.e. <u>CV</u> = 2-tuple Seq 1: AHFY<u>RW</u>NKL<u>CV</u> Seq 2: D<u>RW</u>NLF<u>CV</u>ATYWE

3- <u>Make a Hash Table</u> (Hashing) that has the position of each k-tuple in each sequence

	i.e.					
<u>2-tuple</u>	<u>pos. in Seq1</u>	<u>pos in Seq 2</u>	Offset (pos1-pos2)			
RW	5	2	3			
CV	10	7	3			
AH	1					

<u>4- Look for words (k-tuples) with same offset</u> These are in-phase and reveal a region of alignment between the two sequences.

5- Build a local alignment based on these, extend it outwards

Seq 1: AHFY<u>RW</u>NKL<u>CV</u> Seq 2: D<u>RW</u>NLF<u>CV</u>ATYWE

With hashing, number of comparisons is proportional To the average sequence length (i.e. an O(n) problem), Not an O(mn) problem as in dynamic programming.

Proteins – ktup = 1-2, Nucleotides, ktup=4-6

One big problem – low complexity regions.

Seq 1: AHFY<u>PPPPPPPFSER</u> Seq 2: DVAT<u>PPPPPPPPPP</u>NLFK

BLAST

Same basic idea as FASTA, but faster and more sensitive! How?

BLAST searches for common words or k-tuples, but limits the search for k-tuples that are most significant, by using the log-odds values in the Blosum62 amino acid substitution matrix

i.e. look for <u>WHK</u> and might accept WHR but not HFK as a possible match (note 8000 possibilities)

Repeat for all 3-tuples in the query

Search the database for a match to the top 50 3-tuples that match the first query position in the sequence, the second query position, etc.

Use any match to seed an ungapped alignment (old BLAST)

Word length is fixed:3-tuple for proteins11-tuple for nucleotides

By default, filters out low complexity regions.

Determine if the alignment is statistically significant. calculates the probability of observing a score greater than or equal to your alignment based on extreme value distribution. Calculates an E-value = expectation value:

This is the probability of finding an unrelated sequence that shows this good an alignment just by chance.

Remember if p=.0001 and my database has 500,000 sequences, I will have an E=50! (normal starting E=10)

	Protezn: Translations: Rotilovo regulta for an RID
81	<u>na</u>
Set indiseque	nee From: To:
Chaose datab	ase (mr))¢
Do CD-84	eta 🔂
54	BLASTI " Resolution (Resolant
Option	nt for advanced blasting or telest from ((nons).
Composition be	± ▼
Chaose fill	ar 🗹 Low complexity 💭 Mask for look up table only 🛄 Mask lower case
	at 10
Exp	
Env Vort 8	22 3 1
Est Vort 8 Mai	22 3 0 Existence 7 Extension 2 0

Psi-BLAST

Position-specific iterative BLAST

Combines BLAST searching with PSSMs!

1- Start with regular BLAST search – look at the results

Distribution of 42 Blast Hits on the Query Sequence

Psi-BLAST

Position-specific iterative BLAST

Combines BLAST searching with PSSMs!

- **1- Start with regular BLAST search look at the results**
- 2- Pick the ones you believe are really homologous

Sequences with E-value BETTER than threshold

			Score	E
Sequ	ences	s producing significant alignments:	(bits)	Value
HLA		gi 14785405 [ref XP_047240.1] (XM_047240) polo-like kinase (Droso	623	e-178
HEW		gi 4826916 ref NP_005021.1 (NM_005030) polo-like kinase (Drosop	622	e-177
HEW	$\mathbf{\nabla}$	gi 393017 gb AAA56634.1 (U01038) pLK [Homo sapiens]	621	e-177
HEW		gi 403458 gb AAA36659.1 (L19559) protein kinase [Homo sapiens]	619	e-176
HEW		gi 6755104 ref NP 035251.1 (NM_011121) polo-like kinase homolog	600	e-171
HCH		gi 1083470 pir A47545 protein kinase (EC 2.7.1.37) Plk - mouse	597	e-170
HEW		gi 12230396 sp 062673 PLX1 RAT Serine/threonine-protein kinase P	597	e-170
HEW		gi 13507375 gb AAK28550. 1 AF339021 1 (AF339021) polo-like protei	544	e-154
HEW	\mathbf{M}	gi[1537064]gb]AAC60017.1 (U58205) Plx1 [Xenopus laevis]	503	e-142
HEW		gi 11463874 db BAB 18588.1 (AB043897) polo-like kinase [Hemicen	362	3e-99
MW	M	gi 465783 sp P34331 YK24 CAEEL Hypothetical 41.8 kDa protein C14	293	2e-78
NEW		gi 17554392 ref NP 498770.1 (NM 066369) Protein kinase [Caenorh	293	2e-78
HEW		gi 3063645 gb AAC14129.1 (AF057165) putative serine/threenine p	293	2e-78
HEW	$\mathbf{\nabla}$	gi 17510519 ref NP 491036.1 (NM 058635) Y71F9B.7.p [Caenorhabdi	283	le-75
HLA		gi 17737679 ref NP 524179.1 (NM 079455) polo [Drosophila melano	254	6e-67
HEA	\mathbf{M}	gi 14286167 sp P52304 POLO DROME PROTEIN KINASE POLO >gi 7293666	254	9e-67
HEA		gi 3366792 gb AAC28624.1 (AF053092) polo-like kinase isoform [R	152	3e-36
NEW		gi 17541716 ref NP 501196.1 (NM 068795) protein kinase (Caenorh	150	2e-35
HEW		gi 5730055 ref NP 006613.1 (NM 006622) serum-inducible kinase [141	le-32
HEW		gi 14730424 ref XP 041712.1 (XM 041712) serum-inducible kinase	140	1e-32
HEA		gi 1711416 sn P53351 SNK MDUSE Serine/threonine-protein kinase S	139	3e-32
HEM	\square	gi 13929172 ref NP 114009.1 (NM 031821) serum-inducible kinase	139	5e-32
瓶角	Ø	gi 16902371 gb AAL30177.1 AF357842 1 (AF357842) polo-like kinase	138	6e-32
國內		gi 16902367 gb AAL30175.1 AF357840 1 (AF357840) polo-like kinase	135	4e-31
NEW		gi 833810 gb AAC52191.1 (U21392) putative serine/threonine kina	135	7e-31
田泉		gi 13878440 sp 060806 CNK MOUSE CYTOKINE-INDUCIBLE SERINE/THREON	134	7e-31
NA	\blacksquare	gi 4758016 [ref NP 004064.1] (NM 004073) cytokine-inducible kinas	131	8e-30
MPG.				

Psi-BLAST

Position-specific iterative BLAST Combines BLAST searching with PSSMs!

- **1- Start with regular BLAST search look at the results**
- 2- Pick the ones you believe are really homologous

3- Now align these sequences to the query sequence and make up a PSSM that tells how much to weigh each amino acid in each position in the alignment

- 4- Use this PSSM to do another BLAST search
- 5- Add any new sequences that come up to the old ones if you believe they are really homologous

6- Repeat the alignment to make a new and improved PSSM that tells how much to weigh each amino acid in each position in the alignment

	100			
		gi 13507375 gb AAK28550.1 AF339021 1 (AF339021) polo-like protei	461	e-129
	.3	g1 11463874 db i BAB 18588.1 (AB043897) polo-like kinase [Hemicen	413	e-114
	2	gi 17510519 ref NP 491036.1 (NM_050635) Y71F9B.7.p (Caenorhabdi	392	s - 10B
		gi 3063645 gb AAC 14129.1 (AF057165) putative serine/threenine p	391	e-108
	• 🗹	gi 17554392 reE NP 498770.1 (NM 066369) Protein kinase [Caenorh	390	e-108
	33	gi 465783 mp P34331 YX24 CAEEL Hypothetical 41.8 kDa protein C14	387	e-107
	9	gi 17737679 ref NP 524179.1 (NM 079455) pele [Dresophila melano	371	e-102
	33	gi 14286167 mp P52304 POLO DROME PROTEIN KINASE POLO >gi 7293666	370	e-101
		gi 16902367 gb AAL30175.1 AF337840 1 (AF357840) polo-like kinase	224	34-88
	• 🖌	gi[833810] gb[AAC52191.1] (U21392) putative serine/threenine kina	322	24-87
	•	gi 13878440 mp 060806 CNK MDUSE CYTOKINE-INDUCIBLE SERINE/THREON	222	34-87
	•	gi 4758016 ref NP 004064.11 (NM 004073) cytokine-inducible kinas	314	54-85
_	9 🗹	gi 15530236 gb AAH13899, 1 AAH13899 (BC013899) Unknown (protein f	312	20-84
ц¢,		gi 13878438 m 09R011 CNK RAT Cytokine-inducible serine/threenin	311	70-84
	•	g1 5730055 [ref]NP 006613.1] (NM 006622) serum-inducible kinase [304	6e-82
	•	gi 14730424 [ref XP_041712.1] (XM_041712) serum-inducible kinase	204	74-82
		gi 13878441 sp 098484 CNK HUMAN CYTOKINE-INDUCIBLE SERINE/THREON	300	8e-81
-	•	gi 13929172[ref[NP_114009.1] (NM_031821) serum-inducible kinase	298	4e-80
		gi 1711416 sp P53351 SNK MDUSE Serine/threonine-protein kinase S	298	4e-80
		gi 16902371 gb AAL30177.1 AF357842 1 (AF357842) polo-like kinase	292	4e-78
		gi 13448668 gb AAK27155, 1 AF348425 1 (AF348425) FGF-inducible ki	287	70-77
		gi 2644989 emb CAA74301.1 (Y13968) polo-like protein kinase (Tr	264	6e-70
		gi 17541716 ref NP 201196.11 (NM_068795) protein kinase (Caenorh	259	4e-68
		gi 1709661 sp P50528 PLO1 SCHPO Serine/threenine-protein kinase	230	1e-59
		gi 6323643 ref NP 013714.1 (NC_001145) CDC5 is dispensable for	193	20-48
		gi 3366792 gb AAC28624.1 (AF053092) polo-like kinase isoform [R	159	40-38
		gi 16902369 gh AAL30176.1 AF357841 1 (AF357841) polo-like kinase	156	2e-37
		g1 13448666 ab AAK27154.1 (AF348424 1 (AF348424) serum-inducible	140	20-34
		gi 18591448 ref XP 059051.2 (XM_059051) similar to cytokine-ind	145	40-34
-	3	gi 18569167 [ref XP 095399.1] (XM_095399) hypothetical protein XP	96	5e-19
UCA		gi 4099301 gb AAD00575.1 (U85755) serum-inducible kinase [Nomo	48	9e-05

Run PS1-Blast stration 3

Psi-BLAST

- 7-- Use this PSSM to do another BLAST search
- 8– Keep iterating until no new sequences are found

Very good for finding weakly related sequences

...on to Molecular Phylogenetics

Gene Structure

Mutation Rates

Consider 2 sequences

K= # of substitutions since they shared a common ancestor

T= divergence time R = mutation rate = K/(2T)

KEY PREMISE OF PHYLOGENETICS:

If R=constant for all species, then K will provide insight into evolutionary relatedness for which no other physical evidence is available.

Mutation Rates

Mutations: refined by process of natural selection... Often, but not always at the protein level...

 \rightarrow Functional constraint

Human, mouse, rabbit and cow beta-globin

	Length, bp	# Pairwise Δ 's (mean)	Sul (subs/	bstitutior /site x 10	n rate D ⁹ years)
Noncoding, overall	913	268		3.33	_
Coding, overall	441	69		1.58	functionally
5' Flank	300	96	aid	3.39	functionally
5' UTR	50	9 cha		1.86	constrained
Intron 1	131	42	nyes	3.48]
3' UTR	132	33 …g€	enerally	3.00	
3' Flank	300	76	true	3.04	
		400			

Common ancestor 100 million years ago

Synonymous vs Nonsynonymous Substitutions

18 out of 20 amino acids have more than one codon GGG, GGC, GGU, GGA \rightarrow Glycine

Human and rabbit beta-globin genes:

47 substitutions in coding sequence

- 27 synonymous substitutions
- 20 nonsynonymous substitutions

but 3x as many opportunities!

Synonymous vs Nonsynonymous Substitutions

Not all positions in a codon equally likely to give non-synonymous substitutions

Synonymous vs Nonsynonymous Substitutions

If natural selection operates at protein level, expect nucleotide substitutions appear most rapidly at 4-fold sites and least rapidly at non-degenerate sites

What does data show?

Human vs rabbit beta-globin genes (coding region)

<u>Region</u>	<u># sites (bp)</u>	<u>#changes</u>	Sub. Rate <u>Subs/site.10⁹ years</u>		
Non-deg.	302	17	.56		
2-fold deg.	60	10	1.67		
4-fold deg.	85	20	2.35		

Mutation versus Substitutions

Mutation: changes in nucleotide sequences due to errors in DNA replication or repair

Substitution: mutations that pass through the filter of natural selection

Synonymous substitution rates, Ks, reflect actual mutation rate

Non-synonymous substitution rates, $\mathbf{K}a$, do NOT reflect actual mutation rate, as subject to natural selection

New alleles (versions of a gene) typically begin at low frequencies q = 1/(2N) where N=# of diploid reproducing organisms

Why are there persistant high levels of variation in populations? Why not $q \rightarrow 0$, $q \rightarrow 1$?

Most mutations are selectively neutral!

Estimating Substitution Numbers

Infrequent substitutions between 2 sequences: Count 'em...gives **K**

More frequent substitutions – counting will significantly UNDERestimate the number of true substitutions since they shared a common ancestor

Why?

Jukes-Cantor Model

Assume each nucleotide equally likely to change into any other nt, with rate of change=α. Overall rate of substitution = 3α ...so if G at t=0, at t=1, P_{G(1)}=1-3α

and
$$P_{G(2)}$$
=(1-3 α) $P_{G(1)}$ + α [1- $P_{G(1)}$]

Expanding this gives $P_{G(t)}=1/4 + (3/4)e^{-4\alpha t}$

Can show that this gives $K = -3/4 \ln[1-(4/3)(p)]$

K = true number of substitutions that have occurred,
 P = fraction of nt that differ by a simple count.
 Captures general behaviour...

Compare J-C with real data...assumption of global uniformity in α was unrealistic...still provides a useful framework...

Nucleotides: two categories:

purines: A, G pyrimidines: C, T, U

Exchange nucleotides within or between classes happens at different rates! Transitions: purine→purine, pyrmidine →pyrimidine three times as commmon as Transversions: purine→pyrimidine or pyrimidine→purine

Led to Kimura's Two Parameter Model

Kimura's Two Parameter Model

Transitions occur at rate $\boldsymbol{\alpha}$

Transversions occur at rate β Now P_{GG(1)} = 1- α -2 β

P_{GG(2)}: 4 possibilities:

TimeScenario 1Scenario 2Scenario 3Scenario 4GGGGGGGGGACT

 $\begin{array}{cccc} G & G & G \\ No \Delta & 1 \\ \hline Transition & 2 \\ \hline Transversions \end{array}$

 $\mathsf{P}_{\mathsf{GG}(t)} = \frac{1}{4} + (1/4)e^{-4\beta t} + (1/2)e^{-2(\alpha+\beta)t}$

Kimura's Two Parameter Model

Transitions occur at rate α Transversions occur at rate β

 $\mathsf{P}_{\mathsf{GG}(2)} = (1 - \alpha - 2\beta) \mathsf{P}_{\mathsf{GG}(1)} + \alpha \mathsf{P}_{\mathsf{GA}(1)} + \beta \mathsf{P}_{\mathsf{GG}(1)} + \beta \mathsf{P}_{\mathsf{GG}(1)}$

expanding...

$$P_{GG(t)} = 1/4 + (1/4)e^{-4\beta t} + (1/2)e^{-2(\alpha+\beta)t}$$

Manipulating equation gives estimate of true number of substitutions if only two sequences are available, $K = 1/2 \ln[1/(1-2P-Q)] + 1/4 \ln[1/(1-2Q)]$

Where K = true number of substitutions P = fraction of nts undergoing transitions by simple count Q = fraction of nts undergoing tranversions by simple count

More complex Parameter Models Possible

Could even make $A \rightarrow C \neq C \rightarrow A$

Problem is sampling error – not enough data to get Good parameters within a single gene family, usually

Why not combine different genes?

Find strikingly different rates of evolution between different Genes – up to and greater than 200-fold.

RATE DEPENDS ON FUNCTION!

Histones – each aa interacts with DNA – slowest rate of substitution known

HLA gene locus – involved in immune system recognition of foreign antigens – needs to adapt rapidly - one of the Highest substitution rates known

However, rates of molecular evolution for loci with similar functional constraints often very uniform over long periods of evolutionary time.

Molecular Clocks

1960s: Emile Zuckerkandl and Linus Pauling

Postulate: Substitution rates so constant within homologous proteins over long periods of evolutionary time that accumulation of amino acid changes reflects the steady ticking of a molecular clock.

Relative Rate Test of Molecular Clock Hypothesis

1973: Sarich and Wilson

Consider relative rate of substitution in lineage for species 1 and 2 Need to designate a less related species 3 as an outgroup i.e. 1=humans, 2=gorillas, 3= baboons

Phylogenetic tree (more soon!)

1 and 2 diverged from a common ancestor, A

Number of substitutions between any two species = sum of number of substitutions along branches of the tree that connect them

1 and 2 diverged from a common ancestor, A

Number of substitutions between Any two species = sum of number of Substitutions along branches of the tree That connect them

 d_{13} , d_{23} , d_{12} – can measure directly

$$d_{13} = d_{A1} + d_{A3}$$

$$d_{23} = d_{A2} + d_{A3}$$

$$d_{12} = d_{A1} + d_{A2}$$

Algebra: $d_{A1} = (d_{12} + d_{13} - d_{23})/2$ $d_{A2} = (d_{12} + d_{23} - d_{13})/2$ Theorum 1 Molecular clock predicts $d_{A1} = d_{A2}$

Find, for the most part, this is true, but not always, depending on species... So bottom line when comparing two species need to prove Theorum 1 before using the molecular clock!

Phylogenetic Trees – also called dendrograms

- Made by arranging nodes and branches.
- Graphical representation of evolutionary relatedness of 3 or more sequences

Nodes – distinct taxonomical unit

- Terminal nodes: gene or organism for which data has been collected
- Internal node inferred common ancestor that gave rise to 2 lineages

For the mathematicians: Tree - special graph with n nodes, n-1 links, no circuits

Newick notation (((1,2), (3,4)),5)

Scaled trees

Branch length is α difference between pairs of neighboring nodes.

Ideally, scaled trees should be additive

Unscaled trees

Only convey relative kinship information without representing number of changes that separate sequences

Rooted trees

Make an inference about common ancestor and direction of evolution. A single node is designated as common ancestor with unique path from it through evolutionary time to any other node.

Root is assigned through use of an outgroup – something that unambiguously separated earlier than species being considered.

Unrooted trees

Only specifies relationship between nodes. Says nothing about the direction of evolution

Why not always use rooted trees?

Why not always use rooted trees?

- 1 Need a clear outgroup
- 2 Computational difficulty

Consider 3 sequences 1, 2, and 3: 3 possible rooted trees

Why not always use rooted trees?

Number of	Number of	Number of
<u>sequences</u>	rooted trees	unrooted trees
2	1	1
3	3	1
4	15	3
5	105	15
10	34,459,425	2,027, 025
15	213,458,046,767,875	7,905,853,580,625
N _R =(2n- N _U =(2n-	3)!/2 ⁿ⁻² (n-2)! 5)!/2 ⁿ⁻³ (n-3)!	tcuts

Unweighted pair-group method with arithmetic mean

- Oldest distance method, statistically based
- Requires data be condensed to a measure of genetic distance
 **Build a distance matrix between taxa (I.e. sequences) **

Consider 4 sequences A, B, C, D

Species	A	В	С	
В	d _{AB}			d _{AB} is distance
С	d _{AC}	d _{BC}		Belween A and B
D	d _{AD}	d _{BD}	d _{cD}	

Step 1: Cluster the two closest sequences into composite group, i.e. if d_{AB} is smallest, make new group (AB).

UPGMA

Consider 4 sequences A, B, C, D

Species	А	В	С	
В	d _{AB}			d _{AB} is distance
С	d _{AC}	d _{BC}		Delween A and D
D	d _{AD}	d _{BD}	d_{CD}	

Step 1: Cluster the two closest sequences into composite group, i.e. if d_{AB} is smallest, make new group (AB).

Step 2: Create a new distance matrix between (AB) and C and D. $d_{(AB)C} = 1/2 (d_{AC} + d_{BC}); d_{(AB)D} = 1/2 (d_{AD} + d_{BD})$

UPGMA

Consider 4 sequences A, B, C, D

Species	A	В	С						
В	d _{AB}			d _{AB} is distance					
С	d _{AC}	d _{BC}		Belween A and B					
D	d _{AD}	d _{BD}	d_{CD}						
Step 1: Cluster the two closest sequences into composite group,									
i.e. if d _{AB} is smallest, make new group (AB).									

- Step 2: Create a new distance matrix between (AB) and C and D. $d_{(AB)C} = 1/2 (d_{AC} + d_{BC}); d_{(AB)D} = 1/2 (d_{AD} + d_{BD})$
- Step 3: Using new matrix, cluster the two closest sequences into composite group. Repeat above until all species have been grouped.

Species	А	В	С					
В	d _{AB}			d _{AB} is distance				
С	d _{AC}	d _{BC}		Between A and B				
D	d _{AD}	d _{BD}	d_{CD}					
Step 1: Cluster	the two clos	sest seque	nces int	o composite group,				
i.e. if d _{AB} is smallest, make new group (AB).								

- Step 2: Create a new distance matrix between (AB) and C and D. $d_{(AB)C} = 1/2 (d_{AC} + d_{BC}); d_{(AB)D} = 1/2 (d_{AD} + d_{BD})$
 - Step 3: Using new matrix, cluster the two closest sequences into composite group. Repeat above until all species have been grouped.
 - Step 4: For scaled branch lengths, put node halfway between grouped species.

UPGMA - exan	nple	
---------------------	------	--

Species	А	В	С	D
В	9			
С	8	11		
D	12	15	10	
E	15	18	13	(5) (D,E)

UPGMA -	example	
----------------	---------	--

Species	A	В	С	D
В	9			
С	8	11		
D	12	15	10	
E	15	18	13	5 (D,E)
				A C D E
Species	A	В	С	
В	9			
С	(8)	11		
DE	13.5	16.5	11.5	(A,C) (D,E)

UPGMA - example

	UPGMA	– addin	g dista	inces	
Species	A	В	С	D	
В	9				
С	8	11		_	_
D	12	15	10		E 2.5
Е	15	18	13	(D,E	Ξ)
	۸	D		C $D2.5$	E 2.5
Species	A	В	U 4		
В	9			\sim	
С	(8)	11			
DE	13.5	16.5	11.5	(A,C) (D	,E)

UPGMA – adding distances

Branch lengths for scaled unrooted tree = Fitch-Margoliash Algorithm for 3 sequences

Note: F-M assumes additivity of branch lengths but DOES NOT Assume equal rates of evolution along branches. (Can specify this though : Kitsch-Margoliash)

Fitch-Margoliash Algorithm for >3 sequences

Steps:

- 1- Find closest 2 sequences (D,E)
- 2- Treat rest as composite and take average of D to (ABC), E to (ABC)
- 3- Use these to calculate d, e
- 4- Make new composite DE
- 5- Make new distance table
- 6- Find next most closely related pair and repeat from step 2

Now repeat starting with another pair as the closest starting pair In the end, calculate all predicted distances for all trees, and choose What best fits data

Transformed Distance Method

UPGMA assumes constant rate Of evolution across all lineages

 \square

Can allow different rates of evolution across different lineages if you normalize using an external reference that diverged early...i.e. use an outgroup

> Define \overline{d}_{D} = average distance Between outgroup and all ingroups

$$d'_{ij} = (d_{ij} - d_{iD} - d_{jD})/2 + \overline{d_D}$$

Now use d'_{ij} to do the clustering ...basically just comes from the insight that ingroups evolved separately from each other <u>ONLY AFTER</u> they diverged from outgroup

Neighbor's Relation Method

Variant of UPGMA that pairs species in a way that creates a tree with minimal overall branch lengths.

Pairs of sequences separated by only 1 node are said to be neighbors.

For this tree topology

 $d_{AC} + d_{BD} = d_{AD} + d_{BC} = a + b + c + d + 2e = d_{AB} + d_{CD} + 2e$

For neighbor relations, four-point condition will be true: $d_{AB} + d_{CD} < d_{AC} + d_{BD} \dots and \dots d_{AB} + d_{CD} < d_{AD} + d_{BC}$

So just have to consider all pairwise arrangements and determine which one satisfies the four-point condition.

Neighbor-Joining Methods

Start with star-like tree. Find neighbors sequentially to minimize total length of all branches

Studier & Kepler 1988: $Q_{12}=(N-2)d_{12} - \Sigma d_{1i} - \Sigma d_{2i}$ Where any 2 sequences can be 1 and 2

Try all possible sequence combinations. Whichever combination of pairs gives the smallest Q_{12} is the final tree!

Maximum Likelihood

- A purely statistical method.
- Probablilities for every nucleotide substitution in a set of aligned sequences is considered.
- Calculation of probabilities is complex since ancestor is unknown
- Test all possible trees and calculate the aggregate probablility.
- Tree with single highest aggregate probablilty is the most likely to reflect the true phylogenetic tree.

VERY COMPUTATIONALLY INTENSE

Parsimony: a derogatory term from the 1930s and 1940s To describe someone who was especially careful with Spending money.

Biologically: Attach preference to an evolutionary pathway That minimizes the number of mutational events since (1) Mutations are rare events, and

(2) The more unlikely events a model postulates, the less I likely the model is to be true.

Parsimony: a character-based method, NOT a distance-based method.

For parsimony analysis, positions in a sequence alignment fall into one of two categories: informative and uninformative.

Sequence	1	2	3	4	5	6		
1	G	G	G	G	G	G		
2	G	G	G	А	G	Т		
3	G	G	А	т	А	G		
4	G	А	Т	С	А	Т		

Position

Only 3 possible unrooted trees you can make...

Position

Which tree is the right one?

Position

Invariant positions – contain NO INFORMATION→ uninformative

Position

Equally uninformative – need one mutation in each tree

Position

Also uninformative – need two mutations in each tree

Position

Also uninformative – need three mutations in each tree

Position

Informative! – need only one mutation in one tree but two In the other trees!

Position

Informative! – need only one mutation in one tree but two In the other trees!

Position

Sequence	1	2	3	4	5	6		
1	G	G	G	G	G	G		
2	G	G	G	А	G	Т		
3	G	G	А	т	А	G		
4	G	А	Т	С	А	Т		

So to be Informative, need at least 2 different nucleotides And each has to be present at least twice.

Every tree is considered for every site, maintaining a running score of the number of mutations required. The tree with the smallest number of invoked mutations is the most parsimonious

Mathematically, most likely candidate nts at an Internal node are: {descendent node 1} Ω {descendant node 2}

IF this is null set, then most likely candidate nts are: {descendent node 1} U {descendant node 2}

 Σ **U** = minimum number of substitutions required to account for nts at terminal nodes since they last shared common ancestor

Total number of substitutions, informative + uninformative = tree length

If you use parsimony but weigh the mutations by some kind of scoring system that accounts for the likelihood of each mutation \rightarrow weighted parsimony

By-product of parsimony is inference of nt identity in the ancestral sequence

10 sequences: > 2 million possible trees... Need a better way...

Branch and bound (Hardy and Penny, 1982)

Step 1: Determine an upper bound to the length of the most parsimonious tree = L - either chosen randomly, or else using a computationally fast way like UPGMA

Step 2: Grow trees incrementally by adding branches to a smaller tree that describes just some of the sequences.

Step 3: If at any point, the number of required substitutions is > L, abandon that tree.

Step 4: As soon as you get a tree with fewer substitutions than L, use that tree as the new upper bound to make remainder of the search even more efficient.

Works for <= 20 sequences

For > 20 sequences

Heuristic Searches

Assumption: Alternative trees are not all independent of each other. Most parsimonious trees have similar topologies.

- Step 1: Construct an initial tree as a good guess: UPGMA, and use it as a starting point.
- Step 2: Branch-swap subtrees and graft them onto the starting tree, keeping overall topology. See how many are shorter than the starting tree. The prune and re-graft, and see if it keeps getting better.
- Step 3: Repeat until a round of branch swapping fails to generate any better trees
Parsimony

Often get tens or hundreds of equally parsimonious trees

Build a consensus tree – any internal node supported by At least half the trees becomes a simple bifurcation.

Phylogenetic Software

PHYLIP: Phylogenetics Inference Package free at http://evolution.genetics.washington.edu

Includes many programs including various distance methods, maximum likelihood, parsimony, with many of the options we've discussed.

PAUP: Phylogenetic Analysis Using Parsimony http://www.lms.si.edu/PAUP - NOT FREE Now includes maximum likelihood and distance methods as well

Tree of Life

Carl Woese and colleagues, 1970s

Used 16S rRNA – all organisms possess.

Found 3 major evolutionary groups: Bacteria Eucarya Archea (including thermophilic bacteria

Human Origins:

mt DNA sequences – huan populations differ by ~ 0.33% (very small). Greatest differences NOT between current populations on different continents, but between human populations residing in Africa – "out of Africa" theory

Mitochondrial "eve" and Y-chromosome "adam"