7.91 - Lecture \#4 Michael Yaffe

Database Searching \& Molecular Phylogenetics

(((A,B)C)D)

Outline

- FASTA, Blast searching, Smith-Waterman
- Psi-Blast
- Review of Genomic DNA structure
- Substitution patterns and mutation rates
- Synonymous and non-Synonymous substitutions
- Jukes-Cantor Model
- Kimura's Two-Parameter Model
- Molecular Clocks
- Phylogenetic Trees - rooted and unrooted
- Distance Matrix Methods
- Neighbor-Joining Method and Related Neighbor Methods
- Maximum Likelihood

Outline (cont)

- Parsimony

Branch and Bound Heuristic Seaching

- Consensus Trees
- Software (PHYLIP, PAUP)
- The Tree of Life

Reading: Mount, p. 237-280, 283-286, 291-308

Database Searching

Problem is simple:
I want to find homologues to my protein in the database How do I do it?

Do the obvious - compare my protein against every other protein in the database and look for local alignments by dynamic programming Uh Oh!

....essentially an O(mn) problem

Database Searching

Still, this can be done - ~ 50x slower than Blast/FASTA, Smith-Waterman algorithm...
SSEARCH (ftp.virginia.edu/pub/fasta) - do it locally!
But in the old days, needed a faster method...
2 approaches - Blast, FASTA - both heuristic
(i.e. tried and true) - almost always finds related

Proteins but cannot guarantee optimal solution
FASTA: Basic Idea
1- Search for matching sequence patterns or words
Called k-tuples, which are exact matches of " k " characters
between the two sequences
i.e. $\underline{R W}=2$-tuple

Seq 1: AHFYRWNKLCV
Seq 2: DRWNLFCVATYWE

Database Searching

FASTA: Basic Idea
2- Repeat for all possible k-tuples
i.e. $\mathrm{CV}=2$-tuple

Seq 1: AHFYRWNKLCV Seq 2: DRWNLFCVATYWE

3- Make a Hash Table (Hashing) that has the position of each k-tuple in each sequence
i.e.

Database Searching

Seq 1: AHFYRWNKLCV Seq 2: DRWNLFEVATYWE
3- Make a Hash Table (Hashing) that has the position of each k-tuple ineach sequence

2-tuple pos. in Seq1 pos in Seq2 Offet (pos1-pos2)

4- Look for words (k-tuples) with same offset
These are in-phase and reveal a region of alignment between the two sequences.
5-Build a local alignment based on these, extend it outwards
Seq 1: AHFYRWNKLCV
Seq 2: DRWNLFCVATYWE

Database Searching

With hashing, number of comparisons is proportional
To the average sequence length (i.e. an O(n) problem), Not an $O(m n)$ problem as in dynamic programming.

Proteins - ktup = 1-2,
Nucleotides, ktup=4-6
One big problem - low complexity regions.
Seq 1: AHFYPPPPPPPPFSER
Seq 2: DVATPPPPPPPPPPPNLFK

Database Searching

BLAST

Same basic idea as FASTA, but faster and more sensitive! How?
BLAST searches for common words or k-tuples, but limits the search for k-tuples that are most significant, by using the log-odds values in the Blosum62 amino acid substitution matrix
i.e. look for WHK and might accept WHR but not HFK as a possible match (note 8000 possibilities)
Repeat for all 3-tuples in the query
Search the database for a match to the top 50 3-tuples that match the first query position in the sequence, the second query position, etc.
Use any match to seed an ungapped alignment (old BLAST)

Database Searching

Word length is fixed: 3-tuple for proteins
11-tuple for nucleotides
By default, filters out low complexity regions.
Determine if the alignment is statistically significant. calculates the probability of observing a score greater than or equal to your alignment based on extreme value distribution.
Calculates an E-value = expectation value:
This is the probability of finding an unrelated sequence that shows this good an alignment just by chance.
Remember if $p=.0001$ and my database has 500,000 sequences, I will have an $E=50$! (normal starting $E=10$)

Psi-BLAST

Position-specific iterative BLAST
Combines BLAST searching with PSSMs!
1- Start with regular BLAST search - look at the results

Distribution of 42 Blast Hits on the Query Sequence

Psi-BLAST

Position-specific iterative BLAST
Combines BLAST searching with PSSMs!
1- Start with regular BLAST search - look at the results
2- Pick the ones you believe are really homologous

Sequences producing significant alignments:		Score	E			
		ts)	Value			
MEN		823	e-178			
HYY	gid 4826916 Iref\|NP 005021.21 (NM_005030) polo-like kinase (Drosop..	622	c-177			
	Sid 393017 \|ab	AAA56634. 1] (U01038) pLK [Homo sapiens]	621	e-177		
HEW	Sdil 103 -158\|gh	AAA 36659 . 1) (L19559) protein kinase [Homo sapiens]	619	e-176		
H6H		600	e-171			
HM (1)	Gi\| $1083+70 \mid$ pir 11447545 protein kinase (EC 2.7.1.37) Plk - mouse . .	597	e-170			
MEH	gi\| 12230396 [spl062673	PLK 1 RAT Serine/threonine-protein kinase P. .	597	e- 170		
HEW		544	e-154			
H2W 8	gi [$153706+\mid \mathrm{gb}$ /AAC60017. I) (U58205) Plxi \| Xenopus laevis)	503	e-142			
HTH $\mathrm{H}^{\text {H }}$		362	3e-99			
Mty \square^{1}	Gi $\|465783\|$ SplP34331\|XK24_CAEEL Hypothetical 41.8 kDa protein C14...	$\underline{293}$	2e-78			
MH	g2 127554392\|reflnp \$98770.2] (NM_068369) Protein kinase [Caenorh...	293	2e-78			
HY 8	gi\| $3063645\|g b\| A A C 14129.14$ (AF057163) putative serine/threonine p...	293	2e-7日			
Mry	gi\| $17510519 \mid$ efelNP 491036.11 (NM_058635) Y71E9B.7.p [Caenorhabdi...	203	1e-75			
HR (V)	gid $17737679 \mid$ reE\|NP 524179 , ¢ (NM_079455) polo (Drosophila melano...	254	6e-67			
H\% H_{4}	git 14286267 \|sp	P52304	POLO DRONG PROTEIN KINASE POLO >gi	7293666...	254	$9 \mathrm{e}-67$
H6	gil 3366792]gblaAC28624. I] (AF093092) polo-1ike kinase isoform [R...	152	3e-36			
HiN	gh\| 17542716	reflnp 501196.1 (NM 008795) protein kinase (Caenorh..	150	2e-35		
Hity	gij 5730055 [reE]NP 000613.1$]($ NH_006622) serum-inducible kinase [...	141	1e-32			
Hith	gid $14730424\|r e f\| X P$ 041712. I\| (XM_041712) serum-inducible kinase . .	140	1e-32			
Nty	gi\| 1711416 /sp	PS3351	SNK MDUSE Serine/threonine-protein kinase S...	139	3e-32	
Hity	gij [13929172\|ref	NR_144009. 1] (NM_031821) serun-inducible kinase . .	139	$5 e-32$		
H\%	gid 1090237 /ab\|AAL30177, 1	AF357842_d (AF357842) polo-1ike kinase...	138	6e-32		
ITd D	gi\| 26902367]gb	AAL30175.2	AF357840 - ${ }^{\text {d }}$ (AF357840) pola-1ike kinase...	135	4e-31	
NITH 8	gil $833810 \mid$ gb\|AAC52191, 1	(U21392) putative serine/threonine kina...	135	7e-31		
环H		134	7e-31			
MY -	git $4758016 \mid$ reflnP 004064,1 (NM_004073) cytokine-inducible kinas...	131	$8 \mathrm{e}-30$			
unu -						

Psi-BLAST

Position-specific iterative BLAST
Combines BLAST searching with PSSMs!
1- Start with regular BLAST search - look at the results
2- Pick the ones you believe are really homologous
3- Now align these sequences to the query sequence and make up a PSSM that tells how much to weigh each amino acid in each position in the alignment

4- Use this PSSM to do another BLAST search
5- Add any new sequences that come up to the old ones
if you believe they are really homologous
6- Repeat the alignment to make a new and improved PSSM that tells how much to weigh each amino acid in each position in the alignment

gide33910|gh|AMC32.191. 1 (521302) putative seride/threonine kina... 322

e- 229

 gil L27737679lce6lNP 324179, Al (NM_070435) pole |Drosophila molano... 371 e-102

e- 101
Se-88
2e-67
3e-87
3e-85
$20-84$
10-84
万e- Cl 2
18-82
8e-81
4e-B0
4e-80
te-7日
7e-77
6 - 70
गe-6B
2e-59
20-4B
40-38
2e-37
2e-34
40-34
se- 19
se-05

Psi-BLAST

7-- Use this PSSM to do another BLAST search
8- Keep iterating until no new sequences are found

Very good for finding weakly related sequences
...on to Molecular Phylogenetics

Gene Structure

Mutation Rates

Consider 2 sequences
K= \# of substitutions since they shared a common ancestor
T= divergence time
$R=$ mutation rate $=K /(2 T)$

KEY PREMISE OF PHYLOGENETICS:

If $R=$ constant for all species, then K will provide insight into evolutionary relatedness for which no other physical evidence is available.

Mutation Rates

Mutations: refined by process of natural selection... Often, but not always at the protein level...
\rightarrow Functional constraint

Common ancestor 100 million years ago

Synonymous vs Nonsynonymous Substitutions

18 out of 20 amino acids have more than one codon GGG, GGC, GGU, GGA \rightarrow Glycine

Human and rabbit beta-globin genes:
47 substitutions in coding sequence

- 27 synonymous substitutions
- 20 nonsynonymous substitutions

Synonymous vs Nonsynonymous Substitutions

Not all positions in a codon equally likely to give non-synonymous substitutions

Synonymous vs Nonsynonymous Substitutions

If natural selection operates at protein level, expect nucleotide substitutions appear most rapidly at 4 -fold sites and least rapidly at non-degenerate sites

What does data show?
Human vs rabbit beta-globin genes (coding region)

Region \# sites (bp) \#changes

Sub. Rate

Non-deg.
2-fold deg.
4 -fold deg.

302
60
85

17
10
20
.56
1.67
2.35

Mutation versus Substitutions

Mutation: changes in nucleotide sequences due to errors in DNA replication or repair

Substitution: mutations that pass through the filter of natural selection

Synonymous substitution rates, Ks , reflect actual mutation rate Non-synonymous substitution rates, Ka, do NOT reflect actual mutation rate, as subject to natural selection
New alleles (versions of a gene) typically begin at low frequencies $q=1 /(2 N)$ where $N=\#$ of diploid reproducing organisms

Why are there persistant high levels of variation in populations? Why not $\mathrm{q} \rightarrow 0, \mathrm{q} \rightarrow 1$?
Most mutations are selectively neutral!

Estimating Substitution Numbers

Infrequent substitutions between 2 sequences: Count 'em...gives K

More frequent substitutions - counting will significantly UNDERestimate the number of true substitutions since they shared a common ancestor

Why?

Jukes-Cantor Model

Assume each nucleotide equally likely
 to change into any other nt, with rate of change $=\alpha$.
Overall rate of substitution $=3 \alpha$
\ldots. so if G at $t=0$, at $t=1, P_{G(1)}=1-3 \alpha$

$$
\text { and } \mathrm{P}_{\mathrm{G}(2)}=(1-3 \alpha) \mathrm{P}_{\mathrm{G}(1)}+\alpha\left[1-\mathrm{P}_{\mathrm{G}(1)}\right]
$$

Expanding this gives $\mathrm{P}_{\mathrm{G}(\mathrm{t})}=1 / 4+(3 / 4) \mathrm{e}^{-4 \alpha t}$
Can show that this gives $K=-3 / 4 \ln [1-(4 / 3)(p)]$
$\mathrm{K}=$ true number of substitutions that have occurred,
$\mathrm{P}=$ fraction of $n t$ that differ by a simple count.
Captures general behaviour...

Compare J-C with real data...assumption of global uniformity in α was unrealistic...still provides a useful framework...

Nucleotides: two categories: purines: A, G
pyrimidines: C, T, U
Exchange nucleotides within or between classes happens at different rates!
Transitions: purine \rightarrow purine, pyrmidine \rightarrow pyrimidine three times as commmon as
Transversions: purine \rightarrow pyrimidine or pyrimidine \rightarrow purine

Led to Kimura’s Two Parameter Model

Kimura's Two Parameter Model

Time Scenario 1 Scenario 2 Scenario 3 Scenario 4
G
\downarrow

\square
\downarrow

\square
No Δ
G
\downarrow
A
\downarrow
G
1 Transition
G
\downarrow
C
\downarrow
G
2 Transversions

Kimura's Two Parameter Model

Transitions occur at rate α Transversions occur at rate β

$$
\begin{aligned}
& \mathrm{P}_{\mathrm{GG}(1)}=1-\alpha-2 \beta \\
& \mathrm{P}_{\mathrm{GG}(2)}: 4 \text { possibilities: }
\end{aligned}
$$

Time Scenario 1 Scenario 2 Scenario 3 Scenario 4

No $\Delta \quad 1$ Transition 2 Transversions

$$
P_{G G(2)}=(1-\alpha-2 \beta) P_{G G(1)}+\alpha P_{G A(1)}+\beta P_{G C(1)}+\beta P_{G T(1)}
$$

expanding...

$$
P_{G G(t)}=1 / 4+(1 / 4) e^{-4 \beta t}+(1 / 2) e^{-2(\alpha+\beta) t}
$$

Kimura's Two Parameter Model

$\xrightarrow{\sim}$
expanding...

$$
P_{G G(t)}=1 / 4+(1 / 4) e^{-4 \beta t}+(1 / 2) e^{-2(\alpha+\beta) t}
$$

Manipulating equation gives estimate of true number of substitutions if only two sequences are available,

$$
K=1 / 2 \ln [1 /(1-2 P-Q)]+1 / 4 \ln [1 /(1-2 Q)]
$$

Where $\mathrm{K}=$ true number of substitutions
$P=$ fraction of nts undergoing transitions by simple count
$Q=$ fraction of nts undergoing tranversions by simple count

More complex Parameter Models Possible

Could even make $A \rightarrow C \neq C \rightarrow A$

Problem is sampling error - not enough data to get Good parameters within a single gene family, usually

Why not combine different genes?

Find strikingly different rates of evolution between different Genes - up to and greater than 200-fold.

RATE DEPENDS ON FUNCTION!

Histones - each aa interacts with DNA - slowest rate of substitution known

HLA gene locus - involved in immune system recognition of foreign antigens - needs to adapt rapidly - one of the Highest substitution rates known

However, rates of molecular evolution for loci with similar functional constraints often very uniform over long periods of evolutionary time.

Molecular Clocks

1960s: Emile Zuckerkandl and Linus Pauling

Postulate: Substitution rates so constant within homologous proteins over long periods of evolutionary time that accumulation of amino acid changes reflects the steady ticking of a molecular clock.

Clock may run at different rates for different proteins

Relative Rate Test of Molecular Clock Hypothesis

1973: Sarich and Wilson
Consider relative rate of substitution in lineage for species 1 and 2
Need to designate a less related species 3 as an outgroup
i.e. 1=humans, 2=gorillas, 3= baboons

Phylogenetic tree (more soon!)

1 and 2 diverged from a common ancestor, A

Number of substitutions between any two species = sum of number of substitutions along branches of the tree that connect them

1 and 2 diverged from a common ancestor, A

Number of substitutions between Any two species = sum of number of Substitutions along branches of the tree That connect them
$d_{13}, d_{23}, d_{12}-$ can measure directly

$$
\begin{aligned}
& d_{13}=d_{\mathrm{A} 1}+d_{\mathrm{A} 3} \\
& \mathrm{~d}_{23}=\mathrm{d}_{\mathrm{A} 2}+\mathrm{d}_{\mathrm{A} 3} \\
& \mathrm{~d}_{12}=\mathrm{d}_{\mathrm{A} 1}+\mathrm{d}_{\mathrm{A} 2}
\end{aligned}
$$

Algebra:
$d_{A 1}=\left(d_{12}+d_{13}-d_{23}\right) / 2$
$d_{A 2}=\left(d_{12}+d_{23}-d_{13}\right) / 2$
Theorum 1
Molecular clock predicts $\mathrm{d}_{\mathrm{A} 1}=\mathrm{d}_{\mathrm{A} 2}$
Find, for the most part, this is true, but not always, depending on species... So bottom line when comparing two species need to prove

Theorum 1 before using the molecular clock!

Distance-Based Phylogenetics

Phylogenetic Trees - also called dendrograms

- Made by arranging nodes and branches.
- Graphical representation of evolutionary relatedness of 3 or more sequences
Nodes - distinct taxonomical unit
- Terminal nodes: gene or organism for which data has been collected
- Internal node - inferred common ancestor that gave rise to 2 lineages

For the mathematicians: Tree - special graph with n nodes, n-1 links, no circuits

Distance-Based Phylogenetics

Newick notation
(((1,2), (3,4)),5)

Scaled trees

Branch length is α difference between pairs of neighboring nodes.
Ideally, scaled trees should be additive

Unscaled trees

Only convey relative kinship information without representing number of changes that separate sequences

Distance-Based Phylogenetics

Time

Rooted trees

Make an inference about common ancestor and direction of evolution. A single node is designated as common ancestor with unique path from it through evolutionary time to any other node.
Root is assigned through use of an outgroup something that unambiguously separated earlier than species being considered.

Distance-Based Phylogenetics

Unrooted trees
Only specifies relationship between nodes. Says nothing about the direction of evolution

Why not always use rooted trees?

Distance-Based Phylogenetics

Why not always use rooted trees?
1 - Need a clear outgroup
2 - Computational difficulty
Consider 3 sequences 1 , 2, and 3 :
3 possible rooted trees

Only 1 possible unrooted tree

Distance-Based Phylogenetics

Why not always use rooted trees?

Number of
sequences
2
3
4
5
10
15
213,458,046,767,875

Number of unrooted trees11

3
15
2,027, 025
7,905,853,580,625
$N_{R}=(2 n-3)!/ 2^{n-2}(n-2)!$
$N_{U}=(2 n-5)!/ 2^{n-3}(n-3)!$
Shortcuts...

UPGMA

Unweighted pair-group method with arithmetic mean

- Oldest distance method, statistically based
- Requires data be condensed to a measure of genetic distance
**Build a distance matrix between taxa (I.e. sequences) **
Consider 4 sequences A, B, C, D

Species
B
C
D

A
$d_{A B}$
$d_{A C}$
$d_{A D}$

B
C
$d_{A B}$ is distance Between A and B

Step 1: Cluster the two closest sequences into composite group, i.e. if $d_{A B}$ is smallest, make new group (AB).

UPGMA

Consider 4 sequences A, B, C, D

Species
B
A
$d_{A B}$
C
$d_{A C}$ $d_{B C}$
D
$d_{A D}$ $d_{B D}$
$d_{A B}$ is distance Between A and B

Step 1: Cluster the two closest sequences into composite group, i.e. if $d_{A B}$ is smallest, make new group (AB).

Step 2: Create a new distance matrix between $(A B)$ and C and D.

$$
\mathrm{d}_{(\mathrm{AB}) \mathrm{C}}=1 / 2\left(\mathrm{~d}_{\mathrm{AC}}+\mathrm{d}_{\mathrm{BC}}\right) ; \mathrm{d}_{(\mathrm{AB}) \mathrm{D}}=1 / 2\left(\mathrm{~d}_{\mathrm{AD}}+\mathrm{d}_{\mathrm{BD}}\right)
$$

UPGMA

Consider 4 sequences A, B, C, D

Species
$B \quad d_{A B}$
C
D
A
$d_{A B}$
$d_{A C}$ d_{BC}
$d_{A D}$
$d_{B D}$

C
$d_{A B}$ is distance Between A and B

Step 1: Cluster the two closest sequences into composite group, i.e. if $d_{A B}$ is smallest, make new group (AB).

Step 2: Create a new distance matrix between (AB) and C and D. $d_{(A B) C}=1 / 2\left(d_{A C}+d_{B C}\right) ; d_{(A B) D}=1 / 2\left(d_{A D}+d_{B D}\right)$

Step 3: Using new matrix, cluster the two closest sequences into composite group. Repeat above until all species have been grouped.

UPGMA

Species
B
A
$d_{A B}$
C
D
$d_{A C}$
$d_{A D}$

B
C
$d_{A B}$ is distance Between A and B

Step 1: Cluster the two closest sequences into composite group, i.e. if $d_{A B}$ is smallest, make new group (AB).

Step 2: Create a new distance matrix between (AB) and C and D.

$$
d_{(A B) C}=1 / 2\left(d_{A C}+d_{B C}\right) ; d_{(A B) D}=1 / 2\left(d_{A D}+d_{B D}\right)
$$

Step 3: Using new matrix, cluster the two closest sequences into composite group. Repeat above until all species have been grouped.
Step 4: For scaled branch lengths, put node halfway between grouped species.

UPGMA - example

Species
B
C

811
12
15
B
9

15
18
5

C D

10
13

	UPGMA - example			
Species	A	B	C	D
B	9			
C	8	11		
D	12	15	10	
E	15	18	13	(5) ${ }_{(\mathrm{D}, \mathrm{E})}$
Species	A	B	C	
B	9			
C	(8)	11		
DE	13.5	16.5	11.5	(A,C) (D,E)

UPGMA - example

UPGMA - adding distances

Species
B A 9
$\begin{array}{lll}C & 8 & 11\end{array}$
D
E
12
15
15
18
5

C
D

Species
A

13.5

B

11
16.5
11.5
c

(A,C) (D,E)

UPGMA - adding distances

Species
AC DE

Branch lengths for scaled unrooted tree
 = Fitch-Margoliash Algorithm for 3 sequences

$$
\begin{aligned}
& d_{A C}=x+y \\
& d_{A B}=x+z \\
& d_{B C}=y+z
\end{aligned}
$$

$$
\begin{aligned}
& \mathrm{x}=\left(\mathrm{d}_{\mathrm{AB}}+\mathrm{d}_{\mathrm{AC}}-\mathrm{d}_{\mathrm{BC}}\right) / 2 \\
& \mathrm{y}=\left(\mathrm{d}_{\mathrm{AC}}+\mathrm{d}_{\mathrm{BC}}-\mathrm{d}_{\mathrm{AB}}\right) / 2 \\
& \mathrm{z}=\left(\mathrm{d}_{\mathrm{AB}}+\mathrm{d}_{\mathrm{BC}}-\mathrm{d}_{\mathrm{AC}}\right) / 2
\end{aligned}
$$

Note: F-M assumes additivity of branch lengths but DOES NOT Assume equal rates of evolution along branches.
(Can specify this though : Kitsch-Margoliash)

Fitch-Margoliash Algorithm for >3 sequences

Steps:
1- Find closest 2 sequences (D,E)
2- Treat rest as composite and take average of D to (ABC), E to (ABC)
3- Use these to calculate d, e
4- Make new composite DE
5- Make new distance table
6- Find next most closely related pair and repeat from step 2
Now repeat starting with another pair as the closest starting pair In the end, calculate all predicted distances for all trees, and choose What best fits data

Transformed Distance Method

UPGMA assumes constant rate

Of evolution across all lineages
Can allow different rates of evolution across different lineages if you normalize using an external reference that diverged early...i.e. use an outgroup

Define $\overline{\mathrm{d}}_{\mathrm{D}}=$ average distance
 ingroups evolved separately from each other ONLY AFTER they diverged from outgroup

Neighbor's Relation Method

Variant of UPGMA that pairs species in a way that creates a tree with minimal overall branch lengths.
Pairs of sequences separated by only 1 node are said to be neighbors. single central branch

For this tree topology

$$
d_{A C}+d_{B D}=d_{A D}+d_{B C}=a+b+c+d+2 e=d_{A B}+d_{C D}+2 e
$$

For neighbor relations, four-point condition will be true:
$d_{A B}+d_{C D}<d_{A C}+d_{B D} \ldots$ and... $d_{A B}+d_{C D}<d_{A D}+d_{B C}$
So just have to consider all pairwise arrangements and determine which one satisfies the four-point condition.

Neighbor-Joining Methods

Start with star-like tree. Find neighbors sequentially to minimize total length of all branches

Studier \& Kepler 1988:
$\mathrm{Q}_{12}=(\mathrm{N}-2) \mathrm{d}_{12}-\sum \mathrm{d}_{1 i}-\sum \mathrm{d}_{2 \mathrm{i}}$
Where any 2 sequences can be 1 and 2
Try all possible sequence combinations. Whichever combination of pairs gives the smallest Q_{12} is the final tree!

Maximum Likelihood

- A purely statistical method.
- Probablilities for every nucleotide substitution in a set of aligned sequences is considered.
- Calculation of probabilities is complex since ancestor is unknown
- Test all possible trees and calculate the aggregate probablility.
- Tree with single highest aggregate probablilty is the most likely to reflect the true phylogenetic tree.

VERY COMPUTATIONALLY INTENSE

Parsimony

Parsimony: a derogatory term from the 1930s and 1940s To describe someone who was especially careful with Spending money.

Biologically: Attach preference to an evolutionary pathway That minimizes the number of mutational events since
(1) Mutations are rare events, and
(2) The more unlikely events a model postulates, the less I likely the model is to be true.

Parsimony: a character-based method, NOT a distance-based method.

Parsimony

For parsimony analysis, positions in a sequence alignment fall into one of two categories: informative and uninformative.

Position

Sequence	1	2	3	4	5	6
1	G	G	G	G	G	G
2	G	G	G	A	G	T
3	G	G	A	T	A	G
4	G	A	T	C	A	T

Only 3 possible unrooted trees you can make...

Parsimony

Position

Sequence	1	2	3	4	5	6
1	G	G	G	G	G	G
2	G	G	G	A	G	T
3	G	G	A	T	A	G
4	G	A	T	C	A	T

Which tree is the right one?

Parsimony

Position

Sequence	1	2	3	4	5	6
1	G	G	G	G	G	G
2	G	G	G	A	G	T
3	G	G	A	T	A	G
4	G	A	T	C	A	T

Invariant positions - contain NO INFORMATION \rightarrow uninformative

Parsimony

Position

Sequence	1	2	3	4	5	6
1	G	G	G	G	G	G
2	G	G	G	A	G	T
3	G	G	A	T	A	G
4	G	A	T	A	T	

Equally uninformative - need one mutation in each tree

Parsimony

Position

Sequence	1	2	3	4	5	6
1	G	G	G	G	G	G
2	G	G	G	A	G	T
3	G	G	A	T	A	G
4	G	A	T	C	A	T

Also uninformative - need two mutations in each tree

Parsimony

Position

Also uninformative - need three mutations in each tree

Parsimony

Position

Sequence	1	2	3	4	5	6
1	G	G	G	G	G	G
2	G	G	G	A	G	T
3	G	G	A	T	A	G
4	G	A	T	C	A	T

Informative! - need only one mutation in one tree but two In the other trees!

Parsimony

Position

Sequence	1	2	3	4	5	6
1	G	G	G	G	G	G
2	G	G	G	A	G	T
3	G	G	A	T	A	G
4	G	A	T	C	A	T

Informative! - need only one mutation in one tree but two In the other trees!

Parsimony

Position

Sequence	1	2	3	4	5	6
1	G	G	G	G	G	G
2	G	G	G	A	G	T
3	G	G	A	T	A	G
4	G	A	T	C	A	T

So to be Informative, need at least 2 different nucleotides And each has to be present at least twice.

Every tree is considered for every site, maintaining a running score of the number of mutations required. The tree with the smallest number of invoked mutations is the most parsimonious

Parsimony

Mathematically, most likely candidate nts at an Internal node are:
\{descendent node 1$\} \Omega$ \{descendant node 2$\}$
IF this is null set, then most likely candidate nts are: \{descendent node 1\} \mathbf{U} \{descendant node 2$\}$
$\Sigma \boldsymbol{U}=$ minimum number of substitutions required to account for nts at terminal nodes since they last shared common ancestor

Total number of substitutions, informative + uninformative $=$ tree length

Parsimony

If you use parsimony but weigh the mutations by some kind of scoring system that accounts for the likelihood of each mutation \rightarrow weighted parsimony

By-product of parsimony is inference of nt identity in the ancestral sequence

Parsimony

10 sequences: > 2 million possible trees...
Need a better way...
Branch and bound (Hardy and Penny, 1982)
Step 1: Determine an upper bound to the length of the most parsimonious tree $=\mathrm{L}$ - either chosen randomly, or else using a computationally fast way like UPGMA
Step 2: Grow trees incrementally by adding branches to a smaller tree that describes just some of the sequences.

Step 3: If at any point, the number of required substitutions is $>\mathrm{L}$, abandon that tree.

Step 4: As soon as you get a tree with fewer substiitutions than L, use that tree as the new upper bound to make remainder of the search even more efficient.
Works for <= 20 sequences

Parsimony

For > 20 sequences
Heuristic Searches
Assumption: Alternative trees are not all independent of each other. Most parsimonious trees have similar topologies.
Step 1: Construct an initial tree as a good guess: UPGMA, and use it as a starting point.

Step 2: Branch-swap subtrees and graft them onto the starting tree, keeping overall topology. See how many are shorter than the starting tree. The prune and re-graft, and see if it keeps getting better.
Step 3: Repeat until a round of branch swapping fails to generate any better trees

Parsimony

Often get tens or hundreds of equally parsimonious trees

Build a consensus tree - any internal node supported by At least half the trees becomes a simple bifurcation.

Phylogenetic Software

PHYLIP: Phylogenetics Inference Package free at http://evolution.genetics.washington.edu

Includes many programs including various distance methods, maximum likelihood, parsimony, with many of the options we've discussed.

PAUP: Phylogenetic Analysis Using Parsimony htto://www.Ims.si.edu/PAUP - NOT FREE
Now includes maximum likelihood and distance methods as well

Tree of Life

Carl Woese and colleagues, 1970s
Used 16S rRNA - all organisms possess.
Found 3 major evolutionary groups:
Bacteria
Eucarya
Archea (including thermophilic bacteria
Human Origins:
mt DNA sequences - huan populations differ by $\sim 0.33 \%$
(very small). Greatest differences NOT between current populations on different continents, but between human populations residing in Africa - "out of Africa" theory

Mitochondrial "eve" and Y-chromosome "adam"

