Summary

Current data are released electronically on Internet for all individual surveys as they become available. Use: http://www.census.gov/mcd/. Individual reports can be accessed by choosing "Current Industrial Reports (CIR)," clicking on "CIRs by Subsector;" then choose the survey of interest. Follow the menu to view the PDF file or to download the worksheet file (WK format) to your personal computer.

These data are also available on Internet through the U.S. Department of Commerce and STAT-USA by subscription. The Internet address is: www.stat-usa.gov/. Follow the prompts to register. Also, you may call 202-482-1986 or 1-800-STAT-USA, for further information.

SUMMARY OF FINDINGS

Alkalies and chlorine (NAICS 325181) production increased 15.4 percent to $36,936.3$ thousand short tons in 2004, from 32,009.4 thousand short tons in 2003. Chlorine (NAICS 3251811) production increased 18.5 percent to $25,115.7$ thousand short tons in 2004, from 21,198.2 thousand short tons in 2003. Sodium hydroxide (NAICS 3251814111) production
increased 9.4 percent to $10,603.8$ thousand short tons in 2004, from 9,696.5 thousand short tons in 2003. Finished sodium bicarbonate (NAICS 3251817131) production increased 7.1 percent to 637.8 thousand short tons in 2004, from 595.6 thousand short tons in 2003.

Hydrochloric acid (NAICS 3251884125,4131) production increased 26.9 percent to $5,844.1$ thousand short tons in 2004, from 4,603.7 thousand short tons in 2003. Aluminum sulfate, commercial (NAICS 3251887151) production increased 2.8 percent to $1,093.2$ thousand short tons in 2004, from 1,063.5 thousand short tons in 2003. Sodium sulfate, high purity (NAICS 325188A1A1) production increased 0.4 percent to 515.2 thousand short tons in 2004, from 513.4 thousand short tons in 2003. Sodium chlorate (NAICS 325188A141) production increased 1.2 percent to 746.1 thousand short tons in 2004, from 737.1 thousand short tons in 2003.

For general CIR information, explanation of general terms and historical note, see the appendix.

Address inquiries concerning these data to Primary Goods Industries Branch, Manufacturing and Construction Division, (MCD),
Washington, DC 20233-6900, or call Mai Le, 301-763-4797.
For mail or fax copies of this publication, please contact the Information Services Center, MCD, Washington, DC 20233-6900, or call 301-763-4673

U S C E N S U S B U R E A U

U.S. Department of Commerce

Economics and Statistics Administration U.S. CENSUS BUREAU

Table 1. Summary of Production of Principal Inorganic Chemicals [Short tons]

Quarter and year	$\begin{gathered} \text { Chlorine gas } \\ \text { (100 percent) } \\ \text { (3251811111) } \end{gathered}$	Sodium hydroxide, total liquid (100 percent) (3251814111)	$\begin{array}{r} \text { Titanium } \\ \text { dioxide, } \\ \text { commodity } \\ \text { weight } \\ (3251311100) \end{array}$		Hydro- chloric acid 00 percent) 51884125, 4131)		$\begin{array}{r} \text { Aluminum } \\ \text { sulfate } \\ \text { commercial } \\ \text { (17 percent } \\ \text { Al2O3) } \\ \text { (3251887151) } \end{array}$	$\begin{array}{r} \text { Sodium } \\ \text { sulfate, } \\ \text { high purity } \\ (100 \text { percent } \\ \mathrm{Na} 2 \mathrm{SO} 4) \\ (325188 \mathrm{AlAl}) \end{array}$	Finished sodium bicarbonate (58 percent NaHCO3) (3251817131)	Sodium chlorate (100 percent) (325188Al41)
2004										
Total....	13,590,484	10,603,810	(NA)	r/	5,844,059	r/	1,093,225	515,167	637,783	746,056
Fourth quarter.............	3,419,494	2,676,981	(NA)	r/	1,456,427	r/	266,858	124,923	165,978	174,397
Third quarter...............	3,447,424	2,707,098	(NA)	r/	1,478,178	r/	302,435	139,216	167,378	207,088
Second quarter............	3,418,418	2,641,595	(NA)	r/	1,485,298	r/	280,123	132,782	159,842	184,367
First quarter................	3,305,148	2,578,136	(NA)	r/	1,424,156	r/	243,809	118,246	144,585	180,204
2003										
Total.......	11,421,454	9,696,465	1,567,955		4,603,667		1,063,483	513,350	595,588	737,122
Fourth quarter.............	3,032,298	2,472,775	403,121		1,124,751		255,931	130,076	158,120	186,298
Third quarter...............	2,979,453	2,466,213	381,574		1,198,998		287,800	129,302	152,561	180,957
Second quarter............	2,387,214	2,197,801	402,339		1,156,001		264,368	115,931	151,112	191,867
First quarter.................	3,022,489	2,559,676	380,921		1,123,917		255,384	138,041	133,795	178,000

NA Not available for 2004. Data collection was discontinued at the end of 2003 . r/Revised by 5 percent or more from previously published data.

Table 2. Summary of Primary Production of Specified Inorganic Chemicals: 2004 and 2003
[Short tons, unless otherwise noted]

3313110100	Aluminum oxide and aluminum compunds:	
	Aluminum oxide (except natural alumina (100 percent Al2O3).	(D)
	Fourth quarter....................................	(D)
	Third quarter.....................................	(D)
	Second quarter.	(D)
	First quarter..	(D)

(D)	$\mathrm{r} /$	$1,107,507$
(D)	$\mathrm{b} / \mathrm{r} /$	287,917
(D)	$\mathrm{b} / \mathrm{r} /$	294,995
(D)	$\mathrm{b} / \mathrm{r} /$	261,419
(D)	$\mathrm{b} / \mathrm{r} /$	263,176

(D)	(D)
(D)	(D)

(D)
(D)
(D)
(D)
(D)

Table 2. Summary of Primary Production of Specified Inorganic Chemicals: 2004 and 2003
[Short tons, unless otherwise noted]

Table 2. Summary of Primary Production of Specified Inorganic Chemicals: 2004 and 2003
[Short tons, unless otherwise noted]

Product code	Product description	Total production (quantity)		2004				Total production (quantity)		2003			
					Total shipments, including interplant transfers						Total shipments, including interplant transfers		
					Quantity		Value				Quantity		Value
325188A157	Sodium phosphates:												
	Dibasic (produced for sale)												
	(100 percent) 6/................................		23,865		18,525		20,701		22,505		17,409		18,828
	Fourth quarter................................	b/	5,684		4,538		5,047	a/	5,716		4,648		4,960
	Third quarter.................................	b/	5,941		4,683		5,284	a/	5,551		4,768		5,195
	Second quarter...............................	b/	6,323		4,454		4,890	a/	5,807		4,049		4,254
	First quarter..................................	a/	5,917		4,850		5,480	a/	5,431		3,944		4,419
325188A164	Tetrabasic (pyro) (100 percent).............		(S)		(S)		(S)		(D)		(D)		(D)
	Fourth quarter................................		(S)		(S)		(S)		(D)		(D)		(D)
	Third quarter..		(S)		(S)		(S)		(D)		(D)		(D)
	Second quarter...............................		(S)		(D)		(S)		(D)		(D)		(D)
	First quarter..................................		(D)										
325188A167	Meta (100 percent)..............................		38,529		33,954		32,777		52,023		40,904		36,536
	Fourth quarter............................	a/	8,697		8,367		8,169	r/	13,793		9,683		8,361
	Third quarter................................	a/	9,119		7,455		7,322		11,705		9,493		8,367
	Second quarter...............................	a/	9,030		9,071		8,807	r/	11,922	a/	10,043		9,071
	First quarter..................................	a/	11,683		9,061		8,479	a/	14,603	a/	11,685		10,737
325188A171	Acid pyro (100 percent).......................		40,056		38,169		31,085		45,941		41,427		29,285
	Fourth quarter.................................	a/	11,550	a/	10,627	a/	8,768	a/	7,710	a/	7,398	a/	5,773
	Third quarter.................................	a/	10,470	a/	10,562	a/	8,722	a/	7,414	a/	7,191	a/	5,614
	Second quarter.	a/	9,711	a/	8,699	a/	7,007		(S)		(S)		(S)
	First quarter..................................	a/	8,325	a/	8,281	a/	6,588		(S)		(S)		(S)
325188A174	Tripoly (100 percent)...........................		(D)										
	Fourth quarter................................		(D)										
	Third quarter................................		(D)										
	Second quarter...............................		(D)										
	First quarter..................................		(D)										
325188A177	Other sodium phosphates, including mono- and tribasic. \qquad		(X)		(X)		22,657		(X)		(X)	r/	17,232
	Fourth quarter................................		(X)		(X)		6,049		(X)		(X)		5,621
	Third quarter.................................		(X)		(X)		5,906		(X)		(X)		4,141
	Second quarter...............................		(X)		(X)		(D)		(X)		(X)	r/	4,158
	First quarter..................................		(X)		(X)		(D)		(X)		(X)	$b / r /$	3,312
325188A181	Sodium silicate (soluble silicate glass, liquid, and solid) (anhydrous) 7/.		1,228,192		727,011	r/	211,771		1,184,192		679,772		217,578
	Fourth quarter....................................	b/	303,463	a/	179,841	$b / r /$	50,722	b/	304,390	b/	168,218		(S)
	Third quarter.....................................	b/	311,435	a/	183,850	$\mathrm{b} / \mathrm{r} /$	58,045	b/	287,509	a/	166,738		(S)
	Second quarter...................................	b/	313,406	a/	188,335	$\mathrm{b} / \mathrm{r} /$	51,593	b/	304,366	a/	167,823		(S)
	First quarter......................................	b/	299,888	a/	174,985	$\mathrm{b} / \mathrm{r} /$	51,411	b/	287,927	a/	176,993		(S)
325188A184	Metasilicate pentahydrate (100												
	percent)..		34,273		30,184		8,807		36,435		25,019		8,843
	Fourth quarter....................................		7,717		7,215		1,852		8,756		7,197		2,323
	Third quarter.....................................		9,355		8,256		2,208		9,435		6,228		2,232
	Second quarter...................................		9,407		7,410		2,389		9,343		5,726		2,121
	First quarter...		7,794		7,303		2,358		8,901		5,868		2,167
325188A187	Metasilicate anhydrous (100 percent).........		29,235		29,106		10,317		30,340		34,887		10,954
	Fourth quarter.....................................		6,960		7,231		2,864		7,975		7,141		2,403
	Third quarter.....................................		6,909		6,669		2,673		7,893		9,118		2,782
	Second quarter.	r/	6,362		7,595		2,467		7,024		9,390		2,868
	First quarter.		9,004		7,611		2,313		7,448		9,238		2,901
325188AlAl	Sodium sulfate (100 percent):												
	High purity				421,932		25,055		513,350		456,272		27,253
	Fourth quarter................................	b/	124,923	b/	116,375	b/	8,149	a/	130,076	b/	102,443	b/	5,833
	Third quarter..................................	b/	139,216	b/	104,730	b/	5,674	a/	129,302	b/	118,365	b/	7,238
	Second quarter................................	b/	132,782	b/	100,853	b/	5,610		115,931	b/	112,889	b/	6,855
	First quarter...................................	b/	118,246	b/	99,974	$\mathrm{b} / \mathrm{r} /$	5,622	b/	138,041	b/	122,575	b/	7,327
325188AlA7	Sodium sulfite (100 percent)....................		95,245	r/	80,438		9,730		97,853	r/	90,668	r/	10,267
	Fourth quarter....................................	b/	22,257	$\mathrm{a} / \mathrm{r} /$	22,485	b/	2,935	b/	22,923	a/	27,933	b/	3,069
	Third quarter....................................	b/	25,885	r/	23,413	b/	2,594	b/	26,265	a/	23,274	b/	3,182
	Second quarter...................................	b/	24,325	r/	18,362	b/	2,066	b/	25,967		(D)		(D)
	First quarter......................................	b/	22,778	$a / r /$	16,178	b/	2,135	b/	22,698		(D)		(D)
325188G141	Other inorganic chemicals:												
	Calcium carbonate (precipitated)												
	(100 percent).		2,122,757		2,066,053		267,107		2,144,864		2,072,391		$269,382$
	Fourth quarter....................................	a/	561,419	a/	547,291	a/	70,086	a/	531,577	a/	512,445	a/	65,130
	Third quarter.....................................	a/	537,061	a/	522,389	a/	67,587	a/	531,464	a/	515,342	a/	66,937
	Second quarter...................................	a/	520,005		505,303		65,816		522,468		506,077		66,026
	First quarter.......................................	a/	504,272		491,070		63,618		559,355		538,527		71,289

Table 2. Summary of Primary Production of Specified Inorganic Chemicals: 2004 and 2003
[Short tons, unless otherwise noted]

Product code	Product description	Total production (quantity)		2004				Total production (quantity)		2003			
					Total shipments, including interplant transfers						Total shipments, including interplant transfers		
					Quantity		Value				Quantity		Value
325188G144	Calcium chloride (100 percent).................		1,747,206		900,649		139,553		1,163,396		820,913		115,357
	Fourth quarter....................................	a/	411,484	b/r/	265,261	b/r/	41,926		(D)	b/	251,031	a/	37,846
	Third quarter.....................................	b/	415,837	b/	208,284	b/	32,926	a/	261,639	b/	173,015	b/	23,301
	Second quarter...................................	a/	444,503	b/	211,343	b/	29,589	a/	335,991	b/	186,851	b/	22,739
	First quarter.......................................	a/	475,382	b/	215,761	b/	35,112		(D)	b/	210,016	b/	31,471
$325188 \mathrm{G147}$	Calcium phosphates:												
	Monobasic (21 percent minimum P)												
	(100 percent)...................................		803,948		853,805		184,700		811,935		847,187		178,467
	Fourth quarter...............................		209,613		264,548	a/	55,624		227,473		229,071	r/	50,094
	Third quarter..		(D)		213,746	a/	46,523		(D)		210,734		41,573
	Second quarter.		221,480		187,885		41,151		211,846		192,600		40,696
	First quarter..................................		(D)		187,626	r/	41,402		(D)	a/	214,782	a/	46,104
325188 Gl 151	Dibasic (18.5 percent minimum P)												
	(100 percent)....		310,928		294,463		80,163		336,702		323,880	r/	116,225
	Fourth quarter..		78,256		77,053		20,157		86,061		86,528	r/	24,445
	Third quarter................................		65,497		69,513		18,885		73,222		77,320	a/r/	23,746
	Second quarter...............................		81,024		71,536		19,630		90,163		75,590	$\mathrm{a} / \mathrm{r} /$	24,258
	First quarter..................................		86,151		76,361	$a / r /$	21,491		87,256	a/	84,381	a/	25,623
3253124241	Tribasic (defluorinated phosphate												
	rock) (18.0 percent minimum P) 8/: Animal feed grade (deflourinated												
	phosphate rock) (100 percent).........		305,658		313,026	r/	80,192		356,986		383,528		85,489
	Fourth quarter............................		(D)		(D)		18,915		79,633		90,122		20,428
	Third quarter.............................		(D)		(D)		20,002		89,789		99,162	a/	22,388
	Second quarter............................		76,014		72,765		17,836		95,088		89,768	a/	20,374
	First quarter..............................		94,453		96,077	r/	23,439		92,476		104,476		22,299
325998H1E4	Carbon, activated 9/:												
	Granular carbons (dry weight) 10/........		(D)		(D)		(D)	r/	67,058		(D)		(D)
	Fourth quarter................................		(D)										
	Third quarter..................................		(D)										
	Second quarter................................		(D)		(D)		(D)	b/	27,630		(S)		(S)
	First quarter...................................		(D)		(D)		(D)		(S)		(S)		(S)
$325998 \mathrm{H1E7}$	Pulverized carbons (dry weight)............		39,262		(D)		(D)		56,051		100,030		40,236
	Fourth quarter...	a/	9,527		(D)		(D)	a/	12,308		(D)		(D)
	Third quarter.................................	a/	10,154		(D)		(D)	a/	9,073		(D)		(D)
	Second quarter...............................	a/	10,221		(D)		(D)		(S)	b/	24,812	a/	11,015
	First quarter...................................	a/	9,360		(D)		(D)		(S)	b/	26,563	b/	11,410
$325188 \mathrm{G181}$	Hydrogen peroxide (100 percent by weight).		393,663		318,242		156,209		374,879		284,340		158,459
	Fourth quarter..	b/	115,762		(S)		(S)	b/	92,885	b/	68,386		(S)
	Third quarter.....................................	b/	106,853		(S)		(S)	b/	93,465	b/	74,636		(S)
	Second quarter...................................	b/	81,578	b/	68,880	b/	33,466	b/	93,306	b/	70,251	b/	32,661
	First quarter......................................	b/	89,470	b/	65,570	b/	32,018	b/	95,223	b/	71,067	b/	32,318
325188G184	Iodine (100 percent) (quantity in pounds)												
	Fourth quarter.		(D)		(D)		37,544 9,739		(D)		(D)		31,834 5,691
	Third quarter.....................................		(D)		(D)		9,548		(D)		(D)		9,142
	Second quarter...................................		788,588		(D)		(S)		(D)		(D)		8,295
	First quarter......................................		(D)		(D)		(S)		(D)		(D)		8,706
$325188 \mathrm{G187}$	Ferric chloride (100 percent)....................		241,782		252,812		(S)		217,696		217,889		(S)
	Fourth quarter....................................		(S)		(S)		(S)	a/	74,680	a/	69,995		(S)
	Third quarter.....................................		(S)		(S)		(S)	a/	73,216	a/	74,610		(S)
	Second quarter						(S)	a/	69,800	b/	73,284		(S)
	First quarter......................................	b/	69,792	b/r/	63,836		(S)	a/	64,414	a/	64,340		(S)
325188G191	Iron oxides and hydroxides, excluding												
	iron oxide pigments (100 percent)..........		(D)										
	Fourth quarter.....................................		(D)										
	Third quarter.....................................		(D)										
	Second quarter....................................		(D)										
	First quarter......................................		(D)										
325188 GlAl	Magnesium chloride (100 percent)............		(D)		(D)		19,811		(D)		(D)		16,201
	Fourth quarter.....................................		(D)		(D)		5,442		(D)		(D)		4,674
	Third quarter.....................................		(D)		(D)		4,798		(D)		(D)		3,863
	Second quarter...................................		(D)		(D)		4,776		(D)		(D)		3,142
	First quarter.......................................		(D)		(D)		4,795		(D)		(D)		4,522
$325188 \mathrm{GlB1}$	Manganese dioxide (100 percent)..............		61,971		65,844		83,580		45,677		47,916		66,875
	Fourth quarter....................................		15,136		14,528	r/	18,390		9,137		13,428		19,889
	Third quarter.....................................		16,902		18,504		22,041		9,205		11,641		18,042
	Second quarter....................................		16,592		15,607		20,447		13,543		11,907		15,080
	First quarter......................................		13,341		17,205		22,702		13,792		10,940		13,864

Table 2. Summary of Primary Production of Specified Inorganic Chemicals: 2004 and 2003
[Short tons, unless otherwise noted]

1/Production includes amounts liquefied.
2/Liquid production data represent total production, including quantities later evaporated to solid caustic.
3/Source: U.S. Geological Survey. Quantity reported in thousands of short tons.
4/Includes production from salt and acid.
5/Excludes quantities produced and consumed in municipalities.
6/Represents quantities produced only for sale or interplant transfer.
7/Excludes amounts produced and consumed in making meta, ortho, and sesquisilicates.
8/Includes animal feed, but excludes other grades and superphosphate or other fertilizer materials.
9/Excludes reactivated carbon.
10/Includes pelleted carbon.
11/Represents total stocks of producing companies, including amounts held at locations other than producing plants.
Note: Percent of estimation of each item is indicated as follows: a/10 to 25 percent of this item is estimated. b/26 to 50 percent of this item is estimated. c/Over 50 percent of this item is estimated.

Table 3. Production, Exports, Imports, and Apparent Consumption of Selected Inorganic Chemicals: 2004 and 2003 [Quantity in metric tons]

Product code	Product description Year		Production (quantity)	Exports of domestic merchandise 1/	Imports for consumption 2/	Apparent consumption 3/ (quantity)	Percent imports to apparent consumption (quantity)
3251811111	Chlorine gas... 2004		12,329,081	10,448	470,883	12,789,516	3.7
	2003		10,361,370	15,360	412,116	10,758,126	3.8
3251814111	Sodium hydroxide, total liquid (all processes)..... 2004		9,619,616	2,915,480	1,130,658	7,834,794	14.4
	2003		8,796,486	3,090,651	1,127,456	6,833,291	16.5
3251817111	Potassium hydroxide, liquid............................. 2004		525,328	249,577	15,251	291,002	5.2
	2003		470,984	182,186	19,290	308,088	6.3
3251817131	Finished sodium bicarbonate............................ 2004		578,587	68,970	16,647	526,264	3.2
	2003		540,308	61,048	15,724	494,984	3.2
3251884125,	Hydrochloric acid.. 2004	r/	5,301,642	58,334	119,386	5,362,694	2.2
131	2003		(S)	61,039	106,794	(S)	(S)
3313110100	Aluminum oxide... 2004		(D)	1,179,876	1,508,511	(D)	(D)
	2003		(D)	1,046,160	2,160,909	(D)	(D)
3251887121	Aluminum chloride... 2004		(S)	12,477	1,174	(S)	(S)
	2003		(S)	14,806	883	(S)	(S)
3251887131	Aluminum hydroxide, trihydrate....................... 2004	r/	804,683	73,332	221,204	952,555	23.2
	2003		444,984	65,182	231,675	611,477	37.9
3251887151	Aluminum sulfate (commercial)........................ 2004	r/	991,757	9,632	5,992	988,117	0.6
	2003		964,776	9,213	5,359	960,922	0.6
3251887171	Aluminates... 2004		345,285	28,964	9,744	326,065	3.0
	2003		359,340	20,033	17,159	356,466	4.8
325188A111	Potassium iodide.. 2004		307	133	891	1,065	83.7
	2003		339	67	862	1,134	76.0
325188A124	Potassium phosphate...................................... 2004		25,588	1,850	15,982	39,720	40.2
	2003		24,841	1,953	15,602	38,490	40.5
325188A141	Sodium chlorate... 2004		676,811	21,153	593,146	1,248,804	47.5
	2003		668,706	20,831	561,813	1,209,688	46.4
325188A174	Sodium phosphate tripoly................................ 2004		(D)	8,655	121,101	(D)	(D)
	2003		(D)	10,900	109,147	(D)	(D)
325188A181	Sodium silicates (other than metasilicates)......... 2004		1,114,197	60,580	35,189	1,088,806	3.2
	2003		1,074,281	49,082	28,279	1,053,478	2.7
325188A184,	Sodium metasilicates....................................... 2004		57,613	16,420	422	41,615	1.0
187	2003		60,577	17,558	480	43,499	1.1
325188AlA7	Sodium sulfite.. 2004		86,405	38,837	30,085	77,653	38.7
	2003		88,771	25,815	17,404	80,360	21.7
325188G141	Calcium carbonate (precipitated)....................... 2004		1,925,733	90,492	30,248	1,865,489	1.6
	2003		1,945,788	70,496	35,684	1,910,976	1.9
325188G144	Calcium chloride.. 2004		1,585,039	98,243	241,606	1,728,402	14.0
	2003		1,055,415	115,237	256,367	1,196,545	21.4
325998H1E4,	Carbon activated (granular and pulverized)........ 2004		(D)	45,185	66,843	(D)	(D)
1 E 7	2003		111,683	51,462	56,867	117,088	48.6
325188G181	Hydrogen peroxide... 2004		357,125	50,235	43,602	350,492	12.4
	2003		340,085	42,130	46,253	344,208	13.4
325188G184	Iodine... 2004		2,912,033	1,057	5,700	2,916,676	0.2
	2003		(D)	1,225	5,744	(D)	(D)

Table 3. Production, Exports, Imports, and Apparent Consumption of Selected Inorganic Chemicals: 2004 and 2003
[Quantity in metric tons]
Product
code

D Withheld to avoid disclosing data for individual companies. NA Not available. r/Revised by 5 percent or more from previously published data. S Does not meet publication standards.

1/Source: Census Bureau report EM 545, U.S. Exports (see Table 4).
2/Source: Census Bureau report IM 145, U.S. Imports for Consumption (see Table 4).
3/Apparent consumption represents new domestic supply and is derived by subtracting exports from the total of manufacturers' production plus imports.

Table 4. Comparison of North American Industry Classification System (NAICS)-Based Product Codes with Schedule B Export Codes and HTSUSA Import Codes: 2004

Product code	Product description	Export code 1/	Import code 2/
3251881111	Chlorine gas..	2801.10.0000	2801.10.0000
3251814111	Sodium hydroxide, total liquid (all processes)..................	2815.11.0000	2815.11.0000
		2815.12.0000	2815.12.0000
3251817111	Potassium hydroxide, liquid...	2815.20 .0050	2815.20.0050
		2815.20 .0090	2815.20.0090
3251817131	Finished sodium bicarbonate..	2836.30.0000	2836.30.0000
$\begin{aligned} & 3251884125, \\ & 131 \end{aligned}$	Hydrochloric acid...	2806.10.0000	2806.10.0000
3313110100	Aluminum oxide..	2818.20.0000	2818.20.0000
3251887121	Aluminum chloride..	2827.32.0000	2827.32.0000
3251887131	Aluminum hydroxide, trihydrate.....................................	2818.30.0000	2818.30.0000
3251887151	Aluminum sulfate (commercial)......................................	2833.22.0000	2833.22.0000
3251887171	Aluminates..	2841.10.0000	2841.10.0000
325188A111	Potassium iodide..	2827.60.2000	2827.60.2000
325188A124	Potassium phosphate..	2835.24.0000	2835.24.0000
325188A141	Sodium chlorate...	2829.11.0000	2829.11.0000
325188A174	Sodium phosphate tripoly..	2835.31.0000	2835.31 .0000
325188A181	Sodium silicates (other than metasilicates).......................	2839.19.0000	2839.19.0000
$\begin{aligned} & 325188 \mathrm{Al} 84, \\ & 187 \end{aligned}$	Sodium metasilicates..	2839.11.0000	2839.11.0000
325188A1A7	Sodium sulfite...	2832.10.0000	2832.10.0000
325188G141	Calcium carbonate (precipitated)...................................	2836.50.0000	2836.50.0000
325188G144	Calcium chloride...	2827.20.0000	2827.20.0000
$\begin{aligned} & \text { 325998H1E4, } \\ & \text { lE7 } \end{aligned}$	Carbon activated (granular and pulverized).....................	3802.10.0000	3802.10.0000
325188G181	Hydrogen peroxide..	2847.00.0000	2847.00.0000
325188G184	Iodine...	2801.20.0000	2801.20.0000
325188G191	Iron oxides and hydroxides...	2821.10.0050	2821.10 .0050
325188G01A1	Magnesium chloride...	2827.31.0000	2827.31 .0000
325188G01B1	Manganese dioxide..	2820.10.0000	2820.10.0000
$\begin{aligned} & 325188 \mathrm{G} 1 \mathrm{Fl}, \\ & \text { 1F7 } \end{aligned}$	Phosphorous, oxychloride and trichloride.......................	2812.10.5010	2812.10.5010
325188G1K1	Sulfur dioxide...	2811.23 .0000	2811.23 .0000
$325188 \mathrm{GlM1}$	Zinc sulfate...	2833.26.0000	2833.26.0000
3251311100	Titanium dioxide (composite and pure)..........................	2823.00.0000	2823.00.0000
		3206.11.0000	3206.11.0000
		3206.19.0000	3206.19.0000

1/Source: 2004 edition, Harmonized System-based Schedule B, Statistical Classification of Domestic and Foreign Commodities Exported from the United States.

2/Source: Harmonized Tariff Schedule of the United States, Annotated (2004).

General CIR Survey Information, Explanation of General Terms and Historical Note

GENERAL

The CIR program has been providing monthly, quarterly, and annual measures of industrial activity for many years. Since 1904, with its cotton and fats and oils surveys, the CIR program has formed an essential part of an integrated statistical system involving the quinquennial economic census, manufacturing sector, and the annual survey of manufactures. The CIR surveys, however, provide current statistics at a more detailed product level than either of the other two statistical programs.

The primary objective of the CIR program is to produce timely, accurate data on production and shipments of selected products. The data are used to satisfy economic policy needs and for market analysis, forecasting, and decision making in the private sector. The product- level data generated by these surveys are used extensively by individual firms, trade associations, and market analysts in planning or recommending marketing and legislative strategies, particularly if their industry is significantly affected by foreign trade. Although production and shipments information are the two most common data items collected, the CIR program collects other measures also such as inventories, orders, and consumption. These surveys measure manufacturing activity in important commodity areas such as textiles and apparel, chemicals, primary metals, computer and electronic components, industrial equipment, aerospace equipment, and consumer goods.

The CIR program uses a unified data collection, processing, and publication system. The U.S. Census Bureau updates the survey panels for most reports annually and reconciles the estimates to the results of the broader- based annual survey of manufactures and the economic census, manufacturing sector. The manufacturing sector provides a complete list of all producers of the products covered by the CIR program and serves as the primary source for CIR sampling. Where a small number of producers exist, CIR surveys cover all known producers of a product. However, when the number of producers is too large, cutoff and random sampling techniques are used. Surveys are continually reviewed and modified to provide the most up- to- date information on products produced. The CIR program includes a group of mandatory and voluntary surveys. Typically the monthly and quarterly surveys are conducted on a voluntary basis. Those companies that choose not to respond to the voluntary surveys are required to submit a mandatory annual counterpart corresponding to the more frequent survey.

NORTH AMERICAN INDUSTRY CLASSIFICATION SYSTEM (NAICS), 1997

The adoption of the North American Industry Classification System (NAICS) in the 1997 Economic Census has had a major impact on the comparability of current and historic data. Approximately half of the industries in the manufacturing sector of NAICS do not have comparable industries in the Standard Industrial Classification (SIC) system that was used in the past.

While most of the change affecting the manufacturing sector was change within the sector, some industries left manufacturing and others came into manufacturing. Prominent among those that left manufacturing are logging and portions of publishing. Prominent among the industries that came into the manufacturing sector are bakeries, candy stores where candy is made on the premises, custom tailors, makers of custom draperies, and tire retreading. The net effect of the classification changes are such that if the 1997 value of shipments data for all manufacturers were tabulated on an SIC basis, it would be approximately 3 percent higher.

Listed below are the NAICS sectors:
21 Mining
22 Utilities
23 Construction
31-33 Manufacturing
42 Wholesale Trade
44-45 Retail Trade
48-49 Transportation and Warehousing
51 Information
52 Finance and Insurance
53 Real Estate and Rental and Leasing
54 Professional, Scientific, and Technical Services
55 Management of Companies and Enterprises
56 Administrative and Support and Waste Management
and Remediation Services
61 Educational Services
62 Health Care and Social Assistance
71 Arts, Entertainment, and Recreation
72 Accommodation and Food Services
81 Other Services (except Public Administration)
(Not listed above are the Agriculture, Forestry, Fishing, and Hunting sector (NAICS 11), partially covered by the census of agriculture conducted by the U.S. Department of Agriculture, and the Public Administration sector (NAICS 92), covered by the census of governments conducted by the Census Bureau.)

The 20 NAICS sectors are subdivided into 96 subsectors (three- digit codes), 313 industry groups (four- digit codes), and, as implemented in the United States, 1170 industries (five- and six-digit codes).

FUNDING

The Census Bureau funds most of the surveys. However, a number of surveys are paid for either fully or partially by other Federal Government agencies or private trade associations. A few surveys are mandated, but all are authorized by Title 13 of the United States Code.

RELIABILITY OF DATA

Survey error may result from several sources including the inability to obtain information about all cases in the survey, response errors, definitional difficulties, differences in the interpretation of questions, mistakes in recording or coding the reported data, and other errors of collection, response, coverage, and estimation. These nonsampling errors also occur in complete censuses. Although no direct measurement of the biases due to these nonsampling errors has been obtained, precautionary steps were taken in all phases of the collection, processing, and tabulation of the data in an effort to minimize their influence.

A major source of bias in the published estimates is the imputing of data for nonrespondents, for late reporters, and for data that fail logic edits. Missing figures are imputed based on period- to- period movements shown by reporting firms. A figure is considered to be an impute if the value was not directly reported on the questionnaire, directly derived from other reported items, directly available from supplemental sources, or obtained from the respondent during the analytical review phase. Imputation generally is limited to a maximum of 10 percent for any one data cell. Figures with imputation rates greater than 10 percent are suppressed or footnoted. The imputation rate is not an explicit indicator of the potential error in published figures due to nonresponse, because the actual yearly movements for nonrespondents may or may not closely agree with the imputed movements. The range of difference between the actual and imputed figures is assumed to be small. The degree of uncertainty regarding the accuracy of the published data increases as the percentage of imputation increases. Figures with imputation rates above 10 percent should be used with caution.

DATA REVISIONS

Statistics for previous years may be revised as the result of corrected figures from respondents, late reports for which imputations were originally made, or other corrections. Data that have been revised by more than 5 percent from previously published data are indicated by footnotes.

DISCLOSURE

The Census Bureau collects the CIR data under the authority of Title 13, United States Code, which specifies that the information can only be used for statistical purposes and cannot be published or released in any manner that would identify a person, household, or establishment. "D" indicates that data in the cell have been suppressed to avoid disclosure of information pertaining to individual companies.

EXPLANATION OF GENERAL TERMS

Capacity. The maximum quantity of a product that can be produced in a plant in 1 day if operating for 24 hours. Includes the capacity of idle plants until the plant is reported to be destroyed, dismantled, or abandoned.

Consumption. Materials used in producing or processing a product or otherwise removing the product from the inventory.

Exports. Includes all types of products shipped to foreign countries, or to agents or exporters for reshipment to foreign countries.

Gross shipments. The quantity or value of physical shipments from domestic establishments of all products sold, transferred to other establishments of the same company, or shipped on consignment, whether for domestic or export sale or use. Shipments of products purchased for resale are omitted. Shipments of products made under toll arrangements are included.

Interplant transfers. Shipments to other domestic plants within a company for further assembly, fabrication, or manufacture.

Inventories. The quantity or value of finished goods, work in progress, and materials on hand.

Machinery in place. The number of machines of a particular type in place as of a particular date whether the machinery was used for production, prototype, or sampling, or was idle. Machinery in place includes all machinery set up in operating positions.

Net receipts. Derived by subtracting the materials held at the end of the previous month from the sum of materials used during the current month.

Production. The total volume of products produced, including: products sold; products transferred or added to inventory after adjustments for breakage, shrinkage, and obsolescence, plus any other inventory adjustment; and products that undergo further manufacture at the same establishment.

Quantities produced and consumed. Quantities of each type of product produced by a company for internal consumption within that same company.

Quantity and value of new orders. The sales value of orders received during the current reporting period for products and services to be delivered immediately or at some future date. Also represents the net sales value of contract change documents that increase or decrease the sales value of the orders to which they are related, when the parties concerned are in substantial agreement as to the amount involved. Included as orders are only those that are supported by binding legal documents such as signed contracts or letter contracts.

Quantity and value of shipments. The figures on quantity and value of shipments represent physical shipments of all products sold, transferred to other establishments of the same company, or shipped on consignment, whether for domestic or export sale. The value represents the net sales price, f.o.b. plant, to the customer or branch to which the products are shipped, net of discounts, allowances, freight charges, and
returns. Shipments to a company's own branches are assigned the same value as comparable appropriate allocation of company overhead and profit. Products bought and resold without further manufacture are excluded.

Stocks. Total quantity of ending finished inventory.

Unfilled orders (backlog). Calculated by adding net new orders and subtracting net sales from the backlog at the end of the preceding year.

HISTORICAL NOTE

Data on inorganic chemicals have been collected by the Census Bureau since 1941. Historical data may be obtained from Current Industrial Reports (called Facts for Industry before 1959) available at your local Federal Depository Library.

