
File system wide file classification with agents

Ben Martin

Information Technology and Electrical Engineering
The University of Queensland
St. Lucia QLD 4072, Australia

monkeyiq@users.sourceforge.net

Abstract

Many semi structured information systems such
as file systems and email clients allow data to
be tagged as belonging in many categories. Some
such systems support notions similar to emblems,
where files can be semantically tagged as fitting
into a broad category by associating a file with
an emblem. This paper presents a file system
that makes use of Supervised machine learning
for the creation of agents to offer fuzzy assertions
and retractions of semantic tags on a per file
basis. Such assertions are then subject to a belief
resolution system to obtain an overall picture for
a file’s emblem attachments.

Keywords Information Retrieval, Document
Management, Supervised Machine Learning,
Semantic file system.

1 Introduction

This section first outlines some of the relevant con-
cepts in file system design with emphasis on a par-
ticular implementation: libferris1. This should give
the reader sufficient information to follow the pre-
sentation of emblems in libferris and how agents
can interact with emblems to assert beliefs. It
is important to show some of the capabilities of
libferris so that the reader is aware of the sources
of information that agents can access and how the
user can efficiently recall data based on agent pre-
dictions.

The file system has become the de facto
standard for the storage and management of
semi structured data on computers. File systems
have evolved from presenting a list of named
objects (files) which contain a contiguous range
of bytes to the modern file system comprised
of a tree structure augmented with soft and
hard links, sparse files, extended attributes and
transparent support for many on-disk storage

1http://witme.sourceforge.net/libferris.web/

Proceedings of the 8th Australasian Document
Computing Symposium,

Canberra, Australia, December 15, 2003.

formats. Extended Attributes (EA) [2] allow the
creation, update and removal of key-value data
that is stored on a per file basis. File systems such
as NTFS, ext3, reiserfs4 and XFS have support for
EA.

The libferris project was created in order to
provide both an enhanced API for file system access
and to present more information through that in-
terface. Libferris builds on the grounds of Semantic
file systems [4], and thus provides both virtual di-
rectories populated with query results and support
for extracting and presenting metadata from within
files. The core abstractions in libferris can be seen
as the ability to present many trees of informa-
tion overlaid into one namespace, the presentation
of key-value attributes (EA) that files posses, a
generic stream interface for file and attribute con-
tent and the creation of arbitrary new files. Com-
mon stream interfaces and creation of objects are
outside the scope of this paper2.

The EA interface in libferris allows the presenta-
tion of both derived and persisted attributes. Each
attribute has an associated schema many of which
are derived from XSD basic types3.

Overlaid trees are presented because one can
drill into composite files such as XML, ISAM
databases or tar files and view them as a file
system. The overlaying of trees is synonymous
with mounting a new file system over a mount
point on a UNIX machine to join two trees into
one globally navigable tree. Being able to overlay
trees in this fashion allows libferris to provide a
single file system model on top of a number of
heterogeneous data sources4.

Both fulltext and EA can be added to inverted
file indexes [5] by libferris. This allows the set of
documents that contain a term, satisfy a ranked
query or have a given EA to be found quickly.
Lookup on EA can be done on exact string match,
regular expression string match, greater or less

2Interested readers should see [7] and
http://witme.sourceforge.net/libferris.web/
ferriscreate.paper2001/index.html respectively

3http://www.w3.org/TR/xmlschema-2/
4Some of the data sources that libferris currently handles

include: http, ftp, db4, dvd, edb, eet, ssh, tar, gdbm, sysV
shared memory, LDAP, mbox, sockets, mysql, tdb and XML.



than match. Comparisons are handled differently
for attribute value matching based on attribute
type and can be integer, double floating, binary or
case insensitive string.

2 Emblems for classification

Although attaching and interacting with typed ar-
bitrary key-value data on files is very convenient
in libferris it leaves applications open to interpret
the data how they choose. For this reason specific
EA have been defined for semantic categorization
of files on a system wide basis. These EA allow
one to associate files with many emblems to show
what categories those files are in. The set of all
emblems ξ is maintained in a partial order (ξ, 6).
The relation for µ, ϕ ∈ ξ of µ 6 ϕ means that µ
logically is-a ϕ. Consider the example of marking
an image file: one may attach the emblem “sam”
to the image file. One of the parents of the emblem
“sam” may be “my friends” to indicate that sam is
one of my friends. It follows that the image file is
also of one of my friends. This is due to the par-
tial ordering on the emblems imposing transitivity
on emblem assignment5. It follows that only the
most specific emblems applicable to a file need be
associated explicitly.

The collection of emblems that are associated
with a file is stored in a single EA per user. This
serialization of emblems is called a medallion and it
is not recommended that applications read medal-
lions directly. Each user is expected to have their
own partially ordered emblem set and so medal-
lions are attached to files on a per user basis. For
application access the medallion is split into many
EA by libferris shown in Table 1.

attribute value type

medallion.600 <xml...> binary
e:has-cat false boolean
e:has-fuzzy-cat 0.0 double
e:has-animal false boolean
e:has-interesting true boolean
e:has-burnt true boolean
e:has-burnt-cd5 true boolean

e:list has-interesting, string
has-burnt list
has-burnt-cd5

e:list-ui has-interesting string
has-burnt list

e:upset has-interesting string
has-burnt list
has-burnt-cd5

Table 1: A medallion is broken down into its
individual emblems at runtime. The “e:” prefix is
really “emblem:” but is shortened for presentation.

5The assignment of an emblem µ to a file will also assign
all the parent emblems of µ to that file

The assignment of an emblem to a file is called a
belief and logically collects the: file, emblem, time
of assertion or retraction, sureness of this belief and
who holds this belief. To represent the holder of the
belief a portion of the emblem set is used to define
“personalities”. There can be one belief held for
each personality for a file and emblem combination.

As seen in Table 1 the emblem attachment,
when attachment was done and the fuzzy belief
for an emblem are all exposed as EA for each file6.
By exposing this data as simple typed information
it can be added to the EA inverted file index
and files can be quickly found based on emblem
association.

Because many beliefs about emblem attachment
can exist for any given file a belief resolution system
was introduced to show an overall picture about a
file-emblem association. This is expressed in the
form of a double ranging from -100 for full retrac-
tion to 100 for absolute assertion. The default be-
lief resolution gives the “user” personality veto sta-
tus and if the user doesn’t have a belief it presents
the mean of all beliefs for the file-emblem associa-
tion. An example of belief resolution is shown in
Figure 1.

Figure 1: Viewing the emblems associated with file:
docs is fully asserted, exe is fully retracted, agents
have offered partial retraction on travel and partial
assertion on waffle. Assertion is shown in green
extending from left to right, retraction is shown in
red extending right to left.

6All EA in the “emblem:” namespace are derived EA
that are generated from the medallion EA for each file. The
“emblem:” EA are not stored separately for each file.



3 Supervised Machine Learning

At an abstract level supervised Machine Learning
(ML) [8, 6, 3, 1] involves two steps: training and
classification. Of the many kinds of ML we are
most interested in binary classification algorithms
which can tell if a file is in a single category or not.

During training two lists are presented to the
ML algorithm: a list of desired documents and a
list of non desired documents. The ML algorithm
then builds a model to use in its classification mode
when it will tell if a presented document fits into
the desired, undesired or unknown category.

The accuracy of the classifications that ML of-
fers depends on the quality and size of its training
data. Some ML algorithms can perform relatively
better when offered limited training data. This is
very important when attempting to use ML for file
system classification where the user is not inclined
to manually construct a large initial training col-
lection. To adapt to the less complete initial model
the system needs to be able to add and remove test
cases and retrain agents quickly to support a more
evolutionary model building process. The user can
then enhance the model from a small initial one
as they see agents as being a valuable part of the
system.

4 Agents

To connect ML with libferris one can use emblem
associations to train on and then in turn the ML
can be used to obtain a fuzzy assertion or retraction
for if an emblem is applicable for a new file.

A clear separation of the algorithm used for
predictions (AgentImplementation) and the agent
objects themselves (Agent) is maintained in libfer-
ris. This allows agents to be persistent objects that
have a libferris view of the world, have a convenient
interface and manage common state information
while the ML code can maintain a more byte cen-
tric, non-libferris view.

There are many design choices when integrating
ML into the file system. Firstly there is what ML
algorithms to use. Usually the algorithm has dif-
ferent requirements for how much state is required
during training, the size of the model produced
during training, the ease with which the model
can be updated, speed of execution in training and
classification and relative quality of results.

Two algorithms have been chosen for initial
testing: Bayesian [1] and Support Vector Machine
(SVM) [6]. Bayesian filtering is very efficient in
terms of speed and its model allows individual
documents to be added or removed without having
to retrain on all test cases.

SVM operates on the FeatureSets of its input
files. A file’s feature set is a map of each term to
its relative importance µ to the document. The

value of µ is usually calculated as the frequency
of that term (TF) in the document multiplied by
the Inverse Document Frequency (IDF) for that
term. The IDF is the reciprocal of the number of
times a term appears in all documents. Many SVM
implementations require a collection of positive and
negative FeatureSets to train on and can not “add”
a new case to an existing model.

4.1 SVM agent implementation

We will now take a closer look at the SVM Agent
Implementation (SAI). It should be noted that the
SAI is mainly glue code between svm light and
libferris.

Generated FeatureSets are cached for two rea-
sons: true belief capturing and efficiency. True be-
lief capturing reflects that when the user highlights
a document as a training example they are making
assertions about that document at that point in
time. For example, when the user asserts that they
like a web page they are really talking about the
page as it stands at assertion time. Calculating
FeatureSets is a costly act and must be avoided
in order to support timely addition of training ex-
amples when the number of existing FeatureSets is
high.

The SAI reuses a lexicon implementation7 from
the fulltext indexing code to map unique terms to
unique integers. These integers are subsequently
used in FeatureSets to identify the terms. The IDF
values are stored in a FeatureSet which is main-
tained by the SAI and updated by the SAI Trainer
(SAIT).

To classify a file it needs to be tokenized and
a FeatureSet µ generated for it. Then µ is mul-
tiplied by the IDF and normalized by dividing it
by the euclidean length of the entire feature vector
for that document. For example, given the initial
FeatureSet µ = (x1, ..., xN ) and the IDF FeatureSet
(`1, ..., `n) the result φ = (y1, ..., yN ) is calculated
as yi = xi ∗ `i/

√
(
∑N

t=1(x
2
t )).

It is acceptable for the training of the agent to
be a more costly operation than its use for predic-
tions. The SAIT maintains a FeatureSet τ which is
the total number of times each term appears in the
Training Data (TD). When a new Training Case
(TC) is presented it is tokenized and a FeatureSet
of the documents term frequencies is created while
at the same time τ is updated. The maintenance
of τ is due to the many possible formulae for cal-
culating the IDF [5]. If one is calculating the IDF
as shown above then τ is not required and should
be the element wise reciprocal of the IDF.

The two major efficiency requirements for the
SAIT are the caching of FeatureSets and the ability
to generate a current IDF FeatureSets quickly. The

7Currently supported lexicon storage: 3-in-4 prefix coded
custom file format, Berkeley db, XML or as a file system



storage and update of τ achieves the latter goal
while allowing flexibility in how the IDF is gener-
ated. The SAIT applies the same IDF multiplica-
tion and normalization as the SAI before training
on those FeatureSets.

4.2 SVM agent testing

Tests were conducted in order to test both the
implementation’s correctness and the utility of the
agent based classification under a relatively low
training data size. A subset of the Reuters-21578
test collection8 was used with only 179 positive
and 191 negative cases. The Reuters-21578 files
are a collection of news-feed stories and have been
assigned zero or more categories based on their con-
tent. For this test the positive cases are documents
that are about corporate acquisitions and negative
cases are documents that aren’t.

When trained on this data the SVM agent cor-
rectly predicted 5 of the 6 classification examples
with the incorrect result’s prediction value being
closer to a zero than full assertion or retraction.
These examples were chosen at random from the
news-feed documents.

The SAIT storing all FeatureSets does consume
more storage than is strictly required. For the
above training example the SVM SAI consumed
1.7M of disk for all of its state, of which the lexicon
was 508K (uncompressed in XML format) and the
cached FeatureSets 399K. The svm light model
was 474K. Given that hard disk costs are well
under two dollars per gigabyte it should not be
considered unreasonable for agents to consume tens
of megabytes for state information.

5 Future directions

The testing in Section 4.2 should be extended to
include a larger test on the Reuters-21578 data
and more general purpose prediction tasks such as
the automatic assignment of emblems to academic
papers based on past agent training.

Web browsers such as epiphany9 currently al-
low the user to put a page into many categories
instead of one as traditional browsers like IE allow.
One of the main goals of agents was to allow a
new style of bookmarking in web browsers such as
ego10 where the agents can offer the “top emblems”
that are relevant to a web page and all the user
has to do is accept this list. The interface would
need to support overriding the predictions given by
agents. Such overrides should be fed back into the
training data for agents that offered an incorrect
prediction. Also, whenever the user goes through
the burden of assigning emblems to a website the

8http://www.daviddlewis.com/resources/testcollections/reuters21578/
9http://epiphany.mozdev.org/

10http://witme.sourceforge.net/libferris.web/

browser interface should allow the page to form a
training example for agents.

The interface for agents in libferris is generic
enough to support image recognition agents. Ap-
plications for such agents could include assignment
of an emblem if a particular person appears in a
image or if an image.

6 Acknowledgements

The ML code used by libferris is bogofilter [1]
for Bayesian and svm light [6] for SVM. A big
thanks to Thorsten Joachims (author of svm light)
for putting up with my pesky questions during
development of my SVM agent. Kudos to Peter
Eklund, Roger Duke and Robert Murphy for proof
reading.

References

[1] bogofilter, http://bogofilter.sourceforge.net/.
Visited Sep 2003.

[2] http://acl.bestbits.at/ ea and acl for linux web-
site. Visited Sep 2003.

[3] Svmfu, http://five-percent-
nation.mit.edu/svmfu/. Visited Sep 2003.

[4] Mark A. Sheldon David K. Gifford, Pierre Jou-
velot and James W. Jr O’Toole. Semantic
file systems. In Proceedings of 13th ACM
Symposium on Operating Systems Principales,
ACM SIGOPS, pages 16–25, 1991.

[5] Alistar Moffat Ian H. Witten and Timothy C.
Bell. Managing Gigabytes: Compressing and
Indexing Documents and Images. Morgan
Kaufmann, 340 Pine Street, Sixth Floor, San
Francisco, CA 94104-3205, USA, 1999.

[6] T. Joachims. Making large-scale support vec-
tor machine learning practical. In A. Smola
B. Schlkopf, C. Burges (editor), Advances in
Kernel Methods: Support Vector Machines.
MIT Press, Cambridge, MA, 1998.

[7] Angelike Langer and Klaus Kreft. Standard
C++ IOStreams and Locales: Advanced pro-
grammer’s Guide and Reference. Addison Wes-
ley, One Jacob Way, Reading, Massachusetts
01867, 2000.

[8] Mark Rosen. E-mail classification in the
haystack framework, 2003. MIT, Masters the-
sis, describes the design and implementation of
a text classification framework for the Haystack
project.


