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Abstract. We pursue the program initiated in [7], which consists of an at-
tempt by means of K-theory to construct a strongly torsion generated group

with prescribed center and integral homology in dimensions two and higher.

Using algebraic and topological K-theory for real C∗-algebras, we realize such
a construction up to homological dimension five. We also explore the limits of

the K-theoretic approach.

1. Introduction and statement of the main result

A group G is strongly n-torsion generated for some integer n ≥ 2, if it possesses
a normal generator of order n, in other words, an element gn of order n such that
the normal closure of {gn} in G is equal to G. This amounts to saying that every
element of G is a product of conjugates of gn. If this holds for every n ≥ 2, G is
called strongly torsion generated. The most familiar examples of such groups are
the infinite alternating group A∞ and the infinite special linear groups SL∞(Z)
and SL∞(K), with K a field or a skew field. (For further examples, see [8].)
In fact, one of the key ideas in our method is the intimate link of this notion
with algebraic K-theory embodied by the fact that for a unital ring R, the group
of infinite elementary matrices E(R) and the infinite Steinberg group St(R) are
strongly torsion generated. This is established in [3, Lemma 1 and proof of Thm
A].

The project we have started in [7] goes as follows. Given n abelian groups A
and A2, . . . , An, for some n ≥ 2, we aim at constructing, as explicitly as possible, a
strongly torsion generated group S having, up to isomorphism, A as center and Aq
as q th (integral) homology group Hq(S) with q ranging from 2 to n. The reason
why there is no occurrence of the first homology of S is that it has to vanish; more
precisely, a strongly torsion generated group is perfect, see [9, Lemma 7]. For a
background motivation for such a mathematical quest, we refer to the Introduction
of the companion paper [7], where this program is realized for n = 3, using only K-
theory. Here, to achieve such a construction of S for n = 5, we mix K-theoretical
methods with other ideas borrowed from [9], which are based on [2], and which
combine combinatorial group theory, topology, K-theory and number theory (in
connection with class groups of Dedekind domains, see [9, 13, 20]). Thus, our
approach informs the fundamental question of which sequences of abelian groups
can be the higher K-groups of a ring [4], [6]. In principle, the present note can be
read completely independently of [7].

Our goal here is to establish the following result.
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Theorem 1.1. Let A, B, C, D and E be five abelian groups. Then, there exists a
group S with the following properties :

(i) S is strongly torsion generated;
(ii) the center of S is isomorphic to A, that is, Z(S) ∼= A;
(iii) S is perfect, that is, H1(S) = 0;
(iv) the higher homology of S, up to dimension five, is given by

H2(S) ∼= B , H3(S) ∼= C , H4(S) ∼= D and H5(S) ∼= E .

In Section 2, we discuss K-theory of C∗-algebras; and thereby, in the follow-
ing section, given an abelian group M , we construct a suitable real C∗-algebra
whose topological K-theory is intimately related to M . This is one of the main
constituents in the recipe to construct the group S of Theorem 1.1. We build the
group S and establish Theorem 1.1 in Section 4. Finally, in Section 5, we show that
our essentially K-theoretical approach to the construction of strongly torsion gen-
erated groups with prescribed center and higher homology groups is in a sense best
possible. Although we are able to push the method as far as dimension ten, it is
only up to dimension five that the homology groups may be arbitrarily prescribed.

2. Topological and algebraic K-theory of C∗-algebras

To prove Theorem 1.1, we need some results on both algebraic and topological
K-theory of C∗-algebras that are presented in this section. As general references
for this material, we refer to [16, 23, 24, 27, 31, 32, 35]. We in fact only need
real topological K-theory, but we also quote the results for complex topological
K-theory, because they probably look more familiar to the less expert reader.

To begin with, there is a delicate issue about the notation “ ⊗̂ ” we use in this
paper: when C and D are C∗-algebras over K ∈ {R,C}, then C⊗̂D denotes the
(completed) minimal tensor product over K.

For a real (resp. complex) C∗-algebra A (resp. B), we denote by KOtop
∗ (A) (resp.

Ktop
∗ (B)) its topological K-theory. Recall that topological K-theory satisfies Bott

periodicity ; that is, there are canonical and natural isomorphisms

KOtop
∗ (A) ∼= KOtop

∗+8(A) and Ktop
∗ (B) ∼= Ktop

∗+2(B) .

For example, one has Ktop
2n (C) ∼= Z and Ktop

2n+1(C) = 0 for n ∈ Z, and

n (mod 8) 0 1 2 3 4 5 6 7
KOtop

n (R) Z Z/2 Z/2 0 Z 0 0 0

Topological K-theory is also continuous, in the sense that the functors KOtop
∗ and

Ktop
∗ commute with filtered colimits (of real or complex C∗-algebras on one side

and of abelian groups on the other). Furthermore, topological K-theory is also
Morita invariant, in the sense that for each n ≥ 1, there are canonical and natural
isomorphisms

KOtop
∗
(
A⊗̂Mn(R)

) ∼= KOtop
∗ (A) and Ktop

∗
(
B⊗̂Mn(C)

) ∼= Ktop
∗ (B) .

For K = R or C, we let KK ∼= colimnMn(K) denote the algebra of compact operators
on the separable real (resp. complex) Hilbert space `2K(N). Note that from Morita
invariance and continuity, we get canonical isomorphisms

KOtop
∗ (KR) ∼= KOtop

∗ (R) and Ktop
∗ (KC) ∼= Ktop

∗ (C) .

More generally, topological K-theory is also stable, in the sense that there are
canonical and natural isomorphisms

KOtop
∗ (A⊗̂KR) ∼= KOtop

∗ (A) and Ktop
∗ (B⊗̂KC) ∼= Ktop

∗ (B) .
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Indeed, the above isomorphisms follow from Morita invariance of Ktop
∗ and KOtop

∗
and their continuity. In fact, here one can also replace KK by K(`2K(L)) for any
nonempty (finite or infinite) set L; namely, by the C∗-algebra (over K) of compact
operators on the Hilbert space over K of `2-summable sequences, indexed by L,
in K. Finally, topological K-theory is additive in the sense that if A1 and A2 are
two real C∗-algebras, and if B1 and B2 are two complex C∗-algebras, then there are
canonical and natural isomorphisms

KOtop
∗ (A1 ×A2) ∼= KOtop

∗ (A1)⊕KOtop
∗ (A2)

and
Ktop
∗ (B1 × B2) ∼= Ktop

∗ (B1)⊕Ktop
∗ (B2) .

For convenience, we now introduce the following definition.

Definition 2.1. Suppose that I is an interval of the real line, having its endpoints
in Z q {−∞,∞}. A real C∗-algebra A will be called I-karoubian if the canonical
map

Kalg
q

(
A⊗̂K

(
`2R(L)

))
−→ KOtop

q

(
A⊗̂K

(
`2R(L)

)) ∼= KOtop
q (A)

is an isomorphism for every integer q ∈ I and for every infinite set L. We will say
that A is karoubian if it is (−∞,∞)-karoubian. We introduce the same terminology
for complex C∗-algebras, using complex topological K-theory Ktop

∗ , and complex
compact operators K(`2C(L)), in place of KOtop

∗ and K(`2R(L)) respectively.

The reason for this definition is the Karoubi Conjecture, proved by Suslin-
Wodzicki in [28, 29], which says, using this terminology, that any complex C∗-
algebra is karoubian (to be explicit again, using the minimal tensor product for
complex C∗-algebras); in fact, Karoubi showed it is [−∞, n]-karoubian for n = 0
in [17] and for n = 2 in [18]. It turns out that any real C∗-algebra is also karoubian
(again, for the minimal tensor product, over R), as shown in Rosenberg [26, Thm
1.4] using Suslin-Wodzicki [28, 29] and Higson [15]. To be very meticulous, all these
results are established with L countable (concretely, with L := N) in the notation
of Definition 2.1, but the proofs adapt mutatis mutandis to the case of an arbitrary
infinite set L (merely by choice of an injection of N in L).

The real topological suspension of a real C∗-algebra A is the real C∗-algebra
Stop

R (A) := A⊗̂C0(R→R). The complex topological suspension of a complex C∗-
algebra B is the complex C∗-algebra Stop

C (B) := B⊗̂C0(R→C). The real and
complex suspension isomorphisms are canonical and natural isomorphisms

KOtop
∗
(
Stop

R (A)
) ∼= KOtop

∗+1(A) and Ktop
∗
(
Stop

C (B)
) ∼= Ktop

∗+1(B) .

We set (Stop
K )j := Stop

K ◦ (Stop
K )j−1 for j ≥ 1, with (Stop

K )0 standing for the identity
functor.

The next result is a straightforward application of Morita invariance and is well-
known; we present it as a lemma for later reference. To state it, fix a nonempty set
L, an integer n ≥ 0, and an injection ι of the set {1, 2, . . . , n} into L. Consider the
corresponding rank n projector Pn(ι) ∈ K(`2R(L)) (thought of as a “diagonal matrix”
depending on ι), with 1 as each diagonal entry ι(1), . . . , ι(n) and 0 everywhere else;
as a matter of convention, P0(ι) will stand for the zero operator.

Lemma 2.2. Let A be a real C∗-algebra; and, for n ≥ 0, let

ι : {1, 2, . . . , n} � L

be an injection with corresponding rank n projector Pn(ι). Then, after completion,
the R-linear map

ϑAn : A −→ A⊗R K
(
`2R(L)

)
, a 7−→ a⊗ Pn(ι)
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induces a morphism of real C∗-algebras ϑ̂An : A −→ A⊗̂KR such that the composition

KOtop
∗ (A) −→ KOtop

∗ (A⊗̂KR)
∼=−→ KOtop

∗ (A)

is multiplication by n. A similar result holds for complex C∗-algebras. �

3. Realization of groups by K-theory

Before stating the main result of this section, we recall some notation.

Notation 3.1. Given an abelian group M and an integer n ≥ 2, we set

M/n := M/nM and nM := {x ∈M | nx = 0} .
There are isomorphisms M/n ∼= M ⊗Z Z/n and nM ∼= Tor(M,Z/n); the former is
canonical and natural and, when n = 2, so is the latter (see [21, pp. 150–151]).

The following result is proved at the end of the present section.

Proposition 3.2. Let M be an abelian group. Then, there exists a real C∗-algebra
EM with the following topological K-theory :

n (mod 8) 0 1 2 3 4 5 6 7
KOtop

n (EM ) M 0 0 0 M M/2 Ω2(M) 2M

where Ω2(M) is a suitable abelian group sitting in a short exact sequence

0 −→M/2M −→ Ω2(M) −→ 2M −→ 0 .

Remarks 3.3.
(i) By construction, the C∗-algebra EM is not unital.
(ii) We do not know how to make the dependence of the real C∗-algebra EM

in the abelian group M functorial. It would certainly be of independent
interest to obtain a functorial construction of it.

(iii) In [5], we study the abelian group Ω2(M) (and also various types of gener-
alizations of it) systematically and with many more details. In particular,
we provide another description of it, using algebraic K-theory (for discrete
rings, i.e. without C∗-algebras). The abelian group Ω2(M) a priori seems
to depend on the choice of a presentation for M of the form

0 −→ Z[J ] −→ Z[I] −→M −→ 0 ,

that is, with given basis sets I, J of the two occurring free abelian groups
(compare with the proof of Proposition 3.2 below). (However, see (v) be-
low.) In [5], we show that whenever M is cyclic (finite or infinite), there
are canonical isomorphisms

Ω2(M) ∼= Kalg
2 (Z;M) ∼= KOtop

2 (R;M)

the latter two groups being K-theory with coefficients in M . In particular,
this implies that Ω2(Z/2) ∼= Z/4. As a consequence, the short exact se-
quence of Proposition 3.2, with Ω2(M) as middle term, does not in general
split.

(iv) An alternative approach to this result is provided by work of (chronologi-
cally) Bousfield [12], Hewitt [14] and Boersema [10], [11] on CRT-modules
and united K-theory. (Such modules comprise three Z-graded parts: the
2-periodic complex part modelled on complex K-theory, the 8-periodic real
part modelled on real K-theory, and the 4-periodic part modelled on self-
conjugate K-theory; each pair of graded modules is related by a long exact
sequence. The essential information is given by the core that can be de-
scribed by just the complex and real parts.) Theorem 8.4.4 and the Classi-
fication Theorem of [14] show that the displayed groups form the real part
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of a CRT-module whose complex part is M in even dimensions, 0 otherwise.
Then the Classification Theorem of [14] shows that such an abstract core
must be the core of some exact/acyclic CRT-module. In the case when M
is countable, the main result of [11] asserts that this CRT-module is then
the united K-theory of some real C∗-algebra (indeed, Kirchberg algebra),
whose real K-theory is as desired. J. Boersema (private communication)
states that a similar argument can be applied in the uncountable case.

(v) Lemma 8.4.3 of [14] exploits the CR-structure of the K-theory of EM to
characterize Ω2(M) (there labelled J(M)) as the unique group extension
above such that the obvious composite

Ω2(M) � 2M ↪→M � M/2 � Ω2(M)

is multiplication by 2. An advantage of this characterization is that it
reveals Ω2(M) to be independent of choice of presentation for M .

Before we pass to the proof of Proposition 3.2, we derive a consequence, which
shows that one can nearly prescribe the topological K-theory for real C∗-algebras
in degrees 0, 1, 2 and 3 modulo 8 (compare [32, Ex. 9.H, pp. 173–174]).

Corollary 3.4. Let A0, . . . , A7 be eight abelian groups. Then, there exists a real
C∗-algebra A whose topological K-theory is given by

KOtop
n (A) ∼= A[n] ⊕A[n+4] ⊕ 2A[n+5] ⊕ Ω2(A[n+6])⊕A[n+7]/2 ,

where [q] ∈ {0, 1, . . . , 7} denotes the reduction modulo 8 of the integer q.

Proof. It suffices to take

A :=
7∏
j=0

(Stop
R )[j+4]EAj

,

where [j + 4] ∈ {0, 1, . . . , 7} is the reduction modulo 8 of j + 4. �

Corollary 3.5. Let B0, B1, B2, B3 be four abelian groups. Then there exists a real
C∗-algebra B whose topological K-theory is given by:

n (mod 8) 0 1 2 3
KOtop

n (B) B0 ⊕ 2B1 B1 B2 B2/2⊕B3

.

Proof. In the previous corollary choose B0 = A4, B1 = A5, B2 = A2, B3 = A3,
with the remaining Ak all zero. �

Further in this vein, the following interesting result is due to an anonymous
referee.

Proposition 3.6. Any three prescribed abelian groups may be realized as the con-
secutive KO-groups of a real C∗-algebra.

Proof. For any abelian group M , consider the abelian group M ⊕ ψ−1M with
involution ψ−1 that interchanges summands (in CRT-theory, ψ−1 corresponds to
complex conjugation in K-theory) [12] (3.5). There is then a CRT-module whose
complex part is M ⊕ ψ−1M in even dimensions, and zero otherwise [14] Theorem
6.0.5, Example 6.0.6(iii). It follows from the usual exact sequences (or [14] Theorem
8.4.2) that the real part consists of the fixed subgroup under ψ−1, and is therefore
isomorphic to M in even dimensions, zero otherwise. Then by Boersema’s real-
ization theorem (extended, if necessary, to the uncountable case), there is a real
C∗-algebra FM say, such that KOtop

∗ (FM ) is M in even dimensions, zero otherwise.
Hence, given three abelian groups C0, C1, C2, the real C∗-algebra

C = EC0 × SFC1 × S6EC2
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has KOtop
n (C) = Cn for n = 0, 1, 2. �

Note that a contrasting result is presented as Example 5.1 below.

Proof of Proposition 3.2. For a given abelian group M , we proceed almost exactly
as in [32, Ex. 9.H, pp. 173–174], but correcting a critical mistake (and without
implicitly assuming that I and J are countable). For a general and systematic
approach in a much broader framework, we refer to [5]. So, to begin with, we
consider a presentation of M as an abelian group, say

0 −→ Z[J ]
ψ−→ Z[I] π−→M −→ 0

with J and I some sets providing (unordered) bases for Z[J ] and Z[I], respectively.
Denote by N = (nij)i∈I,j∈J ∈ MI×J(Z) the corresponding matrix of ψ. As ex-
plained in loc. cit., we can always find such a “based presentation” such that N has
nonnegative entries, and we make this assumption.

Next, we fix an infinite set L (understood in the notation from now on) and two
injections J ↪→ L and N ↪→ L (considered as inclusions for simplicity); for example,
when J is nonempty with its basepoint chosen, the set L = J ×N with the obvious
two inclusions. To remain short and to preserve readability, we set

K := K
(
`2R(L)

)
and we fix a bijection L

∼=−→ L × L, which induces, by conjugation, an isometric
isomorphism of real Hilbert spaces `2R(L × L)

∼=−→ `2R(L). Note that there is a
canonical (up to choosing left or right) isometric isomorphism of real Hilbert spaces⊕̂

L`
2
R(L)

∼=−→ `2R(L × L), where
⊕̂

L`
2
R(L) is a Hilbert sum of real Hilbert spaces.

We hence get a composition ∇ :
⊕̂

LK → K of morphisms of real C∗-algebras:

∇ :
⊕̂
L

K =
⊕̂
L

K
(
`2R(L)

)
↪→K

(⊕̂
L

`2R(L)

)
∼=−→K

(
`2R(L× L)

) ∼=−→ K
(
`2R(L)

)
= K ,

where the completed direct sum
⊕̂

LK is defined as the colimit, in the category
of real C∗-algebras and over the poset of nonempty finite subsets F of L, of the
corresponding finite cartesian products of real C∗-algebras

∏
F K. Let F be a

nonempty finite subset of L; there is an obvious injective morphism of real C∗-
algebras jF :

∏
F K ↪→

⊕̂
LK, and a “diagonal inclusion” iF : K ↪→

∏
F K, namely

the unique morphism whose composition with any of the |F | canonical projections∏
F K � K is the identity. It is clear from the construction (compare Lemma 2.2)

that for each nonempty finite subset F of L, the composition

ιF : K iF
↪→
∏
F

K
jF
↪→
⊕̂
L

K ∇
↪→ K

induces multiplication by |F | on the level of KOtop
∗ -theory; correspondingly, if F is

empty, we let ιF : K −→ K be the zero morphism. When F = {1, . . . , n} for some
integer n ∈ N (including n = 0), we write ιn for ιF .

Now, consider the (well-defined) morphism of real C∗-algebras

α :
⊕̂
J

K −→
⊕̂
I

K

given by the composition (of morphisms of real C∗-algebras)⊕̂
J

K
⊕̂

J (ιn•j
)

−→
⊕̂
J

⊕̂
I

K
∼=−→
⊕̂
I

⊕̂
J

K ↪→
⊕̂
I

⊕̂
L

K
⊕̂

I∇−→
⊕̂
I

K
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where, for each j ∈ J , the map (ιn•j
) : K −→

⊕̂
I K denotes the unique morphism

of real C∗-algebras whose postcomposition by the i th projection map, namely

K
(ιn•j

)
−→

⊕̂
I

K pri−→ K ,

is for each i ∈ I the map ιnij defined above using ∇ and the inclusion of the finite
(possibly empty) set {1, . . . , nij} into L. The fact that α is well-defined follows from
the column-finiteness of the matrix N , see details in [5]. Observe that at the level of
KOto0ptp

∗ -theory, the morphism α really induces an abelian group homomorphism
given, in the obvious way, by the integral matrix N : see Lemma 2.2 again and recall
from the beginning of the present section that topological K-theory is additive and
continuous, hence “converts” a completed direct sum “

⊕̂
” into the corresponding

direct sum “
⊕

” of abelian groups. (Of course, it is in this construction of α and
to achieve this latter property of KOtop

∗ (α) that we need that the entries of N are
nonnegative.)

Note. The mistake in [32, Ex. 9.H, pp. 173–174] alluded to earlier is that the map
α therein is the wrong one; indeed, it is not multiplicative, i.e. not a morphism of
R-algebras. This traces back to the fact that there is no coproduct in the categories
of (nonunital) rings and R-algebras, and even more precisely, that the coproduct
of the underlying additive abelian groups is not a coproduct of rings because the
universal maps — i.e. given by the universal property, with the coproduct as
domain — are not multiplicative in general (the coproduct additive group being
equipped with the obvious termwise multiplication, i.e. being viewed as a subring
of the corresponding cartesian product of rings).

Next, for readability, we set

AJ :=
⊕̂
J

K , AI :=
⊕̂
I

K and BI := Stop
R (AI) ,

and we define the real C∗-algebra Cα = Cα(M) as the mapping cone of α, that is,

Cα := {(a, f) ∈ AJ × C[0, 1]→AI | f(0) = 0 , f(1) = α(a)} .

The long exact sequence in K-theory associated to the extension of real C∗-algebras

0 −→ BI −→ Cα −→ AJ −→ 0

is a 24-term cyclic exact sequence, reading

· · · → KOtop
1 (AJ) → KOtop

0 (BI)︸ ︷︷ ︸
∼=KOtop

1 (AI)

→ KOtop
0 (Cα) → KOtop

0 (AJ) → KOtop
7 (BI)︸ ︷︷ ︸

∼=KOtop
0 (AI)

→ · · ·

Using the real suspension isomorphism and the value of KOtop
∗ (K) ∼= KOtop

∗ (R)
recalled earlier in this section, and applying Lemma 2.2 (more specifically, the fact
that the homomorphism KOtop

∗ (α) is given by the matrix N), one readily obtains
that

n (mod 8) 0 1 2 3 4 5 6 7
KOtop

n (Cα) M/2 Ω2(M) 2M M 0 0 0 M

exploiting the fact that π⊗ idZ/2 is surjective and has kernel canonically isomorphic
to Tor(M,Z/2) ∼= 2M . Finally, it suffices to take EM := (Stop

R )3(Cα), i.e. the 3-fold
real topological suspension of the mapping cone real C∗-algebra Cα. �
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4. Construction of S and proof of Theorem 1.1

In the present section, we make the construction of the group S of Theorem 1.1
explicit using results of [9], and then we establish the theorem.

First, letting A, B, C, D and E be fixed abelian groups, by [9, Thm 1] there
exists a strongly torsion generated group S′ = S′(B,C,D,E, 0, . . .) with trivial
center and with reduced integral homology given by

n 1 2 3 4 5 6 7 · · ·
Hn(S′) 0 B C D E 0 0 · · ·

Next, as the group S = S(A,B,C,D,E), we take the cartesian product

S := St
(

(Salg)10 ( ˜EA⊗̂KR)
)
× S′(B,C,D,E, 0, . . .) .

Some explanations are in order. Firstly, EA⊗̂KR is the real C∗-algebra, considered
as a mere nonunital ring, obtained by stabilizing the real C∗-algebra EA of Propo-
sition 3.2. Secondly, for a nonunital ring I, Ĩ is the minimal unitalization of I, i.e.

the unital ring given, as a Z-module, by the direct sum Ĩ := I ⊕ Z, and equipped
with the multiplication defined by

(x, λ) · (x′, λ′) :=
(
xx′ + λx′ + λ′x, λλ′

)
, for x, x′ ∈ I and λ, λ′ ∈ Z .

Thirdly, for a unital ring R, Salg(R) := R⊗Z S(Z) denotes the algebraic suspension
of R, which is a unital ring as well. Here, S(Z) := C(Z)/M(Z) is the suspension of
the ring of integers, obtained as the quotient of the cone C(Z) of Z (given by the
infinite matrices (aij)i,j∈N with only finitely many nonzero integer-valued entries
in each row and in each column), by the twosided ideal M(Z) =

⋃
n≥1Mn(Z) of all

finite integral square matrices. Naturally, (Salg)10(R) denotes the 10-fold algebraic
suspension of the unital ring R, and finally, St(R) designates its infinite Steinberg
group.

Proof of Theorem 1.1. Let Λ be the unital ring (Salg)10 ( ˜EA⊗̂KR). As already
mentioned, by [3], the group St(Λ) is strongly torsion generated. Furthermore, it
is proved in [8], among other things, that a (possibly infinite) cartesian product of
strongly torsion generated groups is strongly torsion generated again. Therefore,
by our choice of S′, the product group S = St(Λ)×S′ is strongly torsion generated.
By [22, Thm 5.1], the center of St(Λ) is naturally isomorphic to Kalg

2 (Λ). It follows
that Z(S) ∼= Kalg

2 (Λ).
Let us now determine the K-groups Kalg

n (Λ) with n ≤ 5. First, recall that EA,
as any real C∗-algebra, is karoubian – see Section 2. Thus, we have isomorphisms

Kalg
∗ (EA⊗̂KR) ∼= KOtop

∗ (EA⊗̂KR) ∼= KOtop
∗ (EA) ,

and the latter groups are 8-periodic and fully described in Proposition 3.2 with M
standing for our A. Next, letting I denote the nonunital ring EA⊗̂KR, we have
isomorphisms

Kalg
∗ (Ĩ) ∼= Kalg

∗ (Ĩ, I)⊕Kalg
∗ (Z)

and, for n ≥ 0,

Kalg
−n(Ĩ) ∼=

{
Kalg
−n(I) if n > 0

Kalg
0 (I)⊕ Z if n = 0 .

Indeed, this uses the long exact sequence in algebraic K-theory, see [25, Thm 3.3.4],
the split short exact sequence of nonunital rings

0 −→ I −→ Ĩ x−→ Z −→ 0 ,
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see [25, Def. 1.5.7], the fact that Kalg
−n satisfies excision for n ≥ 0, see [25, Thm 1.5.9

and Def. 3.3.1], and the regularity of the ring of integers Z, which implies that
its negative K-groups all vanish, see [25, Ex. 3.1.2 (4) and Def. 3.3.1]. By the
suspension isomorphism in algebraic K-theory, to the effect that

Kalg
∗
(
(Salg)`(R)

) ∼= Kalg
∗−`(R) ,

for any unital ring R and any ` ≥ 1, we obtain that for n ≤ 9,

Kalg
n (Λ) ∼= Kalg

n−10(
˜EA⊗̂KR) ∼=Kalg

n−10(EA⊗̂KR)
∼=KOtop

n−10(EA⊗̂KR) ∼= KOtop
n−10(EA) .

In particular, for n ∈ {2, 3, 4, 5}, we have

Kalg
n (Λ) ∼=

{
A if n = 2,
0 if n = 3, 4, 5.

Now, for n ≤ 6, combining [25, Thms 5.2.2 and 5.2.7; Cor. 5.2.8] with the Hurewicz
Theorem [30, Thm 10.25], we have canonical isomorphisms

Hn (St(Λ)) ∼= Hn

(
B St(Λ)+

) ∼= πn
(
B St(Λ)+

) ∼= { 0 if n ≤ 5,
Kalg

6 (Λ) if n = 6.

In total, it follows that Z(S) = Z (St(Λ)) ∼= A and that Hn (St(Λ)) = 0, for
n ∈ {1, 2, 3, 4, 5} . From the Künneth Theorem [30, Thm 13.31], we deduce that

Hn(S) ∼= Hn(S′)

whenever n belongs to {1, 2, 3, 4, 5}, and this completes the proof. �

Remark 4.1. Keeping notation as in the proof, in dimension 6 we have

H6(S) ∼= H6 (St(Λ)) ∼= Kalg
6 (Λ) ∼= Kalg

−4

(
˜EA⊗̂KR

)
∼= KOtop

−4 (EA) ∼= A .

5. The potential limits of the method

Here, we explain to what extent our method could possibly be pushed further
to get stronger results, namely, to prescribe, besides the center, extra homology
groups. The following example, due to an anonymous referee, illustrates the diffi-
culty.

Example 5.1. If, for a real C∗-algebra B, both KOtop
0 (B) and KOtop

3 (B) are odd
torsion groups, then

2KO
top
1 (B) = 0 = KOtop

2 (B)(2)/2.

The reason for this is that the long exact sequence relating real and complex K-
theory [16] gives short exact sequences such as

KO3 → KU3 −→ KO1 and KO0 → KO1
c−→ KU1 ,

↓∼= ↗r

KU1

where r is realization, c is complexification. Hence in this case both r and c are
monomorphisms on 2-torsion subgroups in dimension 1; however, there is the usual
relation rc = 2. This shows that KOtop

1 (B) is 2-torsion-free. Similarly, in dimension
2 both r and c are epimorphisms after 2-localization, so that (again because rc = 2)
the 2-localization of KOtop

2 (B) is 2-divisible.
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In general, a significant constraint arises from the fact that the K-theory of
a real C∗-algebra A is a module over KOtop

∗ (R) [19, (2.5)]. Since the Z-graded
ring KOtop

∗ (R) contains the torsion-free generator ξ ∈ KOtop
4 (R) such that ξ2 =

4β, where multiplication by β ∈ KOtop
8 (R) gives the period 8 Bott periodicity

isomorphism, it follows that multiplication by ξ induces a period 4 isomorphism on
KOtop

∗ (A)⊗Z[ 12 ]. Moreover, in the general case, as we have already seen, 2-torsion
tends to cloud the issue. Therefore, to simplify matters, we restrict attention to
uniquely 2-divisible groups.

Theorem 5.1. Given ten uniquely 2-divisible abelian groups

A and A2, . . . , A10 ,

there exists a group S with the following properties :
(i) S is strongly torsion generated;
(ii) the center of S is isomorphic to A, that is, Z(S) ∼= A;
(iii) S is perfect, that is, H1(S) = 0;
(iv) the higher homology of S, up to dimension ten, is given by the tableau

n 2 3 4 5 6 7 8
Hn(S) A2 A3 A4 A5 A⊕A6 A7 A8

9 10
(A⊗A3)⊕A9 ⊕ Tor(A,A2) H ⊕ (A⊗A4)⊕A10 ⊕ Tor(A,A3)

where H is an abelian group (described in the proof below) mapping onto
A/3.

Proof. First, by Proposition 3.2, there exists a real C∗-algebra L = EZ[ 12 ] such that

KOtop
q (L) =

{
Z[ 12 ] q ≡ 0 (mod 4),
0 otherwise.

Consider L and K := K
(
`2R(L)

)
as in the proof of Proposition 3.2, using a fixed

“based presentation” of an arbitrary uniquely 2-divisible abelian group M , with
matrix N = (nij) having nonnegative integral coefficients. Now, we mimic that
proof; this time with, in place of AJ , AI and α, the real C∗-algebras

A′J :=
⊕̂
J

L⊗̂K and A′I :=
⊕̂
I

L⊗̂K

and the morphism of real C∗-algebras

α′ := idL′⊗̂α : A′J → A′I ,
respectively; in other words, (with i ∈ I and j ∈ J) we replace each real C∗-algebra
endomorphism ιnij

: K −→ K by the endomorphism idL′⊗̂ ιnij
: L⊗̂K −→ L⊗̂K.

One then similarly deduces that for every uniquely 2-divisible abelian group M
there exists a real C∗-algebra LM whose topological K-theory is given by

KOtop
q (LM ) =

{
M q ≡ 0 (mod 4),
0 otherwise.

Next, we define Λ to be the ring (Salg)10(L̃A⊗̂KR). Therefore, we have isomor-
phisms

Kalg
n (Λ) ∼= Kalg

n−k(L̃A⊗̂KR) ∼=Kalg
n−k(LA⊗̂KR)

∼=KOtop
n−k(LA⊗̂KR) ∼= KOtop

n−k(LA)

for any n with 2 ≤ n ≤ 10.
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Now, we claim that the homology of the group St(Λ) is given by the tableau

n 1 2 · · · 5 6 7 8 9 10
Hn (St(Λ)) 0 0 · · · 0 A 0 0 2A H

where H is described below. Indeed, this is clear for n = 1 and n = 2. For
3 ≤ n ≤ 6, by the Hurewicz Theorem applied to the CW-complex B St(Λ)+, we
have

Hn (St(Λ)) ∼= Kalg
n (Λ) ∼= KOtop

n−10(LA) ∼=
{

0 if 3 ≤ n ≤ 5,
A if n = 6.

Now, Whitehead’s exact sequence for the 5-connected CW-complex X := B St(Λ)+

reads

. . .→ π8(X)︸ ︷︷ ︸
∼=Kalg

8 (Λ)

→ H8(X)︸ ︷︷ ︸
∼=H8(St(Λ))

→ Γ7(X) → π7(X)︸ ︷︷ ︸
∼=Kalg

7 (Λ)

→ H7(X)︸ ︷︷ ︸
∼=H7(St(Λ))

→ Γ6(X)︸ ︷︷ ︸
=0

,

see [34]. Since Kalg
n (Λ) ∼= KOtop

n−10(LA) vanishes for 7 ≤ n ≤ 9, it follows that

H7 (St(Λ)) = 0

and, for 8 ≤ n ≤ 9,
Hn (St(Λ)) ∼= Γn−1(X) .

By Whitehead [33], we have Γ7(X) ∼= π7(X)/2 = 0. It follows from [1, Cor. (3),
p. 170] that there is a short exact sequence

0 −→ π7(X)/2 −→ Γ8(X) −→ 2π6(X) −→ 0 ,

so that Γ8(X) ∼= 2K
alg
6 (Λ) ∼= 2A = 0 in our situation. By [1, Cor. (5.2), p. 178],

there is an exact sequence

Ker(η1) d2−→ π6(X)/3⊕ P −→ Γ9(X) −→ 2π7(X)
/
Im(η1) −→ 0 ,

where η1 : π6(X)/2 −→ π7(X) is induced by a certain Hopf map, and P is a pushout
of abelian groups of the form

π6(X)/2 −→ π8(X)/2
↓ p. ↓

π6(X)/8 −→ P

all of which vanish by 2-divisibility of A. Therefore,

Γ9(X) ∼= A/3 .

Thus, H := H10 (St(Λ)) fits into Whitehead’s exact sequence as:

. . .→ π10(X)︸ ︷︷ ︸
∼=A

−→ H −→ Γ9(X)︸ ︷︷ ︸
∼=A/3

−→ π9(X)︸ ︷︷ ︸
=0

Now, as the group S, we take

S := St
(

(Salg)k(L̃A⊗̂KR)
)
× S′(A2, . . . , A10, 0, . . .) ,

where the group S′ = S′(A2, . . . , A10, 0, . . .) is provided by [9, Thm 1], and is
strongly torsion generated, with trivial center, and with reduced integral homology
given by

n 1 2 · · · 10 11 12 · · ·
Hn(S′) 0 A2 · · · A10 0 0 · · ·
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Since by [3] St(Λ) is strongly torsion generated, so too by [8] is the cartesian product
S = St(Λ) × S′. Clearly, the center of S is isomorphic to that of St(Λ), where

Λ := (Salg)10(L̃A⊗̂KR); this center is given by

Z (St(Λ)) ∼= Kalg
2 (Λ) ∼= KOtop

−8 (LA) ∼= A .

Finally, it suffices to apply the Künneth Theorem (including its non-natural split-
ting) to conclude. �

Now we see that our K-theoretical approach to construct the desired group S as
a product of a group S′ = S′(A2, A3, . . .) from [9] with an infinite Steinberg group
St(Λ) — where Λ is a unital ring suitably obtained from an appropriate real C∗-
algebra — will inevitably introduce in the group H6(S) a version of A. Here, A is
at the same time isomorphic to Z (St(Λ)) ∼= Kalg

2 (Λ) and to Kalg
6 (Λ) (by the hidden

real Bott periodicity “transported” by a Karoubi isomorphism). This shows exactly
the limits we alluded to earlier. It is also worth noting that the arguments of Remark
3.3 (iv) reveal that there is no gain in the apparent generalization to consideration
of real Banach algebras (even if karoubian) instead of real C∗-algebras; for, the K-
theory of such a real Banach algebra can always be attained by a real C∗-algebra.
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