
CHAPTER 1 

MDA-BASED ONTOLOGICAL ENGINEERING 

1DRAGAN DJURIĆ, 1,2DRAGAN GAŠEVIĆ,  
1VIOLETA DAMJANOVIĆ and 1VLADAN DEVEDŽIĆ 

1GOOD OLD AI Research Group, FON, University of Belgrade, 
POB 52, Jove Ilića 154, 11000 Belgrade, Serbia and Montenegro 

2School of Interactive Arts and Technology, Simon Fraser University Surrey 
2400 Central City, 10153 King George Hwy.Surrey, BC V3T 2W1, Canada 

E-mail: dragandj@gmail.com, gasevic@yahoo.com,  
vdamjanovic@gmail.com, devedzic@fon.bg.ac.yu 

The chapter presents a concept of approaching two ongoing technologies, 
ontological engineering and OMG’s Model Driven Architecture (MDA), which 
are developing in parallel, but by different communities. Our main intention is to 
show recent efforts that pursuing to provide software engineers to use and 
develop ontologies. Many authors have so far stressed this problem and have 
proposed several solutions and some of them are analyzed in this chapter. The 
result of these efforts is the recent OMG’s initiative for defining an ontology 
development platform. The ontology platform should be defined using MDA-
based standards and it should consist of: Ontology Definition Metamodel, 
Ontology UML Profile, and a set of transformations. We depict our proposal for 
an MDA-based ontology development platform in order to illustrate this OMG’s 
effort as it is in a very initial stage and a formal recommendation has not been 
adopted yet. 

1. Introduction 

The Semantic Web and its eXtensible Markup Language (XML) based languages 
are the main directions of the future Web development. Domain ontologies [30] 
are the most important part of the Semantic Web applications. They are formal 
organization of domain knowledge, and in that way enable knowledge sharing 
between different knowledge-base applications. Artificial intelligence (AI) 
techniques are used for ontology creation, but those techniques are more related 
to research laboratories, and they are unknown to wider software engineering 
population.  
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The integration of the ongoing software engineering efforts with the concept 
of the Semantic Web is not a new idea [13, 40]. The main question is how to 
develop the Semantic Web ontologies using well-accepted software engineering 
languages and techniques in order to provide the wider practitioner population to 
develop and use ontologies in real-world applications. Many researchers have 
previously suggested using UML in order to solve this problem. However, UML 
is based on object oriented paradigm, and has some limitation regarding ontology 
development. Hence, we can only use UML in initial phases of an ontology 
development. We believe that these limitations can be overcame using UML’s 
extensions (i.e., UML profiles) [19], as well as other OMG’s standards (e.g. 
Model Driven Architecture – MDA). Additionally, if we want to provide solution 
consistent with MDA proposals, we should also support automatic generation of 
completely operational ontology definitions (e.g. in OWL language) that are 
model driven [50]. The most important direction toward this goal is the Special 
Interest Group (SIG) within Object Modeling Group (OMG) that will converge 
many different proposals regarding this problem [44]. The result of this effort 
should be a standard language (i.e., metamodel) based on the MDA standards 
[42] and the W3C’s Web Ontology Language (OWL) recommendation [6]. 

The next section contains an overview of the ontologies and the Semantic 
Web, while Sec. 3 describes the Semantic Web languages and OWL. Section 4 
defines OMG’s MDA initiative and related concepts: Meta-Object Facility, UML 
Profiles, and XML Metadata Interchange (XMI). In Sec. 5, we give an overview 
of current work using MDA-based solutions for ontology development. In Sec. 6, 
we give a framework for the ontology language metamodel in the context of the 
OMG’s effort.  Section 8 shows the ontology metamodel definition in detail 
while Sec. 9 gives description of Ontology UML Profile. The last section 
contains the final conclusions. This work is a part of the effort of the GOOD 
OLD AI research group (http://goodoldai.org.yu) in developing AIR - a platform 
for building intelligent information systems. 
 

2. An overview of the Ontologies and the Semantic Web 

Ontologies have been around for quite some time now. Since early 1990s 
researchers in the domain of artificial intelligence and knowledge representation 
have studied ontologies as means for knowledge sharing and reuse among 
knowledge-based systems. However, even an early survey of the field of 
ontologies [24] has identified a number of application classes that benefit to a 
large extent from utilizing ontologies although some of them are not necessarily 
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knowledge-based systems in the traditional sense. Some of the application 
classes it mentioned include natural language processing, library science, 
intelligent information retrieval (especially from the Internet), virtual 
organizations, and simulation and modeling. Later on, researchers have 
recognized explicitly that ontologies are not just for knowledge-based systems, 
but for all software systems – all software needs models of the world, hence can 
make use of ontologies at design time [11]. Nowadays, ontologies and 
ontological engineering span such diverse fields as qualitative modeling, 
language engineering, database design, information retrieval and extraction, 
knowledge management and organization, ontology-enhanced search, possibly 
the largest one, e-commerce (e.g., Amazon.com, Yahoo Shopping, etc.), and 
configuration [41]. 

2.1. Definitions and background 

There are at least a dozen definitions of ontologies in the literature. A recent one 
says that ontology provides the basic structure or armature around which a 
knowledge base can be built [52]. Another one specifies that ontology should 
provide a set of knowledge terms, including the vocabulary, the semantic 
interconnections, and some simple rules of inference and logic for some 
particular topic or service [32]. Although informal, these definitions capture the 
central idea of ontologies – they are structured depictions or models of known 
(and accepted) facts about some topics. Ontologies appear most effective when 
the semantic distinctions that humans take for granted are crucial to the 
application's purpose [15]. 

Each ontology provides the vocabulary (or names) for referring to the terms 
in a subject area, as well as the logical statements that describe what the terms 
are, how they are related to each other, how they can or cannot be related to each 
other, as well as rules for combining terms and relations to define extensions to 
the vocabulary. Hence, ontologies represent a common machine-level 
understanding of topics that can be communicated between users and 
applications, i.e., domain semantics independent of reader and context. For a 
more recent comprehensive discussion of ontologies, see [36]. 

2.2. Semantic Web 

One of the central roles of ontologies is to establish further levels of 
interoperability, i.e., semantic interoperability, between agents and applications 
on the emerging Semantic Web [8], as well as to add a further representation and 
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inference layer on top of the Web’s current layers [14, 32]. When put on the 
Web, ontologies specify standard terms and machine-readable definitions. The 
Semantic Web is based on the idea of numerous ontologies providing 
vocabularies, definitions, and constraints that information resources, agents, and 
Web-based applications can commit to in order to reuse data and knowledge 
effectively [31]. This way, ontology conveys the same meaning of its terms to 
any two or more sources that commit to it. Any source, agent, or application can 
commit to any ontology or create a new one. Thus, the Semantic Web is 
essentially a distributed approach to creating standard vocabularies. 

2.3. Ontological engineering 

The engineering part of developing ontologies comprises a complex set of 
activities that are conducted during conceptualization, design, implementation 
and deployment of ontologies. Ontological engineering covers a whole range of 
topics and issues, such as the basics (philosophical and metaphysical issues and 
knowledge representation formalisms), methodology of ontology development, 
recent Web technologies such as XML [7] and its relatives [38], business process 
modeling, commonsense knowledge, systematization of domain knowledge, 
Internet information retrieval, standardization, evaluation, ontology integration 
with agents and applications, and many more [16]. It also gives us design 
rationale of a knowledge base, helps us define the essential concepts of the world 
of interest, allows for a more disciplined design of a knowledge base, and enables 
us to accumulate the knowledge about it. The disciplines tightly interwoven with 
ontological engineering include modeling, metamodeling, and numerous fields of 
software engineering. 

2.4. Ontology building tools 

An important aspect of building ontologies is the use of specific software tools 
that enable ontology conceptualization, representation, construction, and use. 
There are a number of such tools today. Most of them have resulted from efforts 
of research groups and university labs, and are currently free. However, these 
tools can differ to a large extent in terms of support they provide to the ontology 
development process, the format(s) used for storing ontologies, the number of 
format converters supported for translating ontologies to/from other formats, the 
way(s) other applications can interoperate with ontology tools, the tool stability 
and maturity, support for querying information about an ontology, and so on 
[29]. 
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3. An overview of the Semantic Web Tools and Languages 

There were several efforts so far to develop a comprehensive classification of 
ontology development tools, as well as to compare and evaluate a number of 
different tools. The most comprehensive among such approaches to date is the 
one proposed by OntoWeb Consortium [29]. The approach starts from grouping 
all ontology-based software tools into the following large categories: 
• ontology development tools – the tools, environments and suites that can be 

used for building a new ontology from scratch or reusing existing ontologies; 
• ontology merge and integration tools – the tools helping to solve the problem 

of merging or integrating different ontologies on the same domain; 
• ontology evaluation tools – support tools that enable getting insight into the 

level of quality of ontologies and their related technologies; 
• ontology-based annotation tools – the tools enabling the users to insert 

ontology-based markups in Web pages; 
• ontology storage and querying tools - the tools that allow using and querying 

ontologies easily; and  
• ontology learning tools - the tools used to (semi) automatically derive 

ontologies from natural language texts. 
A similar, though much more narrowly focused study by M. Denny, covered 

ontology editors only [15]. Ontology browsers without an editing focus and other 
types of ontology building tools were not included. The study was still very 
useful because it helped identify a cross-section of ontology editing tools. 

Another group of comparative studies is focused on ontology development 
languages only. A good example coming from an academic environment is the 
study of languages for the Semantic Web [28]. The study has identified three 
levels of abstraction of such languages and has included only the languages based 
on XML technologies. 

We propose a suitable, practically oriented, and simple framework/hierarchy 
that can be used for an easy, yet very informative categorization of ontology 
development tools. It is drawn based on informal criteria of the tools' 
sophistication and usability. Despite the fact that these may appear as rather 
subjective criteria, they do allow for a rough hierarchical categorization of all 
currently available ontology development tools. The framework is characterized 
by: 
• a wider focus than that of ontology editors alone, used in [15]; 
• yet, a more narrow focus than that of covering all ontology-related tools as in 

[29] – our framework concentrates on ontology development tools only; 
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• ontology development languages themselves are included, although much 
less formally than in [28, 48]; 

• ontology learning tools are included, since ontology learning is also a way of 
building ontologies. 

Figure 1 describes the framework/hierarchy graphically. 
 

Ontology learning tools Tools employing machine learning 

Ontology-development 
environments Integrated graphical tools 

Ontology-representation 
languages  

(The Semantic Web languages) 

Languages of different expressive 
power and based on different 
representation paradigms (regardless 
of the underlying technology) 

XML/RDF XML/XMLS, RDF/RDFS and the 
corresponding development tools 

 
Fig. 1. Hierarchy of ontology development tools. 

3.1. The Semantic Web languages 

Common data interoperability in present applications is best achieved by using 
XML. XML is a meta-language used to define other languages. It describes a 
class of data objects called XML documents and partially describes the behavior 
of computer programs which process them [9]. XML defines neither the tags nor 
grammar, which makes it completely extensible. It only requires that document 
must be well-formed in a tree structure, so it could be parsed by standard XML 
tools. Hence, one can view XML technologies and languages, as well as their 
corresponding development tools, as constituting the core of ontology 
development tools. Ontologies represent semantics and meanings of topics and 
subject areas in a declarative form. XML syntax is suitable for ontology 
representation because it is human readable, simple to parse, well defined, and 
widely used. Fundamental XML-based languages – XML itself, XMLS, 
Resource Description Framework (RDF) and RDF Schema (RDFS) – can express 
some semantics themselves. 

Whereas in pure HTML the tags are fixed, in XML they are arbitrary and are 
described in a Document Type Definition (DTD) or in an XMLS document. 
Having custom tags in a document adds context and gives meaning to data and 
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let people meaningfully annotate text [6]. Using XMLS to prescribe the data 
structure, XML can encode all kinds of data that is exchanged between 
computers. This brings an extensible and easy-to-use syntax for describing Web 
data, though just a minimum semantics. With respect to the Semantic Web 
technology, it is important to stress a role of an XML Metamodel Interchange 
(XMI) as a standard for stream-based model interchange. The main purpose of 
XMI [46] is to enable easy interchange of metadata between modeling tools 
(based on the Object Management Group (OMG) Unified Modeling Language 
(UML)) and between tools and metadata repositories (OMG Meta Object Facility 
(MOF)) in distributed heterogeneous environments. XMI integrates three key 
industry standards: 

(i)XML - a W3C standard;  
(ii)UML - an OMG modeling standard; and 

(iii)MOF - Meta Object Facility and OMG modeling and metadata repository 
standard. 

The integration of these three standards into XMI marries the best of OMG 
and W3C metadata and modeling XMI technologies allowing developers of 
distributed systems to share object models and other metadata over the Internet. 
XMI standardizes the exchange of metamodels, models, as well as object 
instances between applications [46]. 

Apart from the XML, there are other languages attempt to achieve semantic 
interoperability. Such languages are Ontology Interchange Language (Ontology 
Inference Layer) (OIL), DARPA Agent Markup Language (DAML+OIL), RDF, 
RDFS, and Web Ontology Language (OWL). 

OIL is a proposal for a joint standard for describing and exchanging 
ontologies. OIL permits semantic interoperability between web resources. OIL is 
not just another new language but reflects a certain consensus among the 
specialists in the areas such as description logic (DL) and frame-based systems. 
OIL is a significant source of inspiration for the ontology language DAML+OIL 
[21]. 

DAML+OIL is an ontology language specifically designed for use on the 
Web, as a joint effort to create a standard language for the Semantic Web. 
DAML+OIL uses existing standards (XML and RDF) adding the familiar 
ontological primitives of object-oriented and frame-based systems, and the 
formal rigor of a very expressive DL [34]. DAML+OIL is built on top of W3C 
standards such as RDF and RDFS, and extends these languages with richer 
modeling primitives [33]. 

RDF and RDFS cannot be considered as ontology specification languages, 
but rather as general languages for the description of metadata on the Web [12]. 
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It is important to stress that they are a W3C standard for the Semantic Web. RDF 
is a framework for representing metadata, i.e., a model for representing data 
about resources on the Web. Each RDF description is basically a list of object 
(resource) - attribute (property) - value (resource or free text) triples, i.e., 
statements. This RDF data model is equivalent to the semantic network 
formalisms, which consist of three object types: properties, resources, and 
statements. 

RDFS are used to define an RDF document vocabulary (domain-specific 
properties and classes of resources to which those properties can be applied), and 
are referred to in RDF documents through namespaces. It is important to stress 
that RDFS uses modeling primitives like class, subclass-of, property, domain and 
the like, with much higher expressive power than those used in XMLS. These 
allow for specifying higher-level semantics and can be used for basic ontology 
modeling. 

The Web Ontology Language (OWL) is a semantic markup language for 
publishing and sharing ontologies on the WWW. OWL is developed as a 
vocabulary extension of RDF and is derived from the DAML+OIL Web 
Ontology Language. OWL is designed for use by applications that need to 
process the content of information instead of just presenting information to 
humans. OWL facilitates greater machine interpretability of Web content than 
that supported by XML, RDF and RDFS by providing additional vocabulary 
along with a formal semantics. OWL has three variants [6]: 
• OWL Lite is intended mostly to support classification hierarchy and simple 

constraint features. It is a good starting point for tool builders. OWL Lite can 
be useful in migrations of existing taxonomies to OWL. 

• OWL DL enables maximum expressiveness and guarantees computational 
completeness (all entailments are guaranteed to be computed) and 
decidability (all computations will finish in finite time). It includes all OWL 
Full constructs, and appends some constraints. The most significant 
constraints are that a class cannot be an individual or a property, or that a 
property cannot be an individual or a class. OWL DL has a good formal 
background since it is based on description logics. 

• OWL Full provides maximum expressiveness and syntactic independence of 
RDF, but doesn’t provide any computational guarantees. The main 
characteristic of OWL Full in comparison to OWL DL and OWL Lite is that 
one class, which is, by definition, a collection of individuals, can be an 
individual itself, like in RDF(S). This approach can lead to models that need 
infinite time to compute. 
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OWL Full is an extension of OWL DL, which is an extension of OWL Lite, 
thus every OWL Lite ontology is OWL DL and OWL Full ontology and every 
OWL DL ontology is OWL Full ontology. The place of OWL in described 
architecture is shown in Fig. 2. 

 

 
 

Fig. 2. OWL in the Semantic Web architecture. 
 
Since the World Wide Web is almost unconstrained, OWL must support open 

world assumption and allow importing and mixing various ontologies. Some of 
them may be even contradictory, but new information can never retract existing 
information, it can be only added to it. 

4. An Overview of Model Driven Architecture  
and Meta-Object Facility 

If we look back to the history of software development, we can see a notable 
increase of models abstraction. Modeling becomes more and more separate from 
underlying platforms, making models of real world more reusable and easy to 
create by domain experts, requiring less knowledge of specific computer systems. 
This places software modeling closer to knowledge acquisition in knowledge 
engineering and vice versa. Current stage in that evolution is OMG’s Model 
Driven Architecture [42]. 

4.1 MDA basics 

MDA defines three viewpoints (levels of abstraction) from which a system can 
be seen. From a selected viewpoint, a representation of a given system 
(viewpoint model) can be defined. These models are (each corresponding to the 
viewpoint with the same name): Computation Independent Model (CIM), 
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Platform Independent Model (PIM) and Platform Specific Model (PSM). CIM is 
a view of a system that does not show the details of a system structure. In 
software engineering, it is also known as a domain model, which is specified by 
domain experts. It is similar to the concept of ontology. PIM is the model that is 
computation dependent, but it is not aware of specific computer platform details. 
In other words, it is targeted for technology-neutral virtual machine. 
Specification of complete computer system is completed with PSM. The goal is 
to move human work from PSM towards CIM and PIM and let the specific 
platform detail implementations be generated as much as possible by automated 
tools which will do the transformation from PIM to PSM. 

All metamodels, standard or custom, defined by MOF are positioned at the 
M2 layer. One of these is UML, a graphical modeling language for specifying, 
visualizing and documenting software systems. With UML profiles, basic UML 
concepts (Class, Association, etc.) can be extended with new concepts 
(stereotypes) and adapted to specific modeling needs. The models of the real 
world, represented by concepts defined in the corresponding metamodel at M2 
layer (e.g. UML metamodel) are at M1 layer. Finally, at M0 layer are instances 
of concepts modeled at M1 layer. An example would be: MOF Class (at M3) is 
used to define UML Class (M2), which is used to define real-world describing 
concept, class Person (M1) that can have instances: Tom, Dick, Harry (M0). 

Another standard that this architecture is based on is XMI, a standard that 
defines mapping from MOF-defined metamodels to XML documents and 
Schemas. XML, which is well-supported in various software tools, gives XMI 
strength to enable sharing of meta-metamodel, metamodels and models. 

Present software tools support for MDA is concentrated primarily on UML as 
a graphical notation, with no concern of metamodeling layers [26]. UML CASE 
tools (e.g. Rational Rose, Borland Together, Magic Draw, Poseidon for UML, 
etc.) have good support for modeling at M1 layer and for code generation in 
certain programming languages. Using appropriate UML profile they can 
generate databases, XML Schemas, EJBs etc. But, they lack support for M2 and 
M3 layers as well as a unified serialization to XMI. It is expected from future 
tools to support UML 2, which will enable common XMI representation of UML 
models, and MOF-compliant model repositories at M2 and M3 layers; all this 
will provide a good support for metamodeling. 

4.2. Modeling: Instance layers versus ontological layers 

MOF is a self-defined language intended for defining metamodels. In term of 
MDA a metamodel makes statements about what can be expressed in the valid 
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models of a certain modeling language. In fact, a metamodel is a model of a 
modeling language [49]. Examples of the MDA’s metamodels are UML and 
CWM. The MDA’s metamodel layer is usually marked as M2. At this layer, we 
can define a new metamodel (e.g. modeling language) that would cover some 
specific application domains (e.g. ontology development). The next layer is the 
model layer (M1) – a layer where we develop real-world models (or domain 
models). In terms of the UML models that means creating classes, their relations, 
states, etc. This layered architecture, also shown in Fig. 3 is often difficult to 
understand for less experienced modelers, so we should explain the bottom-most 
layer, the instance layer (M0) in more depth. There are two different approaches 
about this question, and we note both of them: 
(i) The instance layer contains instances of the concepts defined at model (M1) 

layer (e.g. objects in programming languages). 
(ii) The instance layer contains things from our reality – concrete (e.g. Mark is 

instance of the Person class, Lassie is a instance of the Dog class, etc.) and 
abstract (e.g. UML’s classes – Dog, Person, etc.) [3]. 
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Fig. 3. The four-layer Model Driven Architecture and its orthogonal instance-of relations: 

linguistics and ontological. 
 
In this chapter we advocate the second approach, but we should give a more 

details about its impact on UML. In UML, both classes and objects are at the 
same layer (model layer) in the MDA four-layer architecture. Actually, MDA’s 
layers are called linguistic layers. On the other side, concepts from the same 
linguistic layer can be at different ontological layers. Hence, UML classes and 
objects are at different ontological layers, but at the same linguistic layer. 
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4.3. Specific MDA metamodels and UML profiles 

One possible solution for using MDA capacities in some specific domains is to 
develop a metamodel, which would be able to model relevant domain concepts. 
That means, creating a domain language (i.e., metamodel) using metamodeling, 
and these languages are created using MOF. Having defined a domain specific 
metamodel we should develop suitable tools for using that metamodel. However, 
it is rather expensive and time consuming so we try to use well-developed tools. 
Practically, present software tools do not implement many of the MDA basic 
concepts. However, most of these applications, currently primarily oriented 
toward UML and the M1 (i.e., model) layer [26]. Generally, UML itself is a 
MOF-defined general-purpose language (i.e., metamodel) that contains a set of 
core primitives. The problem of tools can be overcome using UML Profiles – a 
way for adapting UML for specific purposes. UML Profiles extend the UML 
metamodel with application-specific primitives (through stereotypes, tagged 
values, and constraints), and hence these primitives can be used as the regular 
UML concepts. Having understood UML Profiles in this way one can count 
UML as a family of languages [19]. 

A very important question is about the palace of UML Profiles in the MDA’s 
four-layer architecture. The UML specification states that UML Profiles are 
defined at the metamodel layer (M2), and thus they are meta-concepts. Here we 
use a definition of UML Profiles in a strict metamodeling framework [1, 2] 
where UML Profiles are placed at both the metamodel layer (M2) and the model 
layer (M1). 

5. Current Trends: Using UML and MDA-Based Languages in Ontological 
Engineering 

In this section we describe existing efforts to enable usage of UML, present UML 
tools, as well as MDA-based standards in ontological engineering. Our goal is to 
explain formal background of each approach, and their mappings into ontology 
languages. In Table 1, we give an overview of the analyzed solutions, their 
formal definition, kinds of model interchange description they use, proposals for 
mapping implementation, and target ontological languages. 

The idea to use UML in ontological engineering has firstly been in 
Cranefield’s papers [13]. He has found connections between the standard UML 
and ontologies concepts: Classes, Relations, Properties, Inheritance, etc. 
However, there are some dissimilarities between them, and the most important 
one is related to the property concept – in the UML an attribute has a class scope, 
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while in ontology a property is a first-class concept that can exist independently 
of a class. This approach suggests using UML class diagrams for development of 
ontology taxonomy and relations between ontological concepts, whereas UML 
object diagrams were intended to be used for modeling ontology instances (i.e., 
body of knowledge) [11]. Also a practical software support was provided in the 
form of two XSLTs that were developed to enable transformation of the UML 
XMI format to RDFS and Java classes. However, we have noted some limitations 
(that are also propagated to generated languages): One cannot conclude whether 
the same property was attached to more than one class, one cannot create a 
hierarchy of properties, and target RDFS ontology description does not have 
advanced restriction concepts (e.g. multiplicity). 

Backlawski and his colleagues have introduced two approaches for ontology 
development. The first one extends the UML metamodel by introducing new 
metaclasses [4]. For instance, these metaclasses define a property as a first class 
concept, as well as a restriction on a property. In this way they have solved the 
“property problem” in UML. This solution is mainly based on the DAML+OIL 
ontology language [41]. In order to enable usage of standard UML tools, they 

Table 1.  An overview of present UML and MDA based ontology development frameworks and 
their transformations to the Semantic Web languages 

Approach Metamodel Model 
Description 

Transformation 
Mechanism 

Generated 
Ontology 
Language 

Cranefield Standard UML UML XMI XSLT RDFS, Java 
classes 

Backlawski et al 
UML Profile, MOF-

based ontology 
language 

(Not given - UML 
XMI, and MOF XMI

can be used) 
– DAML 

Falkovych at al Standard UML UML XMI XSLT DAML + OIL 

Protégé metamodel Protégé XMI 

Protégé 
Standard UML UML XMI 

Programmed 

OWL, RDF(S),
DAML+OIL, 
XML, UML 

XMI, Protégé 
XMI, … 

DUET UML Profile Rational Rose, 
ArgoUML Programmed DAML+OIL 

Xpetal Standard UML Rational Rose mdl 
files Programmed RDFS 
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propose an UML profile and its mapping to DAML+OIL. The authors realized 
that this solution was fairly awkward because it introduced some new concepts in 
the UML metamodel. Therefore, they have developed an independent ontology 
metamodel using the MOF, which they named the Unified Ontology Language 
(UOL) [5]. This metamodel was also inspired by DAML+OIL. We have been 
unable to find any practical software solution that would be able to map these 
two MDA-based ontology languages into a Semantic Web language. 

Falkovych and her associates [20] do not extend the standard UML 
metamodel in order to enable transformation of UML models into equivalent 
DAML+OIL descriptions. They use a UML-separated hierarchy to define kinds 
of ontology properties. A practical mapping from UML models to DAML+OIL 
is implemented using XSLT. The main limitations of this solution are: 1) lack of 
mechanisms for formal property specification (e.g. defining property inheritance, 
or inverseOf relation between properties), 2) it is based on UML class diagrams, 
which contain only graphical artifacts of real UML elements included in a model 
(e.g. they assume all association that has the same name as the same property, 
even though each association is a distinct model element in UML). Of course, 
this diagram problem can be partly overcome with XMI for UML 2.0 that 
supports diagram representation. 

Protégé is the leading ontological engineering tool [23]. It has complex 
software architecture, easily extensible through plug-ins. Many components that 
provide interfaces to other knowledge-based tools (Jess, Algernon, OIL, Protégé 
Axiom Language (PAL)  constraint, etc.) have been implemented in this way, as 
well as support for different ontology languages and formats like XML, 
DAML+OIL (backends), and OIL (tab). In fact, Protégé has a formally MOF-
defined metamodel. This metamodel is extensible and adaptable. This means, 
Protégé can be adapted to support a new ontology language by adding new 
metaclasses and metaslots into a Protégé’s ontology. Introduction of these new 
metamodeling concepts enable users to add necessary ontology primitives (e.g. 
the Protégé class has different features from OWL class). In that way it can, for 
instance, support RDFS [22] or OWL (http://protege.stanford.edu/plugins/owl-
plugin). It is especially interesting that Protégé has backends for UML and XMI. 
These two backends use the NetBeans’ MetaData Repository (MDR – 
http://mdr.netbeans.org). The first backend exchanges UML models (i.e., classes, 
and their relations) using the standard UML XMI format, while the second one 
uses the XMI format that is compliant with the Protégé MOF-defined metamodel. 
It is obvious that one can share ontologies through the Protégé (e.g. import 
ontology in the UML XMI format and store it in the OWL format). However, 
Protégé has one limitation in its UML XMI support – it does not map class 
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relations (i.e., associations) into a Protégé’s ontology (i.e., does not attach 
instance slots to classes). But, this limitation was expected since Protégé imports 
UML models without any extension (i.e., a UML Profile). 

The software tool called DUET (http://codip.grci.com/Tools/Tools.html), 
which enables importing DAML ontologies into Rational Rose and ArgoUML, 
as well as exporting UML models into the DAML ontology language [21], has 
been developed in order to support ontological engineering. This tool uses a quite 
simple UML Profile that contains stereotypes for modeling ontologies (based on 
UML package) and properties (based on UML class). Additionally, DUET uses 
an XSLT that transforms RDFS ontologies into equivalent DAML ontologies. In 
that way, RDFS ontology can be imported into UML tools through the DAML 
language. Of course, this tool has constraints similar to approaches we have 
already discussed (e.g. Falkovych et al) since it has no ability to define advanced 
class and property relations (e.g. inverseOf, equivalentProperty, equivalentClass, 
etc.). On the other hand, this is the first UML tool extension that enables 
ontology sharing between ontology language (i.e., DAML) and a UML tool in 
both directions. 

Xpetal (http://www.langdale.com.au/styler/-xpetal) is another tool 
implemented in Java that transforms Rational Rose models from the mdl format 
to RDF and RDFS. This tool has limitations similar to those that we have already 
mentioned while discussing Cranefield’s software (i.e., XSLT), since it uses the 
standard UML and does not provide a convenient solution for representing 
properties, their relations, advanced class restrictions, etc. Actually, this tool is 
more limited than the Cranefield’s one, since it is oriented to the Rational Rose, 
in contrast to the Cranefield’s XSLT that is applicable to every UML XMI 
document and independent of UML tools. 

Our opinion is that all these approaches we have explored above are useful, 
but none of them gives a full solution that contains: A formal description of the 
new MDA-based ontology language, a related UML profile and necessary 
transformations between these two languages, as well as transformations to 
contemporary Semantic Web languages (i.e., OWL) [44]. We believe that full 
usage of the recent OMG’s effort – MDA [42] provides us with considerable 
benefits when defining metamodeling architecture and enables us to develop new 
languages (i.e., ontology language). Actually, there is a RFP at OMG that should 
enclose all these requirements, but it is still in its initial stage. 
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6. The Ontology Modeling Architecture 

Currently, there is a RFP (Request for Proposal) within OMG that tries to define 
a suitable language for modeling Semantic Web ontology languages in the 
context of MDA [44]. According to this RFP, we developed ontology 
development architecture [17]. Of course, we do not claim that this solution is 
either the best one, or widest accepted one, but we only want to illustrate one of 
possible solutions for the OMG’s initiative. One can reach other similar solutions 
at the OMG Ontology SIG homepage: http://ontology.omg.org. In our approach 
to ontology modeling in the scope of MDA, which is shown in Fig. 4, several 
specifications should be defined: 
• Ontology Definition Metamodel (ODM). 
• Ontology UML Profile – a UML Profile that supports UML notation for 

ontology definition. 
• Two-way mappings between OWL and ODM, ODM and Ontology UML 

Profile and from Ontology UML Profile to other UML profiles. 
 

 
Fig. 4. Ontology modeling in the context of MDA and Semantic Web. 

 
Ontology Definition Metamodel (ODM) should be designed to comprehend 

common ontology concepts. A good starting point for ODM construction is OWL 
since it is the result of the evolution of existing ontology representation 
languages, and is going to be a W3C recommendation. It is at the Logical layer 
of the Semantic Web [8], on top of RDF Schema (Schema layer). In order to 
make use of graphical modeling capabilities of UML, an ODM should have a 
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corresponding UML Profile [51]. This profile enables graphical editing of 
ontologies using UML diagrams as well as other benefits of using mature UML 
CASE tools. Both UML models and ODM models are serialized in XMI format 
so the two-way transformation between them can be done using XSLT. OWL 
also has representation in the XML format, so another pair of XSLTs should be 
provided for two-way mapping between ODM and OWL. For mapping from the 
Ontology UML Profile into another technology-specific UML Profiles, 
additional transformations can be added to support usage of ontologies in design 
of other domains and vice versa. We have so far implemented an XSLT that 
transforms the Ontology UML Profile to OWL (for details see [27]). This XSLT 
can be understood as an extension of present UML tools for ontology 
development. However, here we do not show implementation details of this 
transformation, but our main focus in on the MDA-compliant ontological 
languages. 

6.1. Metamodeling: MDA versus Functional architecture 

Before we start with more detailed description of ODM, we must clarify 
differences between metamodeling based on MDA, and functional architecture 
which is used for Web ontology languages definition. RDFS, as a schema layer 
language, has a non-standard and non-fixed-layer metamodeling architecture, 
which makes some elements in model have dual roles in the RDFS specification 
[47]. Therefore, it is difficult to understand by modelers, lacks clear semantics 
(by assigning dual roles to some elements) and propagates “layer mistake” 
problem to languages it defines, in our case to OWL. MDA, on the other side, 
has fixed and well-defined four-layer architecture. It has separate metamodeling 
primitives on meta-metamodel and metamodel layer that are separated from 
ontology language (or some other MOF-defined language) primitives, which can 
have infinite layers, as in the case of OWL Full. 

In OWL DL, functional architecture’s problems are partially solved by 
introducing new modeling elements (i.e., owl:Class) that are used for defining 
ontologies. In this case, rdfs:Class is used only for defining owl:Class, 
owl:ObjectProperty and other ontology-modeling primitives. It is not used 
for modeling ontologies, which is done using ontology-modeling primitives. On 
the other hand, OWL Full allows unconstrained use of RDFS constructs, which 
means that it completely inherits RDFS’ problems. ODM that supports OWL 
Full cannot be modeled directly using MOF if we want to preserve fixed-layer 
architecture. 
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Accordingly, ODM will be designed primarily to support OWL DL. Support 
for OWL Full will be included partially, for concepts that do not introduce 
significant problems or break fixed-layer architecture. 

A brief comparative description of the most important metamodeling 
constructs in MOF and RDF(S), which will make reading the next sections 
easier, is shown in Table 2. Detailed description of MOF can be found in OMG’s 
MOF specification document [43]. RDF, RDFS and their concepts are described 
in detail in W3C documents [10]. 

Table 2. A brief description of basic MOF and RDF(S) metamodeling constructs 

MOF Element Short Description RDF(S) Element Short Description 

ModelElement 

ModelElement classifies 
the elementary, atomic 
constructs of models. It is 
the root element within the 
MOF Model. 

rdfs:Resource

Represents all things described 
by RDF. Root construct of 
majority of RDF constructs. 

DataType Models primitive data, 
external types, etc. rdfs:DatatypeMechanism for grouping 

primitive data. 

Class 

Defines a classification 
over a set of object 
instances by defining the 
state and behavior they 
exhibit. 

Classifier 

Abstract concept that 
defines classification. It is 
specialized by Class, 
DataType, etc. 

rdfs:Class 

Provides an abstraction 
mechanism for grouping 
similar resources. 
 
 
In RDF(S), rdfs:Class 
also have function that is 
similar to a MOF concept of 
Classifier. 

Association 

Expresses relationships in 
the metamodel between 
pairs of instances of  
Classes, 

Attribute 
Defines a notional slot or 
value holder, typically in 
each instance of its Class.

rdf:Property 

Defines relation between 
subject resources and object 
resources. 

TypedElement 

The TypedElement is an 
element that requires a type 
as part of its definition. A 
TypedElement does not 
itself define a type, but is 
associated with a 
Classifier. Examples 
are object instances, data 
values etc. 

 

In RDF(S), any 
rdfs:Resource can be 
typed (via the rdf:type 
property) by some 
rdfs:Class. 
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7. Essential Ontology Definition Metamodel Concepts 

This section briefly overviews the basic ODM concepts; for a more detailed 
description, see [17, 18]. OWL is built on top of RDFS, which is used as both 
modeling and metamodeling language. On the other hand, the corresponding 
ODM concepts are modeled by MOF. Since RDFS and MOF have numerous 
differences (non-fixed versus fixed metamodeling architecture [47]), OWL 
concepts cannot be directly copied to ODM concepts. They need some degree of 
adaptation. 

7.1. Resource 

OWL is built on top of RDF; thus it inherits its concepts, such as Resource, 
Property, metamodeling capabilities, etc. Resource is one of the basic RDF 
concepts; it represents all things described by RDFS and OWL. It may represent 
anything on the Web: A Web site, a Web page, a part of a Web page, or some 
other object named by URI. Compared to ontology concepts, it can be viewed as 
a root concept, the Thing. In RDFS, Resource is defined as an instance of 
rdfs:Class; since we use MOF as a meta-metamodeling language, Resource 
will be defined as an instance of MOF Class. It is the root class of most other 
basic ODM concepts that will be described: Ontology, Classifier, Property, 
Instance, etc. The root of this hierarchy is shown on Class Diagram in Fig. 5. 
Other class diagrams (shown in Figs. 6 - 8) will depict these concepts in more 
detail. 
 

 
 

Fig. 5. The hierarchy of basic ontology concepts. 
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Fig.  6. The hierarchy of Ontology Classes in ODM. 
 

 
 

Fig. 7. The hierarchy of Ontology Properties in ODM. 
 

Ontology is a concept that aggregates other concepts (Classes, 
Properties, etc.). It groups instances of other concepts that represent similar 



MDA-Based Ontological Engineering   21 
 
or related knowledge. Classifier is the base class of concepts that are used 
for classification – AbstractClass and DataType. Instance is the base 
class of concepts that are classified by Classifiers – concrete 
Individuals and concrete DataValues. Property is used to represent 
relationships between other concepts. 

 

 
 

Fig. 8. Key relationships among Ontology concepts. 
 
For example, Person is an AbstractClass (more precise - a Class) 

that classifies many Individuals: Tom, Dick, Harry, etc. All Persons 
have Properties – name and occupation. These Properties can 
have values that are of certain type; name can be a String (an example of 
DataType), occupation can be Profession (another example of 
AbstractClass). Then, Profession classifies concrete professions (its 
instances): Musician, Writer, Mechanic, Astronaut, etc. 

7.2. Classifier 

In RDFS and OWL, Class (rdfs:Class and owl:Class) represents a 
concept for grouping resources with similar characteristics. This concept of Class 
(we can also call it Ontology Class) is not completely identical as a concept of 
Class that is defined in UML and object oriented programming languages. Every 
owl:Class is a set of individuals, called class extension. These individuals are 
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instances of that class. Two classes can have the same class extension but still be 
different classes. Ontology classes are set-theoretic, while traditional classes are 
more behavioral. Unlike a traditional class, an OWL class does not directly 
define any attributes or relations with other resources, and there is no any concept 
similar to methods. Attributes and relations are defined as Properties. In ODM, a 
Class concept corresponding to rdfs:Class is defined as Classifier - an 
instance of MOF Class that inherits Resource. A concept that complies with 
owl:Class is ODM’s AbstractClass. 

OWL further introduces six ways of defining a Class – class descriptions:  
(i) A class can be defined by a class identifier (an URI reference) – i.e., a 

Class Person. 
(ii) As an exhaustive enumeration of individuals that form the instances of a 

Class. For example, individuals Mick, Keith, Ron, Bill and 
Charlie form an Enumeration – TheRollingStones. Note 
that they are also members of a Class Person. 

(iii) As a property restriction – Class of all individuals that have the same 
restriction on some of their characteristics. 

(iv) As an intersection – A Class of all individuals that are members of all 
Classes that form an intersection. An intersection of Classes 
TheWailers and TheRollingStones is a Class that does not have 
any member, since no musician has played in both bands. 

(v) As a union – A Class of all individuals that are members of any Class that 
forms a union. A union of TheWailers and TheRollingStones, has 
twelve individuals, all musicians from both bands. 

(vi) As a complement – A Class of all individuals that are not members of 
other, complement class. A complement of TheRollingStones is a 
Class that has about six billion members – all Persons that are not 
members of TheRollingStones. 

(vii) AllDifferent is a helper class, which states that all of its instances are 
have different identity. 

The first concept, named class is modeled as ODM Class. Other five 
species are defined in OWL as subclasses of owl:Class, and are shown in Fig. 
6. If we define class descriptions as simple subclasses of Class, like it is 
defined in OWL, we will have some problems related to the differences between 
RDFS and MOF concept of a class and the open-world assumption of the 
Semantic Web. While in RDFS some class instance can be easily defined to be a 
member of many class extensions in the same time, in MOF it can be instance of 
exactly one class. The open-world assumption might demand some flexibility, 
i.e., that class which was a Union becomes an Intersection, which is not 
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possible to model in MOF, since each instance can be the instance of only one 
Class, i.e., dynamic classifiers are not allowed. To solve this problem, we used 
the idea captured in the Decorator design pattern [25]. In Fig. 6, we define 
ClassDescription as a subclass of Class which can encapsulate a 
Class. In that way, we can have a chain of additions to the starting definition of 
Class (i.e., speaking in software engineering terms, we can add further 
responsibilities to the original concept of Class). For example, if we have some 
simple Class, we can define union by decorating that class with Union, and 
change it later to intersection, by removing the union decorator and decorating 
the class with Intersection. 

7.3. Property 

Ontology Class attributes or associations are represented through properties. A 
property is a relation between a subject resource and an object resource. 
Therefore, it might look similar to a concept of attribute and association in 
traditional, object oriented sense. However, the important difference is that 
Property is stand-alone; it does not depend of any Class (or resource) as 
associations or attributes are in UML. In ontology languages, a property can be 
defined even with no classes associated to it. In ODM, Property is an instance 
of MOF Class that inherits Resource. 

In addition to the concept of rdf:Property, which is defined in RDF, 
OWL distinguishes two types of properties: owl:ObjectProperty, whose 
range can be only an Individual, and owl:DatatypeProperty, whose 
range can be only DataValue. In ODM, these concepts are instances of MOF 
Class that inherit Property. OWL also defines additional concepts, global 
cardinality constraints on a Property that can further refine the Property. 
These concepts are also represented as instances of MOF Class. 

In OWL, various types of global property constraints are defined as 
subclasses of Property. Here we have the same problem we had with OWL 
classes, since some property might have multiple global constraints, i.e., 
symmetric and transitive. In this case, we also apply the Decorator design 
pattern, just like we did with Class Descriptions. The resulting class diagram is 
shown in Fig. 7. If we want to define, for example, symmetric property, we will 
decorate ObjectProperty with SymmetricProperty, and if we later 
decide that this property also should be transitive, we can simply decorate it 
again with TransitiveProperty. 

 



24   D. Djurić et al 

7.4. Properties predefined in RDFS and OWL 

We have seen how predefined concepts, which are defined in OWL as instances 
of rdf:Class, are defined in ODM as instances of MOF Class with some 
changes in the hierarchy. RDF(S) and OWL have some predefined concepts that 
are instances of rdf:Property. These predefined properties are used to make 
relationships between concepts in OWL metamodel. In ODM, they are modeled 
as MOF Associations or as MOF Attributes. 

Predefined properties of RDF(S) and OWL and their ODM counterparts are 
not completely identical. For example, the predefined property rdf:type states 
that a rdfs:Resource is an instance of a rdfs:Class. In ODM, it is 
represented as an Association between Classifier and Instance, as 
shown in Fig. 8, which is obviously a narrower usage than is defined in RDF. 
Recall that Classifier is further specialized in AbstractClass and 
DataType, and that Instance is specialized in Individual and 
DataValue. Such differences are caused by differences between MDA and 
Functional architecture. In RDF, rdf:type property is used as both 
metamodeling and modeling concept while in MDA, MOF is used for 
metamodeling, and ODM for modeling. Since ODM type association is not used 
for metamodeling, it is a narrower concept than rdf:type, thereby they are not 
equal. 

A Classifier describes some general concept that has its Instances 
(Individuals and DataValues). On the other hand, a Property 
describes some generic characteristic that can describe that Classifier and 
possibly other Classifiers. Through domain we state that a Property can 
be used to describe a Classifier, and through range a characteristic's type. 
For example, a Property nationality can be assigned to a Class 
Person (through domain) with possible values which type is a Class 
Country (through range). In ODM, these relations are modeled as 
associations, as shown in Fig. 8. 

7.5. Statement 

A Statement is a Subject-Predicate-Object triple that expresses some fact in a 
way similar to the way facts are expressed in English. A fact that some 
Individual, Bob for example, has some nationality, Jamaican, is 
expressed through a Statement, which links the Instance Bob as the subject, 
the nationality property as the predicate, and the Instance Jamaica as 
the object. Thus, Statement can be viewed as some kind of Property’s 
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instance. In ODM, Statement is an instance of MOF Class that is linked 
with Instance by subject and object associations and with Property by 
predicate association (Fig. 8). ODM Statement slightly differs from the 
Statement defined in RDF (rdf:subject and rdf:object link 
rdf:Statement with rdfs:Resource). The difference arises from the 
fact that ODM is not intended for metamodeling as RDF is, similarly to the case 
with rdf:type. 

8. Ontology UML Profile Essentials 

In order to customize UML for modeling ontologies, we define UML Profile for 
ontology representation, called Ontology UML Profile. UML Profile is a concept 
used for adapting the basic UML constructs to some specific purpose. 
Essentially, this means introducing new kinds of modeling elements by extending 
the basic ones, and adding them to the modeler’s tools repertoire. More details 
about UML extension mechanisms can be found in [35, 45]. Coherent set of 
extensions of the basic UML model elements, defined for specific purposes or for 
a specific modeling domain, constitutes a UML profile. 

Since stereotypes are the principle UML extension mechanism, one might be 
tempted to think that defining Ontology UML Profile is a matter of specifying a 
couple of stereotypes and using them carefully in a coherent manner. In reality, 
however, it is much more complicated than that. The reason is that there is a 
number of fine details to take care of, as well as the existence of some conceptual 
inconsistencies between MDA and UML that may call for alternative design 
decisions. The following subsections describe the most important Ontology UML 
Profile concepts in detail. 

8.1. Ontology classes 

Class is one of the most fundamental concepts in ODM and Ontology UML 
Profile. As we noted in the discussion about the essential ODM concepts, there 
are some differences between traditional UML Class or OO programming 
language Class concept and ontology class as it is defined in OWL 
(owl:Class). Fortunately, we are not trying to adopt UML as stand-alone 
ontology language, since that might require changes to UML basic concepts 
(Class and other). We only need to customize UML as a support to ODM. 

In ODM, Ontology Class concept is represented as an instance of MOF Class, 
and has several concrete species, according to the class description: Class, 
Enumeration, Union, Intersection, Complement, Restriction and AllDifferent. 
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These constructs in the Ontology UML Profile are all inherited from the UML 
concept that is most similar to them, UML Class. But, we must explicitly specify 
that they are not the same as UML Class, which we can do using UML 
stereotypes. An example of Classes modeled in Ontology UML Profile is shown 
in Fig. 9. 

 

 
 

Fig. 9. Class diagram showing relations between ontology classes and individuals in the ontology 
UML Profile. 

 
ODM Class identified by a class identifier will have the stereotype 

«OntClass», AllDifferent - «AllDifferent» and Restriction - 
«Restriction». In ODM, Enumeration, Intersection, Union and Complement 
are descendants of ODM Class; in Ontology UML Profile they have stereotypes 
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«Enumeration», «Intersection», «Union» and «Complement». The 
«OntClass» stereotype would be extended by each of these new stereotypes. 

Figure 9 shows various types of ontology classes modeled in UML. The Class 
Person is an example of an ontology Class that is identified by a class 
identifier, TheRollingStones and TheWailers are enumerations, 
StonesWailersIntersection is an intersection, and 
StonesWailersUnion is a union. There is one unnamed class that represents 
complement of TheWailers – all individuals that are not members of 
TheWailers. AllDifferent is an auxiliary class whose members are 
different individuals. Also shown is an «OntClass» Human and the 
Dependency «equivalentClass», which means that Person and Human 
are classes that have the same class description (i.e., all Persons are Humans 
and vice versa). 

8.2. Individuals 

In ODM, an instance of an AbstractClass is called Individual. In UML, 
an instance of a Class is an Object. ODM Individual and UML Object 
have some differences, but they are similar enough, so in Ontology UML Profile, 
Individual is modeled as UML Object, which is shown in Fig. 9. The 
stereotype for an object must match the stereotype for its class («OntClass» in 
this case). Stating that some Individual has some type is done in three ways: 

(i) by using an underlined name of an Individual followed by “:” and its 
«OntClass» name (for example, Mick:Person is an Individual whose 
type is Person. This is the usual UML method of stating an Object’s 
type.  

(ii) by using a UML Dependency’s stereotype «instanceOf» between an 
Individual and its «ontClass». This method is also allowed in 
standard UML. For example, Mick is an instance of 
TheRollingStones. 

(iii) indirectly – through logical operators on «OntClass». If some 
«OntClass» is a union, intersection or complement, it is a 
class of Individuals that are not explicitly defined as its instances. For 
example, Mick is not explicitly defined as a member of 
StonesWailersUnion, but it is its member since he is a member of 
TheRollingStones, which is connected with 
StonesWailersUnion through a «unionOf» connection. 
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8.3. Ontology properties 

Property is one of the most unsuitable ontology concepts to model with 
object-oriented languages and UML. The problem arises from the major 
difference between Property and its similar UML concepts – Association 
and Attribute. Since Property is an independent, stand-alone concept, it 
cannot be directly modeled with Association or Attribute, which cannot 
exist on their own. 

Since Property is a stand-alone concept it can be modeled using a stand-alone 
concept from UML. That concept could be the UML Class’ stereotype 
«Property». However, Property must be able to represent relationships between 
Resources (Classes, Datatypes, etc. in the case of UML), which the UML Class 
alone is not able to do. If we look at the ODM Property definition more closely, 
we will see that it accomplishes relation representation through its range and 
domain. According to the ODM Model, we found that in the Ontology UML 
Profile, the representation of relations should be modeled with UML 
Association’s or UML Attribute’s stereotypes «domain» and «range». In order to 
increase the readability of diagrams, the «range» association is unidirectional 
(from a Property to a Class). ODM defines two types (subclasses) of Property – 
ObjectProperty and DatatypeProperty. ObjectProperty, which can have only 
Individuals in its range and domain, is represented in Ontology UML Profile as 
the Class’ stereotype «ObjectProperty». DatatypeProperty is modeled with the 
Class’ stereotype «DatatypeProperty». 

An example of a Class Diagram that shows ontology properties modeled in 
UML is shown in Fig. 10. It contains four properties: Two «DatatypeProperty»s 
(name and socialSecurityNumber) and two «ObjectProperty»s (nationality and 
colleague) UML Classes. In cooperation with «domain» and «range» UML 
Associations, or «domain» and «range» UML Attributes, they are used to model 
relationships between «OntClass» UML Classes. Tagged values describe 
additional characteristics, for example, «ObjectProperty» colleague is 
symmetric (if one Person is a colleague of another Person, the other 
Person is also a colleague of the first Person) and transitive (if the first 
Person is a colleague of the second Person, who is a colleague of the 
third Person, the first and third Person are colleagues). In ODM, these 
characteristics are added to an ODM Class applying the Decorator Design Pattern 
[25]. The transformation that maps an Ontology UML Profile model to an ODM 
model should create one decoration of an ODM Property per attribute of 
Ontology UML Profile «ObjectProperty» or «DatatypeProperty». 
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Fig. 10. Ontology properties shown in UML class diagram. 

8.4. Statement 

ODM Statement is a concept that represents concrete links between ODM 
instances – Individuals and DataValues. In UML, this is done through 
Link (an instance of an Association) or AttributeLink (an instance of 
an Attribute). Statement is some kind of instance of a Property, which is 
represented by the UML Class’ stereotype («ObjectProperty» or 
«DatatypeProperty»). Since in UML a Class’ instance is an Object, in 
Ontology UML Profile Statement is modeled with Object’s stereotype 
«ObjectProperty» or «DatatypeProperty» (stereotype for Object in 
UML must match the stereotype for its Class’ stereotype). UML Links are 
used to represent the subject and the object of a Statement. To indicate that a 
Link is the subject of a Statement, LinkEnd’s stereotype «subject» is 
used, while the object of the Statement is indicated with LinkEnd’s stereotype 
«object». LinkEnd’s stereotype is used because in UML Link cannot have 
a stereotype. These Links are actually instances of Property’s «domain» and 
«range». Briefly, in Ontology UML Profile Statement is represented as an 
Object with two Links – the subject Link and the object Link, which is 
shown in Fig. 11. The represented Persons Mick and Keith are 
colleagues. They both have UK (Great Britain) nationality. 
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Figure 11. Individuals and Statements shown in a UML Object Diagram. 

9. Conclusions 

The use of software engineering techniques and standards for ontology 
development still requires a lot of research and work in both Semantic Web and 
MDA communities in order to achieve an official recommendation that will be 
adopted by OMG. The main task is to converge all proposed solutions that are 
either submitted to OMG’s SIG for ontologies or published as research papers [4, 
13, 17, 20]. Taking into account experience from the UML 2.0 standardization 
(which should be finished in 2001 [39], but it is not done yet) this can be a very 
long process and the date of the final recommendation is difficult to predict. On 
the other hand, the Semantic Web community adopted the OWL 
recommendation [6], and currently we have many applications that are based on 
ontological engineering [37]. 

We hope that the observation given in this chapter can be useful for the 
researchers from the Semantic Web community who are trying to benefit 
ontology development with the MDA’s standards. Apart of the defined solutions 
for MDA-based ontology languages (Ontology Definition Metamodel and 
Ontology UML Profile) the practitioners need software tools that will support all 
these theoretical efforts. One of main tasks toward this direction is the support for 
transformations between Ontology UML Profile (i.e., the UML XMI format) and 
Ontology Definition Metamodel (i.e., the ODM specific XMI format), as well as 
between OWL and Ontology Definition Metamodel. In this way, we will have an 
entire metamodeling platform compliant to the OMG’s ontology initiative. Until 
we get the formal OMG recommendation industrial engineers can use current 
implementations  [13, 20, 27]. 
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