
CHAPTER 1

MDA-BASED ONTOLOGICAL ENGINEERING

1DRAGAN DJURIĆ, 1,2DRAGAN GAŠEVIĆ,
1VIOLETA DAMJANOVIĆ and 1VLADAN DEVEDŽIĆ

1GOOD OLD AI Research Group, FON, University of Belgrade,
POB 52, Jove Ilića 154, 11000 Belgrade, Serbia and Montenegro

2School of Interactive Arts and Technology, Simon Fraser University Surrey
2400 Central City, 10153 King George Hwy.Surrey, BC V3T 2W1, Canada

E-mail: dragandj@gmail.com, gasevic@yahoo.com,
vdamjanovic@gmail.com, devedzic@fon.bg.ac.yu

The chapter presents a concept of approaching two ongoing technologies,
ontological engineering and OMG’s Model Driven Architecture (MDA), which
are developing in parallel, but by different communities. Our main intention is to
show recent efforts that pursuing to provide software engineers to use and
develop ontologies. Many authors have so far stressed this problem and have
proposed several solutions and some of them are analyzed in this chapter. The
result of these efforts is the recent OMG’s initiative for defining an ontology
development platform. The ontology platform should be defined using MDA-
based standards and it should consist of: Ontology Definition Metamodel,
Ontology UML Profile, and a set of transformations. We depict our proposal for
an MDA-based ontology development platform in order to illustrate this OMG’s
effort as it is in a very initial stage and a formal recommendation has not been
adopted yet.

1. Introduction

The Semantic Web and its eXtensible Markup Language (XML) based languages
are the main directions of the future Web development. Domain ontologies [30]
are the most important part of the Semantic Web applications. They are formal
organization of domain knowledge, and in that way enable knowledge sharing
between different knowledge-base applications. Artificial intelligence (AI)
techniques are used for ontology creation, but those techniques are more related
to research laboratories, and they are unknown to wider software engineering
population.

2 D. Djurić et al

The integration of the ongoing software engineering efforts with the concept
of the Semantic Web is not a new idea [13, 40]. The main question is how to
develop the Semantic Web ontologies using well-accepted software engineering
languages and techniques in order to provide the wider practitioner population to
develop and use ontologies in real-world applications. Many researchers have
previously suggested using UML in order to solve this problem. However, UML
is based on object oriented paradigm, and has some limitation regarding ontology
development. Hence, we can only use UML in initial phases of an ontology
development. We believe that these limitations can be overcame using UML’s
extensions (i.e., UML profiles) [19], as well as other OMG’s standards (e.g.
Model Driven Architecture – MDA). Additionally, if we want to provide solution
consistent with MDA proposals, we should also support automatic generation of
completely operational ontology definitions (e.g. in OWL language) that are
model driven [50]. The most important direction toward this goal is the Special
Interest Group (SIG) within Object Modeling Group (OMG) that will converge
many different proposals regarding this problem [44]. The result of this effort
should be a standard language (i.e., metamodel) based on the MDA standards
[42] and the W3C’s Web Ontology Language (OWL) recommendation [6].

The next section contains an overview of the ontologies and the Semantic
Web, while Sec. 3 describes the Semantic Web languages and OWL. Section 4
defines OMG’s MDA initiative and related concepts: Meta-Object Facility, UML
Profiles, and XML Metadata Interchange (XMI). In Sec. 5, we give an overview
of current work using MDA-based solutions for ontology development. In Sec. 6,
we give a framework for the ontology language metamodel in the context of the
OMG’s effort. Section 8 shows the ontology metamodel definition in detail
while Sec. 9 gives description of Ontology UML Profile. The last section
contains the final conclusions. This work is a part of the effort of the GOOD
OLD AI research group (http://goodoldai.org.yu) in developing AIR - a platform
for building intelligent information systems.

2. An overview of the Ontologies and the Semantic Web

Ontologies have been around for quite some time now. Since early 1990s
researchers in the domain of artificial intelligence and knowledge representation
have studied ontologies as means for knowledge sharing and reuse among
knowledge-based systems. However, even an early survey of the field of
ontologies [24] has identified a number of application classes that benefit to a
large extent from utilizing ontologies although some of them are not necessarily

MDA-Based Ontological Engineering 3

knowledge-based systems in the traditional sense. Some of the application
classes it mentioned include natural language processing, library science,
intelligent information retrieval (especially from the Internet), virtual
organizations, and simulation and modeling. Later on, researchers have
recognized explicitly that ontologies are not just for knowledge-based systems,
but for all software systems – all software needs models of the world, hence can
make use of ontologies at design time [11]. Nowadays, ontologies and
ontological engineering span such diverse fields as qualitative modeling,
language engineering, database design, information retrieval and extraction,
knowledge management and organization, ontology-enhanced search, possibly
the largest one, e-commerce (e.g., Amazon.com, Yahoo Shopping, etc.), and
configuration [41].

2.1. Definitions and background

There are at least a dozen definitions of ontologies in the literature. A recent one
says that ontology provides the basic structure or armature around which a
knowledge base can be built [52]. Another one specifies that ontology should
provide a set of knowledge terms, including the vocabulary, the semantic
interconnections, and some simple rules of inference and logic for some
particular topic or service [32]. Although informal, these definitions capture the
central idea of ontologies – they are structured depictions or models of known
(and accepted) facts about some topics. Ontologies appear most effective when
the semantic distinctions that humans take for granted are crucial to the
application's purpose [15].

Each ontology provides the vocabulary (or names) for referring to the terms
in a subject area, as well as the logical statements that describe what the terms
are, how they are related to each other, how they can or cannot be related to each
other, as well as rules for combining terms and relations to define extensions to
the vocabulary. Hence, ontologies represent a common machine-level
understanding of topics that can be communicated between users and
applications, i.e., domain semantics independent of reader and context. For a
more recent comprehensive discussion of ontologies, see [36].

2.2. Semantic Web

One of the central roles of ontologies is to establish further levels of
interoperability, i.e., semantic interoperability, between agents and applications
on the emerging Semantic Web [8], as well as to add a further representation and

4 D. Djurić et al

inference layer on top of the Web’s current layers [14, 32]. When put on the
Web, ontologies specify standard terms and machine-readable definitions. The
Semantic Web is based on the idea of numerous ontologies providing
vocabularies, definitions, and constraints that information resources, agents, and
Web-based applications can commit to in order to reuse data and knowledge
effectively [31]. This way, ontology conveys the same meaning of its terms to
any two or more sources that commit to it. Any source, agent, or application can
commit to any ontology or create a new one. Thus, the Semantic Web is
essentially a distributed approach to creating standard vocabularies.

2.3. Ontological engineering

The engineering part of developing ontologies comprises a complex set of
activities that are conducted during conceptualization, design, implementation
and deployment of ontologies. Ontological engineering covers a whole range of
topics and issues, such as the basics (philosophical and metaphysical issues and
knowledge representation formalisms), methodology of ontology development,
recent Web technologies such as XML [7] and its relatives [38], business process
modeling, commonsense knowledge, systematization of domain knowledge,
Internet information retrieval, standardization, evaluation, ontology integration
with agents and applications, and many more [16]. It also gives us design
rationale of a knowledge base, helps us define the essential concepts of the world
of interest, allows for a more disciplined design of a knowledge base, and enables
us to accumulate the knowledge about it. The disciplines tightly interwoven with
ontological engineering include modeling, metamodeling, and numerous fields of
software engineering.

2.4. Ontology building tools

An important aspect of building ontologies is the use of specific software tools
that enable ontology conceptualization, representation, construction, and use.
There are a number of such tools today. Most of them have resulted from efforts
of research groups and university labs, and are currently free. However, these
tools can differ to a large extent in terms of support they provide to the ontology
development process, the format(s) used for storing ontologies, the number of
format converters supported for translating ontologies to/from other formats, the
way(s) other applications can interoperate with ontology tools, the tool stability
and maturity, support for querying information about an ontology, and so on
[29].

MDA-Based Ontological Engineering 5

3. An overview of the Semantic Web Tools and Languages

There were several efforts so far to develop a comprehensive classification of
ontology development tools, as well as to compare and evaluate a number of
different tools. The most comprehensive among such approaches to date is the
one proposed by OntoWeb Consortium [29]. The approach starts from grouping
all ontology-based software tools into the following large categories:
• ontology development tools – the tools, environments and suites that can be

used for building a new ontology from scratch or reusing existing ontologies;
• ontology merge and integration tools – the tools helping to solve the problem

of merging or integrating different ontologies on the same domain;
• ontology evaluation tools – support tools that enable getting insight into the

level of quality of ontologies and their related technologies;
• ontology-based annotation tools – the tools enabling the users to insert

ontology-based markups in Web pages;
• ontology storage and querying tools - the tools that allow using and querying

ontologies easily; and
• ontology learning tools - the tools used to (semi) automatically derive

ontologies from natural language texts.
A similar, though much more narrowly focused study by M. Denny, covered

ontology editors only [15]. Ontology browsers without an editing focus and other
types of ontology building tools were not included. The study was still very
useful because it helped identify a cross-section of ontology editing tools.

Another group of comparative studies is focused on ontology development
languages only. A good example coming from an academic environment is the
study of languages for the Semantic Web [28]. The study has identified three
levels of abstraction of such languages and has included only the languages based
on XML technologies.

We propose a suitable, practically oriented, and simple framework/hierarchy
that can be used for an easy, yet very informative categorization of ontology
development tools. It is drawn based on informal criteria of the tools'
sophistication and usability. Despite the fact that these may appear as rather
subjective criteria, they do allow for a rough hierarchical categorization of all
currently available ontology development tools. The framework is characterized
by:
• a wider focus than that of ontology editors alone, used in [15];
• yet, a more narrow focus than that of covering all ontology-related tools as in

[29] – our framework concentrates on ontology development tools only;

6 D. Djurić et al

• ontology development languages themselves are included, although much
less formally than in [28, 48];

• ontology learning tools are included, since ontology learning is also a way of
building ontologies.

Figure 1 describes the framework/hierarchy graphically.

Ontology learning tools Tools employing machine learning

Ontology-development
environments Integrated graphical tools

Ontology-representation
languages

(The Semantic Web languages)

Languages of different expressive
power and based on different
representation paradigms (regardless
of the underlying technology)

XML/RDF XML/XMLS, RDF/RDFS and the
corresponding development tools

Fig. 1. Hierarchy of ontology development tools.

3.1. The Semantic Web languages

Common data interoperability in present applications is best achieved by using
XML. XML is a meta-language used to define other languages. It describes a
class of data objects called XML documents and partially describes the behavior
of computer programs which process them [9]. XML defines neither the tags nor
grammar, which makes it completely extensible. It only requires that document
must be well-formed in a tree structure, so it could be parsed by standard XML
tools. Hence, one can view XML technologies and languages, as well as their
corresponding development tools, as constituting the core of ontology
development tools. Ontologies represent semantics and meanings of topics and
subject areas in a declarative form. XML syntax is suitable for ontology
representation because it is human readable, simple to parse, well defined, and
widely used. Fundamental XML-based languages – XML itself, XMLS,
Resource Description Framework (RDF) and RDF Schema (RDFS) – can express
some semantics themselves.

Whereas in pure HTML the tags are fixed, in XML they are arbitrary and are
described in a Document Type Definition (DTD) or in an XMLS document.
Having custom tags in a document adds context and gives meaning to data and

MDA-Based Ontological Engineering 7

let people meaningfully annotate text [6]. Using XMLS to prescribe the data
structure, XML can encode all kinds of data that is exchanged between
computers. This brings an extensible and easy-to-use syntax for describing Web
data, though just a minimum semantics. With respect to the Semantic Web
technology, it is important to stress a role of an XML Metamodel Interchange
(XMI) as a standard for stream-based model interchange. The main purpose of
XMI [46] is to enable easy interchange of metadata between modeling tools
(based on the Object Management Group (OMG) Unified Modeling Language
(UML)) and between tools and metadata repositories (OMG Meta Object Facility
(MOF)) in distributed heterogeneous environments. XMI integrates three key
industry standards:

(i)XML - a W3C standard;
(ii)UML - an OMG modeling standard; and

(iii)MOF - Meta Object Facility and OMG modeling and metadata repository
standard.

The integration of these three standards into XMI marries the best of OMG
and W3C metadata and modeling XMI technologies allowing developers of
distributed systems to share object models and other metadata over the Internet.
XMI standardizes the exchange of metamodels, models, as well as object
instances between applications [46].

Apart from the XML, there are other languages attempt to achieve semantic
interoperability. Such languages are Ontology Interchange Language (Ontology
Inference Layer) (OIL), DARPA Agent Markup Language (DAML+OIL), RDF,
RDFS, and Web Ontology Language (OWL).

OIL is a proposal for a joint standard for describing and exchanging
ontologies. OIL permits semantic interoperability between web resources. OIL is
not just another new language but reflects a certain consensus among the
specialists in the areas such as description logic (DL) and frame-based systems.
OIL is a significant source of inspiration for the ontology language DAML+OIL
[21].

DAML+OIL is an ontology language specifically designed for use on the
Web, as a joint effort to create a standard language for the Semantic Web.
DAML+OIL uses existing standards (XML and RDF) adding the familiar
ontological primitives of object-oriented and frame-based systems, and the
formal rigor of a very expressive DL [34]. DAML+OIL is built on top of W3C
standards such as RDF and RDFS, and extends these languages with richer
modeling primitives [33].

RDF and RDFS cannot be considered as ontology specification languages,
but rather as general languages for the description of metadata on the Web [12].

8 D. Djurić et al

It is important to stress that they are a W3C standard for the Semantic Web. RDF
is a framework for representing metadata, i.e., a model for representing data
about resources on the Web. Each RDF description is basically a list of object
(resource) - attribute (property) - value (resource or free text) triples, i.e.,
statements. This RDF data model is equivalent to the semantic network
formalisms, which consist of three object types: properties, resources, and
statements.

RDFS are used to define an RDF document vocabulary (domain-specific
properties and classes of resources to which those properties can be applied), and
are referred to in RDF documents through namespaces. It is important to stress
that RDFS uses modeling primitives like class, subclass-of, property, domain and
the like, with much higher expressive power than those used in XMLS. These
allow for specifying higher-level semantics and can be used for basic ontology
modeling.

The Web Ontology Language (OWL) is a semantic markup language for
publishing and sharing ontologies on the WWW. OWL is developed as a
vocabulary extension of RDF and is derived from the DAML+OIL Web
Ontology Language. OWL is designed for use by applications that need to
process the content of information instead of just presenting information to
humans. OWL facilitates greater machine interpretability of Web content than
that supported by XML, RDF and RDFS by providing additional vocabulary
along with a formal semantics. OWL has three variants [6]:
• OWL Lite is intended mostly to support classification hierarchy and simple

constraint features. It is a good starting point for tool builders. OWL Lite can
be useful in migrations of existing taxonomies to OWL.

• OWL DL enables maximum expressiveness and guarantees computational
completeness (all entailments are guaranteed to be computed) and
decidability (all computations will finish in finite time). It includes all OWL
Full constructs, and appends some constraints. The most significant
constraints are that a class cannot be an individual or a property, or that a
property cannot be an individual or a class. OWL DL has a good formal
background since it is based on description logics.

• OWL Full provides maximum expressiveness and syntactic independence of
RDF, but doesn’t provide any computational guarantees. The main
characteristic of OWL Full in comparison to OWL DL and OWL Lite is that
one class, which is, by definition, a collection of individuals, can be an
individual itself, like in RDF(S). This approach can lead to models that need
infinite time to compute.

MDA-Based Ontological Engineering 9

OWL Full is an extension of OWL DL, which is an extension of OWL Lite,
thus every OWL Lite ontology is OWL DL and OWL Full ontology and every
OWL DL ontology is OWL Full ontology. The place of OWL in described
architecture is shown in Fig. 2.

Fig. 2. OWL in the Semantic Web architecture.

Since the World Wide Web is almost unconstrained, OWL must support open

world assumption and allow importing and mixing various ontologies. Some of
them may be even contradictory, but new information can never retract existing
information, it can be only added to it.

4. An Overview of Model Driven Architecture
and Meta-Object Facility

If we look back to the history of software development, we can see a notable
increase of models abstraction. Modeling becomes more and more separate from
underlying platforms, making models of real world more reusable and easy to
create by domain experts, requiring less knowledge of specific computer systems.
This places software modeling closer to knowledge acquisition in knowledge
engineering and vice versa. Current stage in that evolution is OMG’s Model
Driven Architecture [42].

4.1 MDA basics

MDA defines three viewpoints (levels of abstraction) from which a system can
be seen. From a selected viewpoint, a representation of a given system
(viewpoint model) can be defined. These models are (each corresponding to the
viewpoint with the same name): Computation Independent Model (CIM),

10 D. Djurić et al

Platform Independent Model (PIM) and Platform Specific Model (PSM). CIM is
a view of a system that does not show the details of a system structure. In
software engineering, it is also known as a domain model, which is specified by
domain experts. It is similar to the concept of ontology. PIM is the model that is
computation dependent, but it is not aware of specific computer platform details.
In other words, it is targeted for technology-neutral virtual machine.
Specification of complete computer system is completed with PSM. The goal is
to move human work from PSM towards CIM and PIM and let the specific
platform detail implementations be generated as much as possible by automated
tools which will do the transformation from PIM to PSM.

All metamodels, standard or custom, defined by MOF are positioned at the
M2 layer. One of these is UML, a graphical modeling language for specifying,
visualizing and documenting software systems. With UML profiles, basic UML
concepts (Class, Association, etc.) can be extended with new concepts
(stereotypes) and adapted to specific modeling needs. The models of the real
world, represented by concepts defined in the corresponding metamodel at M2
layer (e.g. UML metamodel) are at M1 layer. Finally, at M0 layer are instances
of concepts modeled at M1 layer. An example would be: MOF Class (at M3) is
used to define UML Class (M2), which is used to define real-world describing
concept, class Person (M1) that can have instances: Tom, Dick, Harry (M0).

Another standard that this architecture is based on is XMI, a standard that
defines mapping from MOF-defined metamodels to XML documents and
Schemas. XML, which is well-supported in various software tools, gives XMI
strength to enable sharing of meta-metamodel, metamodels and models.

Present software tools support for MDA is concentrated primarily on UML as
a graphical notation, with no concern of metamodeling layers [26]. UML CASE
tools (e.g. Rational Rose, Borland Together, Magic Draw, Poseidon for UML,
etc.) have good support for modeling at M1 layer and for code generation in
certain programming languages. Using appropriate UML profile they can
generate databases, XML Schemas, EJBs etc. But, they lack support for M2 and
M3 layers as well as a unified serialization to XMI. It is expected from future
tools to support UML 2, which will enable common XMI representation of UML
models, and MOF-compliant model repositories at M2 and M3 layers; all this
will provide a good support for metamodeling.

4.2. Modeling: Instance layers versus ontological layers

MOF is a self-defined language intended for defining metamodels. In term of
MDA a metamodel makes statements about what can be expressed in the valid

MDA-Based Ontological Engineering 11

models of a certain modeling language. In fact, a metamodel is a model of a
modeling language [49]. Examples of the MDA’s metamodels are UML and
CWM. The MDA’s metamodel layer is usually marked as M2. At this layer, we
can define a new metamodel (e.g. modeling language) that would cover some
specific application domains (e.g. ontology development). The next layer is the
model layer (M1) – a layer where we develop real-world models (or domain
models). In terms of the UML models that means creating classes, their relations,
states, etc. This layered architecture, also shown in Fig. 3 is often difficult to
understand for less experienced modelers, so we should explain the bottom-most
layer, the instance layer (M0) in more depth. There are two different approaches
about this question, and we note both of them:
(i) The instance layer contains instances of the concepts defined at model (M1)

layer (e.g. objects in programming languages).
(ii) The instance layer contains things from our reality – concrete (e.g. Mark is

instance of the Person class, Lassie is a instance of the Dog class, etc.) and
abstract (e.g. UML’s classes – Dog, Person, etc.) [3].

Meta-metamodel (MOF)

Metamodel (UML, CWM)

Models, model instances

Real-world things

Model Driven Architecture

M3

M2

M1

M0

X
 M

I

Li
ng

ui
st

ic
 in

st
an

tia
tio

n

Ontological instantiation
Fig. 3. The four-layer Model Driven Architecture and its orthogonal instance-of relations:

linguistics and ontological.

In this chapter we advocate the second approach, but we should give a more

details about its impact on UML. In UML, both classes and objects are at the
same layer (model layer) in the MDA four-layer architecture. Actually, MDA’s
layers are called linguistic layers. On the other side, concepts from the same
linguistic layer can be at different ontological layers. Hence, UML classes and
objects are at different ontological layers, but at the same linguistic layer.

12 D. Djurić et al

4.3. Specific MDA metamodels and UML profiles

One possible solution for using MDA capacities in some specific domains is to
develop a metamodel, which would be able to model relevant domain concepts.
That means, creating a domain language (i.e., metamodel) using metamodeling,
and these languages are created using MOF. Having defined a domain specific
metamodel we should develop suitable tools for using that metamodel. However,
it is rather expensive and time consuming so we try to use well-developed tools.
Practically, present software tools do not implement many of the MDA basic
concepts. However, most of these applications, currently primarily oriented
toward UML and the M1 (i.e., model) layer [26]. Generally, UML itself is a
MOF-defined general-purpose language (i.e., metamodel) that contains a set of
core primitives. The problem of tools can be overcome using UML Profiles – a
way for adapting UML for specific purposes. UML Profiles extend the UML
metamodel with application-specific primitives (through stereotypes, tagged
values, and constraints), and hence these primitives can be used as the regular
UML concepts. Having understood UML Profiles in this way one can count
UML as a family of languages [19].

A very important question is about the palace of UML Profiles in the MDA’s
four-layer architecture. The UML specification states that UML Profiles are
defined at the metamodel layer (M2), and thus they are meta-concepts. Here we
use a definition of UML Profiles in a strict metamodeling framework [1, 2]
where UML Profiles are placed at both the metamodel layer (M2) and the model
layer (M1).

5. Current Trends: Using UML and MDA-Based Languages in Ontological
Engineering

In this section we describe existing efforts to enable usage of UML, present UML
tools, as well as MDA-based standards in ontological engineering. Our goal is to
explain formal background of each approach, and their mappings into ontology
languages. In Table 1, we give an overview of the analyzed solutions, their
formal definition, kinds of model interchange description they use, proposals for
mapping implementation, and target ontological languages.

The idea to use UML in ontological engineering has firstly been in
Cranefield’s papers [13]. He has found connections between the standard UML
and ontologies concepts: Classes, Relations, Properties, Inheritance, etc.
However, there are some dissimilarities between them, and the most important
one is related to the property concept – in the UML an attribute has a class scope,

MDA-Based Ontological Engineering 13

while in ontology a property is a first-class concept that can exist independently
of a class. This approach suggests using UML class diagrams for development of
ontology taxonomy and relations between ontological concepts, whereas UML
object diagrams were intended to be used for modeling ontology instances (i.e.,
body of knowledge) [11]. Also a practical software support was provided in the
form of two XSLTs that were developed to enable transformation of the UML
XMI format to RDFS and Java classes. However, we have noted some limitations
(that are also propagated to generated languages): One cannot conclude whether
the same property was attached to more than one class, one cannot create a
hierarchy of properties, and target RDFS ontology description does not have
advanced restriction concepts (e.g. multiplicity).

Backlawski and his colleagues have introduced two approaches for ontology
development. The first one extends the UML metamodel by introducing new
metaclasses [4]. For instance, these metaclasses define a property as a first class
concept, as well as a restriction on a property. In this way they have solved the
“property problem” in UML. This solution is mainly based on the DAML+OIL
ontology language [41]. In order to enable usage of standard UML tools, they

Table 1. An overview of present UML and MDA based ontology development frameworks and
their transformations to the Semantic Web languages

Approach Metamodel Model
Description

Transformation
Mechanism

Generated
Ontology
Language

Cranefield Standard UML UML XMI XSLT RDFS, Java
classes

Backlawski et al
UML Profile, MOF-

based ontology
language

(Not given - UML
XMI, and MOF XMI

can be used)
– DAML

Falkovych at al Standard UML UML XMI XSLT DAML + OIL

Protégé metamodel Protégé XMI

Protégé
Standard UML UML XMI

Programmed

OWL, RDF(S),
DAML+OIL,
XML, UML

XMI, Protégé
XMI, …

DUET UML Profile Rational Rose,
ArgoUML Programmed DAML+OIL

Xpetal Standard UML Rational Rose mdl
files Programmed RDFS

14 D. Djurić et al

propose an UML profile and its mapping to DAML+OIL. The authors realized
that this solution was fairly awkward because it introduced some new concepts in
the UML metamodel. Therefore, they have developed an independent ontology
metamodel using the MOF, which they named the Unified Ontology Language
(UOL) [5]. This metamodel was also inspired by DAML+OIL. We have been
unable to find any practical software solution that would be able to map these
two MDA-based ontology languages into a Semantic Web language.

Falkovych and her associates [20] do not extend the standard UML
metamodel in order to enable transformation of UML models into equivalent
DAML+OIL descriptions. They use a UML-separated hierarchy to define kinds
of ontology properties. A practical mapping from UML models to DAML+OIL
is implemented using XSLT. The main limitations of this solution are: 1) lack of
mechanisms for formal property specification (e.g. defining property inheritance,
or inverseOf relation between properties), 2) it is based on UML class diagrams,
which contain only graphical artifacts of real UML elements included in a model
(e.g. they assume all association that has the same name as the same property,
even though each association is a distinct model element in UML). Of course,
this diagram problem can be partly overcome with XMI for UML 2.0 that
supports diagram representation.

Protégé is the leading ontological engineering tool [23]. It has complex
software architecture, easily extensible through plug-ins. Many components that
provide interfaces to other knowledge-based tools (Jess, Algernon, OIL, Protégé
Axiom Language (PAL) constraint, etc.) have been implemented in this way, as
well as support for different ontology languages and formats like XML,
DAML+OIL (backends), and OIL (tab). In fact, Protégé has a formally MOF-
defined metamodel. This metamodel is extensible and adaptable. This means,
Protégé can be adapted to support a new ontology language by adding new
metaclasses and metaslots into a Protégé’s ontology. Introduction of these new
metamodeling concepts enable users to add necessary ontology primitives (e.g.
the Protégé class has different features from OWL class). In that way it can, for
instance, support RDFS [22] or OWL (http://protege.stanford.edu/plugins/owl-
plugin). It is especially interesting that Protégé has backends for UML and XMI.
These two backends use the NetBeans’ MetaData Repository (MDR –
http://mdr.netbeans.org). The first backend exchanges UML models (i.e., classes,
and their relations) using the standard UML XMI format, while the second one
uses the XMI format that is compliant with the Protégé MOF-defined metamodel.
It is obvious that one can share ontologies through the Protégé (e.g. import
ontology in the UML XMI format and store it in the OWL format). However,
Protégé has one limitation in its UML XMI support – it does not map class

MDA-Based Ontological Engineering 15

relations (i.e., associations) into a Protégé’s ontology (i.e., does not attach
instance slots to classes). But, this limitation was expected since Protégé imports
UML models without any extension (i.e., a UML Profile).

The software tool called DUET (http://codip.grci.com/Tools/Tools.html),
which enables importing DAML ontologies into Rational Rose and ArgoUML,
as well as exporting UML models into the DAML ontology language [21], has
been developed in order to support ontological engineering. This tool uses a quite
simple UML Profile that contains stereotypes for modeling ontologies (based on
UML package) and properties (based on UML class). Additionally, DUET uses
an XSLT that transforms RDFS ontologies into equivalent DAML ontologies. In
that way, RDFS ontology can be imported into UML tools through the DAML
language. Of course, this tool has constraints similar to approaches we have
already discussed (e.g. Falkovych et al) since it has no ability to define advanced
class and property relations (e.g. inverseOf, equivalentProperty, equivalentClass,
etc.). On the other hand, this is the first UML tool extension that enables
ontology sharing between ontology language (i.e., DAML) and a UML tool in
both directions.

Xpetal (http://www.langdale.com.au/styler/-xpetal) is another tool
implemented in Java that transforms Rational Rose models from the mdl format
to RDF and RDFS. This tool has limitations similar to those that we have already
mentioned while discussing Cranefield’s software (i.e., XSLT), since it uses the
standard UML and does not provide a convenient solution for representing
properties, their relations, advanced class restrictions, etc. Actually, this tool is
more limited than the Cranefield’s one, since it is oriented to the Rational Rose,
in contrast to the Cranefield’s XSLT that is applicable to every UML XMI
document and independent of UML tools.

Our opinion is that all these approaches we have explored above are useful,
but none of them gives a full solution that contains: A formal description of the
new MDA-based ontology language, a related UML profile and necessary
transformations between these two languages, as well as transformations to
contemporary Semantic Web languages (i.e., OWL) [44]. We believe that full
usage of the recent OMG’s effort – MDA [42] provides us with considerable
benefits when defining metamodeling architecture and enables us to develop new
languages (i.e., ontology language). Actually, there is a RFP at OMG that should
enclose all these requirements, but it is still in its initial stage.

16 D. Djurić et al

6. The Ontology Modeling Architecture

Currently, there is a RFP (Request for Proposal) within OMG that tries to define
a suitable language for modeling Semantic Web ontology languages in the
context of MDA [44]. According to this RFP, we developed ontology
development architecture [17]. Of course, we do not claim that this solution is
either the best one, or widest accepted one, but we only want to illustrate one of
possible solutions for the OMG’s initiative. One can reach other similar solutions
at the OMG Ontology SIG homepage: http://ontology.omg.org. In our approach
to ontology modeling in the scope of MDA, which is shown in Fig. 4, several
specifications should be defined:
• Ontology Definition Metamodel (ODM).
• Ontology UML Profile – a UML Profile that supports UML notation for

ontology definition.
• Two-way mappings between OWL and ODM, ODM and Ontology UML

Profile and from Ontology UML Profile to other UML profiles.

Fig. 4. Ontology modeling in the context of MDA and Semantic Web.

Ontology Definition Metamodel (ODM) should be designed to comprehend

common ontology concepts. A good starting point for ODM construction is OWL
since it is the result of the evolution of existing ontology representation
languages, and is going to be a W3C recommendation. It is at the Logical layer
of the Semantic Web [8], on top of RDF Schema (Schema layer). In order to
make use of graphical modeling capabilities of UML, an ODM should have a

MDA-Based Ontological Engineering 17

corresponding UML Profile [51]. This profile enables graphical editing of
ontologies using UML diagrams as well as other benefits of using mature UML
CASE tools. Both UML models and ODM models are serialized in XMI format
so the two-way transformation between them can be done using XSLT. OWL
also has representation in the XML format, so another pair of XSLTs should be
provided for two-way mapping between ODM and OWL. For mapping from the
Ontology UML Profile into another technology-specific UML Profiles,
additional transformations can be added to support usage of ontologies in design
of other domains and vice versa. We have so far implemented an XSLT that
transforms the Ontology UML Profile to OWL (for details see [27]). This XSLT
can be understood as an extension of present UML tools for ontology
development. However, here we do not show implementation details of this
transformation, but our main focus in on the MDA-compliant ontological
languages.

6.1. Metamodeling: MDA versus Functional architecture

Before we start with more detailed description of ODM, we must clarify
differences between metamodeling based on MDA, and functional architecture
which is used for Web ontology languages definition. RDFS, as a schema layer
language, has a non-standard and non-fixed-layer metamodeling architecture,
which makes some elements in model have dual roles in the RDFS specification
[47]. Therefore, it is difficult to understand by modelers, lacks clear semantics
(by assigning dual roles to some elements) and propagates “layer mistake”
problem to languages it defines, in our case to OWL. MDA, on the other side,
has fixed and well-defined four-layer architecture. It has separate metamodeling
primitives on meta-metamodel and metamodel layer that are separated from
ontology language (or some other MOF-defined language) primitives, which can
have infinite layers, as in the case of OWL Full.

In OWL DL, functional architecture’s problems are partially solved by
introducing new modeling elements (i.e., owl:Class) that are used for defining
ontologies. In this case, rdfs:Class is used only for defining owl:Class,
owl:ObjectProperty and other ontology-modeling primitives. It is not used
for modeling ontologies, which is done using ontology-modeling primitives. On
the other hand, OWL Full allows unconstrained use of RDFS constructs, which
means that it completely inherits RDFS’ problems. ODM that supports OWL
Full cannot be modeled directly using MOF if we want to preserve fixed-layer
architecture.

18 D. Djurić et al

Accordingly, ODM will be designed primarily to support OWL DL. Support
for OWL Full will be included partially, for concepts that do not introduce
significant problems or break fixed-layer architecture.

A brief comparative description of the most important metamodeling
constructs in MOF and RDF(S), which will make reading the next sections
easier, is shown in Table 2. Detailed description of MOF can be found in OMG’s
MOF specification document [43]. RDF, RDFS and their concepts are described
in detail in W3C documents [10].

Table 2. A brief description of basic MOF and RDF(S) metamodeling constructs

MOF Element Short Description RDF(S) Element Short Description

ModelElement

ModelElement classifies
the elementary, atomic
constructs of models. It is
the root element within the
MOF Model.

rdfs:Resource

Represents all things described
by RDF. Root construct of
majority of RDF constructs.

DataType Models primitive data,
external types, etc. rdfs:DatatypeMechanism for grouping

primitive data.

Class

Defines a classification
over a set of object
instances by defining the
state and behavior they
exhibit.

Classifier

Abstract concept that
defines classification. It is
specialized by Class,
DataType, etc.

rdfs:Class

Provides an abstraction
mechanism for grouping
similar resources.

In RDF(S), rdfs:Class
also have function that is
similar to a MOF concept of
Classifier.

Association

Expresses relationships in
the metamodel between
pairs of instances of
Classes,

Attribute
Defines a notional slot or
value holder, typically in
each instance of its Class.

rdf:Property

Defines relation between
subject resources and object
resources.

TypedElement

The TypedElement is an
element that requires a type
as part of its definition. A
TypedElement does not
itself define a type, but is
associated with a
Classifier. Examples
are object instances, data
values etc.

In RDF(S), any
rdfs:Resource can be
typed (via the rdf:type
property) by some
rdfs:Class.

MDA-Based Ontological Engineering 19

7. Essential Ontology Definition Metamodel Concepts

This section briefly overviews the basic ODM concepts; for a more detailed
description, see [17, 18]. OWL is built on top of RDFS, which is used as both
modeling and metamodeling language. On the other hand, the corresponding
ODM concepts are modeled by MOF. Since RDFS and MOF have numerous
differences (non-fixed versus fixed metamodeling architecture [47]), OWL
concepts cannot be directly copied to ODM concepts. They need some degree of
adaptation.

7.1. Resource

OWL is built on top of RDF; thus it inherits its concepts, such as Resource,
Property, metamodeling capabilities, etc. Resource is one of the basic RDF
concepts; it represents all things described by RDFS and OWL. It may represent
anything on the Web: A Web site, a Web page, a part of a Web page, or some
other object named by URI. Compared to ontology concepts, it can be viewed as
a root concept, the Thing. In RDFS, Resource is defined as an instance of
rdfs:Class; since we use MOF as a meta-metamodeling language, Resource
will be defined as an instance of MOF Class. It is the root class of most other
basic ODM concepts that will be described: Ontology, Classifier, Property,
Instance, etc. The root of this hierarchy is shown on Class Diagram in Fig. 5.
Other class diagrams (shown in Figs. 6 - 8) will depict these concepts in more
detail.

Fig. 5. The hierarchy of basic ontology concepts.

20 D. Djurić et al

Fig. 6. The hierarchy of Ontology Classes in ODM.

Fig. 7. The hierarchy of Ontology Properties in ODM.

Ontology is a concept that aggregates other concepts (Classes,
Properties, etc.). It groups instances of other concepts that represent similar

MDA-Based Ontological Engineering 21

or related knowledge. Classifier is the base class of concepts that are used
for classification – AbstractClass and DataType. Instance is the base
class of concepts that are classified by Classifiers – concrete
Individuals and concrete DataValues. Property is used to represent
relationships between other concepts.

Fig. 8. Key relationships among Ontology concepts.

For example, Person is an AbstractClass (more precise - a Class)

that classifies many Individuals: Tom, Dick, Harry, etc. All Persons
have Properties – name and occupation. These Properties can
have values that are of certain type; name can be a String (an example of
DataType), occupation can be Profession (another example of
AbstractClass). Then, Profession classifies concrete professions (its
instances): Musician, Writer, Mechanic, Astronaut, etc.

7.2. Classifier

In RDFS and OWL, Class (rdfs:Class and owl:Class) represents a
concept for grouping resources with similar characteristics. This concept of Class
(we can also call it Ontology Class) is not completely identical as a concept of
Class that is defined in UML and object oriented programming languages. Every
owl:Class is a set of individuals, called class extension. These individuals are

22 D. Djurić et al

instances of that class. Two classes can have the same class extension but still be
different classes. Ontology classes are set-theoretic, while traditional classes are
more behavioral. Unlike a traditional class, an OWL class does not directly
define any attributes or relations with other resources, and there is no any concept
similar to methods. Attributes and relations are defined as Properties. In ODM, a
Class concept corresponding to rdfs:Class is defined as Classifier - an
instance of MOF Class that inherits Resource. A concept that complies with
owl:Class is ODM’s AbstractClass.

OWL further introduces six ways of defining a Class – class descriptions:
(i) A class can be defined by a class identifier (an URI reference) – i.e., a

Class Person.
(ii) As an exhaustive enumeration of individuals that form the instances of a

Class. For example, individuals Mick, Keith, Ron, Bill and
Charlie form an Enumeration – TheRollingStones. Note
that they are also members of a Class Person.

(iii) As a property restriction – Class of all individuals that have the same
restriction on some of their characteristics.

(iv) As an intersection – A Class of all individuals that are members of all
Classes that form an intersection. An intersection of Classes
TheWailers and TheRollingStones is a Class that does not have
any member, since no musician has played in both bands.

(v) As a union – A Class of all individuals that are members of any Class that
forms a union. A union of TheWailers and TheRollingStones, has
twelve individuals, all musicians from both bands.

(vi) As a complement – A Class of all individuals that are not members of
other, complement class. A complement of TheRollingStones is a
Class that has about six billion members – all Persons that are not
members of TheRollingStones.

(vii) AllDifferent is a helper class, which states that all of its instances are
have different identity.

The first concept, named class is modeled as ODM Class. Other five
species are defined in OWL as subclasses of owl:Class, and are shown in Fig.
6. If we define class descriptions as simple subclasses of Class, like it is
defined in OWL, we will have some problems related to the differences between
RDFS and MOF concept of a class and the open-world assumption of the
Semantic Web. While in RDFS some class instance can be easily defined to be a
member of many class extensions in the same time, in MOF it can be instance of
exactly one class. The open-world assumption might demand some flexibility,
i.e., that class which was a Union becomes an Intersection, which is not

MDA-Based Ontological Engineering 23

possible to model in MOF, since each instance can be the instance of only one
Class, i.e., dynamic classifiers are not allowed. To solve this problem, we used
the idea captured in the Decorator design pattern [25]. In Fig. 6, we define
ClassDescription as a subclass of Class which can encapsulate a
Class. In that way, we can have a chain of additions to the starting definition of
Class (i.e., speaking in software engineering terms, we can add further
responsibilities to the original concept of Class). For example, if we have some
simple Class, we can define union by decorating that class with Union, and
change it later to intersection, by removing the union decorator and decorating
the class with Intersection.

7.3. Property

Ontology Class attributes or associations are represented through properties. A
property is a relation between a subject resource and an object resource.
Therefore, it might look similar to a concept of attribute and association in
traditional, object oriented sense. However, the important difference is that
Property is stand-alone; it does not depend of any Class (or resource) as
associations or attributes are in UML. In ontology languages, a property can be
defined even with no classes associated to it. In ODM, Property is an instance
of MOF Class that inherits Resource.

In addition to the concept of rdf:Property, which is defined in RDF,
OWL distinguishes two types of properties: owl:ObjectProperty, whose
range can be only an Individual, and owl:DatatypeProperty, whose
range can be only DataValue. In ODM, these concepts are instances of MOF
Class that inherit Property. OWL also defines additional concepts, global
cardinality constraints on a Property that can further refine the Property.
These concepts are also represented as instances of MOF Class.

In OWL, various types of global property constraints are defined as
subclasses of Property. Here we have the same problem we had with OWL
classes, since some property might have multiple global constraints, i.e.,
symmetric and transitive. In this case, we also apply the Decorator design
pattern, just like we did with Class Descriptions. The resulting class diagram is
shown in Fig. 7. If we want to define, for example, symmetric property, we will
decorate ObjectProperty with SymmetricProperty, and if we later
decide that this property also should be transitive, we can simply decorate it
again with TransitiveProperty.

24 D. Djurić et al

7.4. Properties predefined in RDFS and OWL

We have seen how predefined concepts, which are defined in OWL as instances
of rdf:Class, are defined in ODM as instances of MOF Class with some
changes in the hierarchy. RDF(S) and OWL have some predefined concepts that
are instances of rdf:Property. These predefined properties are used to make
relationships between concepts in OWL metamodel. In ODM, they are modeled
as MOF Associations or as MOF Attributes.

Predefined properties of RDF(S) and OWL and their ODM counterparts are
not completely identical. For example, the predefined property rdf:type states
that a rdfs:Resource is an instance of a rdfs:Class. In ODM, it is
represented as an Association between Classifier and Instance, as
shown in Fig. 8, which is obviously a narrower usage than is defined in RDF.
Recall that Classifier is further specialized in AbstractClass and
DataType, and that Instance is specialized in Individual and
DataValue. Such differences are caused by differences between MDA and
Functional architecture. In RDF, rdf:type property is used as both
metamodeling and modeling concept while in MDA, MOF is used for
metamodeling, and ODM for modeling. Since ODM type association is not used
for metamodeling, it is a narrower concept than rdf:type, thereby they are not
equal.

A Classifier describes some general concept that has its Instances
(Individuals and DataValues). On the other hand, a Property
describes some generic characteristic that can describe that Classifier and
possibly other Classifiers. Through domain we state that a Property can
be used to describe a Classifier, and through range a characteristic's type.
For example, a Property nationality can be assigned to a Class
Person (through domain) with possible values which type is a Class
Country (through range). In ODM, these relations are modeled as
associations, as shown in Fig. 8.

7.5. Statement

A Statement is a Subject-Predicate-Object triple that expresses some fact in a
way similar to the way facts are expressed in English. A fact that some
Individual, Bob for example, has some nationality, Jamaican, is
expressed through a Statement, which links the Instance Bob as the subject,
the nationality property as the predicate, and the Instance Jamaica as
the object. Thus, Statement can be viewed as some kind of Property’s

MDA-Based Ontological Engineering 25

instance. In ODM, Statement is an instance of MOF Class that is linked
with Instance by subject and object associations and with Property by
predicate association (Fig. 8). ODM Statement slightly differs from the
Statement defined in RDF (rdf:subject and rdf:object link
rdf:Statement with rdfs:Resource). The difference arises from the
fact that ODM is not intended for metamodeling as RDF is, similarly to the case
with rdf:type.

8. Ontology UML Profile Essentials

In order to customize UML for modeling ontologies, we define UML Profile for
ontology representation, called Ontology UML Profile. UML Profile is a concept
used for adapting the basic UML constructs to some specific purpose.
Essentially, this means introducing new kinds of modeling elements by extending
the basic ones, and adding them to the modeler’s tools repertoire. More details
about UML extension mechanisms can be found in [35, 45]. Coherent set of
extensions of the basic UML model elements, defined for specific purposes or for
a specific modeling domain, constitutes a UML profile.

Since stereotypes are the principle UML extension mechanism, one might be
tempted to think that defining Ontology UML Profile is a matter of specifying a
couple of stereotypes and using them carefully in a coherent manner. In reality,
however, it is much more complicated than that. The reason is that there is a
number of fine details to take care of, as well as the existence of some conceptual
inconsistencies between MDA and UML that may call for alternative design
decisions. The following subsections describe the most important Ontology UML
Profile concepts in detail.

8.1. Ontology classes

Class is one of the most fundamental concepts in ODM and Ontology UML
Profile. As we noted in the discussion about the essential ODM concepts, there
are some differences between traditional UML Class or OO programming
language Class concept and ontology class as it is defined in OWL
(owl:Class). Fortunately, we are not trying to adopt UML as stand-alone
ontology language, since that might require changes to UML basic concepts
(Class and other). We only need to customize UML as a support to ODM.

In ODM, Ontology Class concept is represented as an instance of MOF Class,
and has several concrete species, according to the class description: Class,
Enumeration, Union, Intersection, Complement, Restriction and AllDifferent.

26 D. Djurić et al

These constructs in the Ontology UML Profile are all inherited from the UML
concept that is most similar to them, UML Class. But, we must explicitly specify
that they are not the same as UML Class, which we can do using UML
stereotypes. An example of Classes modeled in Ontology UML Profile is shown
in Fig. 9.

Fig. 9. Class diagram showing relations between ontology classes and individuals in the ontology
UML Profile.

ODM Class identified by a class identifier will have the stereotype

«OntClass», AllDifferent - «AllDifferent» and Restriction -
«Restriction». In ODM, Enumeration, Intersection, Union and Complement
are descendants of ODM Class; in Ontology UML Profile they have stereotypes

MDA-Based Ontological Engineering 27

«Enumeration», «Intersection», «Union» and «Complement». The
«OntClass» stereotype would be extended by each of these new stereotypes.

Figure 9 shows various types of ontology classes modeled in UML. The Class
Person is an example of an ontology Class that is identified by a class
identifier, TheRollingStones and TheWailers are enumerations,
StonesWailersIntersection is an intersection, and
StonesWailersUnion is a union. There is one unnamed class that represents
complement of TheWailers – all individuals that are not members of
TheWailers. AllDifferent is an auxiliary class whose members are
different individuals. Also shown is an «OntClass» Human and the
Dependency «equivalentClass», which means that Person and Human
are classes that have the same class description (i.e., all Persons are Humans
and vice versa).

8.2. Individuals

In ODM, an instance of an AbstractClass is called Individual. In UML,
an instance of a Class is an Object. ODM Individual and UML Object
have some differences, but they are similar enough, so in Ontology UML Profile,
Individual is modeled as UML Object, which is shown in Fig. 9. The
stereotype for an object must match the stereotype for its class («OntClass» in
this case). Stating that some Individual has some type is done in three ways:

(i) by using an underlined name of an Individual followed by “:” and its
«OntClass» name (for example, Mick:Person is an Individual whose
type is Person. This is the usual UML method of stating an Object’s
type.

(ii) by using a UML Dependency’s stereotype «instanceOf» between an
Individual and its «ontClass». This method is also allowed in
standard UML. For example, Mick is an instance of
TheRollingStones.

(iii) indirectly – through logical operators on «OntClass». If some
«OntClass» is a union, intersection or complement, it is a
class of Individuals that are not explicitly defined as its instances. For
example, Mick is not explicitly defined as a member of
StonesWailersUnion, but it is its member since he is a member of
TheRollingStones, which is connected with
StonesWailersUnion through a «unionOf» connection.

28 D. Djurić et al

8.3. Ontology properties

Property is one of the most unsuitable ontology concepts to model with
object-oriented languages and UML. The problem arises from the major
difference between Property and its similar UML concepts – Association
and Attribute. Since Property is an independent, stand-alone concept, it
cannot be directly modeled with Association or Attribute, which cannot
exist on their own.

Since Property is a stand-alone concept it can be modeled using a stand-alone
concept from UML. That concept could be the UML Class’ stereotype
«Property». However, Property must be able to represent relationships between
Resources (Classes, Datatypes, etc. in the case of UML), which the UML Class
alone is not able to do. If we look at the ODM Property definition more closely,
we will see that it accomplishes relation representation through its range and
domain. According to the ODM Model, we found that in the Ontology UML
Profile, the representation of relations should be modeled with UML
Association’s or UML Attribute’s stereotypes «domain» and «range». In order to
increase the readability of diagrams, the «range» association is unidirectional
(from a Property to a Class). ODM defines two types (subclasses) of Property –
ObjectProperty and DatatypeProperty. ObjectProperty, which can have only
Individuals in its range and domain, is represented in Ontology UML Profile as
the Class’ stereotype «ObjectProperty». DatatypeProperty is modeled with the
Class’ stereotype «DatatypeProperty».

An example of a Class Diagram that shows ontology properties modeled in
UML is shown in Fig. 10. It contains four properties: Two «DatatypeProperty»s
(name and socialSecurityNumber) and two «ObjectProperty»s (nationality and
colleague) UML Classes. In cooperation with «domain» and «range» UML
Associations, or «domain» and «range» UML Attributes, they are used to model
relationships between «OntClass» UML Classes. Tagged values describe
additional characteristics, for example, «ObjectProperty» colleague is
symmetric (if one Person is a colleague of another Person, the other
Person is also a colleague of the first Person) and transitive (if the first
Person is a colleague of the second Person, who is a colleague of the
third Person, the first and third Person are colleagues). In ODM, these
characteristics are added to an ODM Class applying the Decorator Design Pattern
[25]. The transformation that maps an Ontology UML Profile model to an ODM
model should create one decoration of an ODM Property per attribute of
Ontology UML Profile «ObjectProperty» or «DatatypeProperty».

MDA-Based Ontological Engineering 29

Fig. 10. Ontology properties shown in UML class diagram.

8.4. Statement

ODM Statement is a concept that represents concrete links between ODM
instances – Individuals and DataValues. In UML, this is done through
Link (an instance of an Association) or AttributeLink (an instance of
an Attribute). Statement is some kind of instance of a Property, which is
represented by the UML Class’ stereotype («ObjectProperty» or
«DatatypeProperty»). Since in UML a Class’ instance is an Object, in
Ontology UML Profile Statement is modeled with Object’s stereotype
«ObjectProperty» or «DatatypeProperty» (stereotype for Object in
UML must match the stereotype for its Class’ stereotype). UML Links are
used to represent the subject and the object of a Statement. To indicate that a
Link is the subject of a Statement, LinkEnd’s stereotype «subject» is
used, while the object of the Statement is indicated with LinkEnd’s stereotype
«object». LinkEnd’s stereotype is used because in UML Link cannot have
a stereotype. These Links are actually instances of Property’s «domain» and
«range». Briefly, in Ontology UML Profile Statement is represented as an
Object with two Links – the subject Link and the object Link, which is
shown in Fig. 11. The represented Persons Mick and Keith are
colleagues. They both have UK (Great Britain) nationality.

30 D. Djurić et al

Figure 11. Individuals and Statements shown in a UML Object Diagram.

9. Conclusions

The use of software engineering techniques and standards for ontology
development still requires a lot of research and work in both Semantic Web and
MDA communities in order to achieve an official recommendation that will be
adopted by OMG. The main task is to converge all proposed solutions that are
either submitted to OMG’s SIG for ontologies or published as research papers [4,
13, 17, 20]. Taking into account experience from the UML 2.0 standardization
(which should be finished in 2001 [39], but it is not done yet) this can be a very
long process and the date of the final recommendation is difficult to predict. On
the other hand, the Semantic Web community adopted the OWL
recommendation [6], and currently we have many applications that are based on
ontological engineering [37].

We hope that the observation given in this chapter can be useful for the
researchers from the Semantic Web community who are trying to benefit
ontology development with the MDA’s standards. Apart of the defined solutions
for MDA-based ontology languages (Ontology Definition Metamodel and
Ontology UML Profile) the practitioners need software tools that will support all
these theoretical efforts. One of main tasks toward this direction is the support for
transformations between Ontology UML Profile (i.e., the UML XMI format) and
Ontology Definition Metamodel (i.e., the ODM specific XMI format), as well as
between OWL and Ontology Definition Metamodel. In this way, we will have an
entire metamodeling platform compliant to the OMG’s ontology initiative. Until
we get the formal OMG recommendation industrial engineers can use current
implementations [13, 20, 27].

MDA-Based Ontological Engineering 31

References

1. C. Atkinson and T. Kühne, “Rearchitecting the UML infrastructure”, ACM Transactions on
Modeling and Computer Simulation 12(4) (2002) 290-321.

2. C. Atkinson and T. Kühne, “Profiles in a strict metamodeling framework”, Science of
Computer Programming 44(1) (2002) 5-22.

3. C. Atkinson and T. Kühne, “Model-driven development: A metamodeling foundation”, IEEE
Software 20(5) (2003) 36-41.

4. K Baclawski, M. Kokar, J. E. Smith, E. Wallace, J. Letkowski, M. R. Koethe and P. Kogut,
“Extending the Unified Modeling Language for ontology development”, International Journal
Software and Systems Modeling (SoSyM) 1(2) (2002) 142-156.

5. K Baclawski, M. Kokar, J. E. Smith, E. Wallace, J. Letkowski, M. R. Koethe and P. Kogut,
UOL: Unified Ontology Language, Assorted papers discussed at the DC Ontology SIG
meeting, 2002, http://www.omg.org/cgi-bin/doc?ontology/2002-11-02.

6. S. Bechhofer, F. van Harmelen, J. Hendler, I. Horrocks, D. L. McGuinness, P. F. Patel-
Schneider and L. A. Stein, OWL Web Ontology Language Reference, W3C Recommendation,
2004, http://www.w3.org/TR/2004/REC-owl-ref-20040210/.

7. A. Bergholz, “Extending your markup: An XML tutorial”, IEEE Internet Computing 4(4)
(2000) 74-79.

8. T. Berners-Lee, J. Hendler and O. Lassila, “The Semantic Web”, Scientific American 284(5)
(2001) 34-43.

9. T. Bray, J. Paoli, C. M. Sperberg-McQueen and E. Maler, Eds., Extensible Markup Language
(XML) 1.0 (Second Edition) W3C Recommendation, 2000, http://www.w3.org/TR/2000/REC-
xml-20001006/.

10. D. Brickley and R. V. Guha, Eds., RDF Vocabulary Description Language 1.0: RDF schema,
W3C Recommendation, 2004, http://www.w3.org/TR/2000/CR-rdf-schema-20000327.

11. B. Chandrasekaran, J. R. Josephson and V. R. Benjamins, “What are ontologies, and why do
we need them?”, IEEE Intelligent Systems 14(1) (1999) 20-26.

12. O. Corcho, M. Fernández-López and A. Gómez-Pérez, Technical Roadmap v1.0, OntoWeb
Consortium Deliverable D11, 2001,
http://www.ontoweb.org/download/deliverables/D11_v1_0.pdf .

13. S. Cranefield, “Networked knowledge representation and exchange using UML and RDF”,
Journal of Digital Information 1(8), (2001), http://jodi.ecs.soton.ac.uk.

14. S. Decker, S. Melnik, F. van Harmelen, D. Fensel, M. Klein, J. Broekstra, M. Ederman and I.
Horrocks, “The semantic web: The roles of XML and RDF”, IEEE Internet Computing, 4(5)
(2000) 63-74.

15. M. Denny, “Ontology building: A survey of editing tools”, 2002,
http://www.xml.com/pub/a/2002/11/06/ontologies.html.

16. V. Devedžić, “Understanding ontological engineering”, Communications of the ACM, 45(4)
(2002) 136-144.

17. D. Djurić, D. Gašević and V. Devedžić, “Ontology modeling and MDA”, Journal on Object
Technology 4(1) (2005) 109-128.

18. D. Djurić, “MDA-based ontology infrastructure”, Computer Science and Information Systems
1(1) (2004) 91-116.

19. K. Duddy, “UML2 must enable a family of languages”, Communications of the ACM 45(11)
(2002) 73-75.

20. K. Falkovych, M., Sabou and H. Stuckenschmidt, “UML for the semantic web:
Transformation-based approaches”, Eds., B. Omelayenko and M. Klein, “Knowledge

32 D. Djurić et al

transformation for the semantic web”, Frontiers in Artificial intelligence and Applications 95
(IOS Press, 2003) 92-106.

21. D. Fensel, F. van Harmelen, I. Horrocks, D. L. McGuinness and P. F. Patel-Schneider, “OIL:
An ontology infrastructure for the semantic web”, IEEE Intelligent Systems 16(2) (2001) 38-
45.

22. N. Fridman-Noy, R. W. Fergerson and M. A. Musen, “The knowledge model of Protégé-2000:
Combining interoperability and flexibility”, Proceedings of the 12th International Conference
on Knowledge Engineering and Knowledge Management, Juan-les-Pins, France (2000) 17-32.

23. N. Fridman-Noy, M. Sintek, S. Decker, M. Crubézy, R. W. Fergerson and M. A. Musen,
“Creating semantic web contents with Protégé-2000”, IEEE Intelligent Systems 16(2) (2001)
60-71.

24. N. Fridman-Noy and C. D. Hafner, “The State of the art in ontology design: A survey and
comparative review”, AI Magazine 18(3) (1997) 53-74.

25. E. Gamma, R. Helm, R. Johnson and J. Vlissides, Design Patterns: Elements of Reusable
Object-Oriented Software (Addison-Wesley, Reading, 1995).

26. D. Gašević, V. Damjanović and V. Devedžić, “Analysis of the MDA standards in ontological
engineering”, Proceedings of the Sixth International Conference of Information Technology,
Bhubaneswar, India (2003) 193-196.

27. D. Gašević, D. Djuric, V. Devedžić and V. Damjanović, “Converting UML to OWL
ontologies”, Proceedings of the 13th International WWW Conference, New York, USA (2004).

28. A. Gómez-Pérez and O. Corcho, “Ontology languages for the semantic web”, IEEE Intelligent
Systems 17(1) (2002) 54-60.

29. A. Gómez-Pérez (coord.), “A survey of ontology tools”, OntoWeb Consortium Deliverable
1.3, 2002, http://ontoweb.aifb.uni-karlsruhe.de/About/Deliverables/D13_v1-0.zip.

30. T. R. Gruber, “A translation approach to portable ontology specifications”, Knowledge
Acquisition 5(2) (1993) 199-220.

31. J. Hefflin and M. N. Huhns, “The zen of the web”, IEEE Internet Computing 7(5) (2003) 30-
33.

32. J. Hendler, “Agents and the semantic web”, IEEE Intelligent Systems 16(2) (2001) 30-37.
33. I. Horrocks and F. van Harmelen, Eds., “Reference description of the DAML+OIL ontology

markup language”, 2000, http://www.daml.org/2000/12/reference.html.
34. I. Horrocks, “DAML+OIL: A description logic for the semantic web”, IEEE Bulletin of the

Technical Committee on Data Engineering 25(1) (2002) 4-9.
35. J. Juerjens, Secure Systems Development with UML (Springer-Verlag, Berlin, 2003).
36. Y. Kalfoglou, “Exploring ontologies”, Ed., S. K. Chang, Handbook of Software Engineering

and Knowledge Engineering, Vol. I – Fundamentals (World Scientific Publishing Co., 2001)
863-887.

37. M. Klein and U. Visser, “Guest editors’ introduction: Semantic web challenge 2003”, IEEE
Intelligent Systems 19(3) (2004) 31-33.

38. M. Klein, “Tutorial: The semantic web - XML, RDF, and relatives”, IEEE Intelligent Systems
16(2) (2001) 26-28.

39. C. Kobryn, “UML 2001: A standardization odyssey”, Communications of the ACM 42(10)
(1999) 29-37.

40. P. Kogut, S. Cranefield, L. Hart, M. Dutra, K. Baclawski, M. Kokar and J. Smith, “UML for
ontology development”, The Knowledge Engineering Review 17(1) (2002) 61-64.

41. L. McGuinness, “Ontologies come of age”, Eds., D. Fensel, J. Hendler, H. Lieberman and W.
Wahlster, Spinning the Semantic Web: Bringing the World Wide Web to Its Full Potential
(MIT Press, Boston, 2002) 171-194.

MDA-Based Ontological Engineering 33

42. J. Miller and J. Mukerji, Eds., MDA Guide Version 1.0, OMG Document: omg/2003-05-01,

2003, http://www.omg.org/mda/mda_files/MDA_Guide_Version1-0.pdf.
43. Meta Object Facility (MOF) Specification v1.4, OMG Document formal/02-04-03, April

2002, http://www.omg.org/cgi-bin/apps/doc?formal/02-04-03.pdf.
44. Ontology Definition Metamodel Request for Proposal, OMG Document ad/2003-03-40, 2003,

http://www.omg.org/cgi-bin/doc?ad/2003-03-40.
45. OMG Unified Modeling Language Specification v1.5, OMG Document formal/03-03-01,

2003, http://www.omg.org/cgi-bin/apps/doc?formal/03-03-01.zip.
46. OMG XMI Specification, v1.2, OMG Document formal/02-01-01, 2002,

http://www.omg.org/cgi-bin/doc?formal/2002-01-01.
47. J. Pan and I. Horrocks, “Metamodeling architecture of web ontology languages”, Proceedings

of the First Semantic Web Working Symposium, Stanford, USA (2001) 131-149.
48. M. Ribière and P. Charlton, “Ontology overview”, Motorola Labs Paris, 2002,

http://www.fipa.org/docs/input/f-in-00045/f-in-00045.pdf.
49. E. Seidewitz, “What models mean”, IEEE Software 20(5) (2003) 26-32.
50. B. Selic, “The pragmatics of model-driven development”, IEEE Software 20(5) (2003) 19-25.
51. J. Siegel, “Developing in OMG’s model-driven architecture”, Rev. 2.6, Object Management

Group White Paper, 2001, ftp://ftp.omg.org/pub/docs/-omg/01-12-01.pdf.
52. W. Swartout and A. Tate, “Guest editors' introduction: Ontologies”, IEEE Intelligent Systems

14(1) (1999) 18-19.

