Non Metal Complex Catalyzed Addition of PH-species

Nucleophilic and free-radical additions of phosphines and

phosphine chalcogenides to alkenes and alkynes

 

Svetlana N. Arbuzova, Nina K. Gusarova, and Boris A. Trofimov*

 

A.E. Favorsky Irkutsk Institute of Chemistry, Siberian Branch of Russian Academy of Sciences,

1 Favorsky St., Irkutsk, 664033 Russia

E-mail: boris_trofimov@irioch.irk.ru

 

Dedicated to Professor E. Lukevics on the occasion of his 70th anniversary

 


Abstract

Nucleophilic and free-radical additions of phosphines and phosphine chalcogenides to alkenes and alkynes are discussed. The bibliography includes 169 references.

 

Keywords: Phosphines, phosphine chalcogenides, alkenes, alkynes, addition


 

 

Table of contents

 

1. Introduction

2. Addition of phosphines and phosphine chalcogenides to alkenes

2.1 Nucleophilic addition of phosphines and phosphine chalcogenides to alkenes

2.1.1 Phosphine

2.1.2 Primary and secondary phosphines and phosphine chalcogenides

2.2 Radical addition of phosphines and phosphine chalcogenides to alkenes

2.2.1 Phosphine

2.2.2 Primary and secondary phosphines

2.2.3 Secondary phosphine chalcogenides

3. Nucleophilic addition of phosphines and phosphine chalcogenides to alkynes

3.1 Phosphine

3.2 Primary phosphines

3.3 Secondary phosphines

3.4 Secondary phosphine chalcogenides

4. Conclusion

5. References

 

1. Introduction

 

Addition of phosphines and phosphine chalcogenides to double and triple carbon-carbon bonds represents a convenient and atom-economic approach to C–P bond formation and synthesis of functional phosphines and phosphine chalcogenides.1-4 These compounds are important objects in the chemistry of organophosphorus compounds and widely applied as ligands for advanced catalysts (including those for enantioselective processes5-11), flame retardants,12, 13 extractants of rare earth and transuranic elements,14 building blocks and starting materials for the preparation of biologically active compounds for medicine and agriculture.15-18 Over the recent years, a lot of research has been devoted to addition reactions of P-H reagents to multiple carbon-carbon bonds, catalyzed by metal complexes, and, as a result, numerous synthetic methods have been developed (for example, see the reviews19-23). Meanwhile, hydrophosphination of alkenes and alkynes under base-catalyzed or free-radical conditions (i.e., under “green chemistry” conditions) often appears to be competitive, let alone ecologically safer, and sometimes experimentally even more advantageous.

          In this review, we survey and analyze results of the investigations concerning the heavy metal-free additions of phosphines and phosphine chalcogenides, containing a P-H function, to multiple carbon-carbon bonds. The attention is focused on the work of the last 10 years, relating to synthesis of functional phosphines and phosphine chalcogenides through reactions of phosphine, primary and secondary phosphines, phosphine oxides and sulfides with substituted alkenes and alkynes. For this period a number of new or earlier inaccessible P-H species became readily available owing to the methodology for the activation of elemental phosphorus in heterogeneous strongly basic media24, 25 developed in late 80-s26-31 (now often referred to as the Trofimov-Gusarova reaction32, 33). This new approach to the C–P bond formation allows one to carry out direct phosphorylations of organohalides, dihaloalkanes, electrophilic alkenes, acetylenes and oxiranes with elemental phosphorus to afford diverse primary, secondary and tertiary phosphines and phosphine chalcogenides, including functionalized and unsaturated ones.34-38 Some of the P-H compounds derived from these reactions turned out to be rewarding addends for nucleophilic and free-radical additions to multiple bonds, thus further unfolding the field.

 

 

2. Addition of phosphines and phosphine chalcogenides to alkenes

 

Electrophilic addition of such P-H addends as phosphines and their chalcogenides to unsaturated compounds is not as extensively studied as their nucleophilic and free-radical additions. Among scarce examples of these reactions4, 39-41 phosphine was reported to react with alkenes in the presence of acids under pressure (60-90oC, 30-47 atm) to give mostly primary Markovnikov phosphines.39 Secondary phosphines add to alkyl vinyl ethers in the presence of acids (CF3COOH, 130oC) to form Markovnikov adducts.40, 41

          Therefore, we limit the review mostly with recent strides in the base-catalyzed and free-radical additions of phosphines and phosphine chalcogenides, yet recently uncommon addends, to the double and triple carbon-carbon bonds.

 

2.1 Nucleophilic addition of phosphines and phosphine chalcogenides to alkenes

 

2.1.1 Phosphine. Nucleophilic addition of phosphine to the double carbon-carbon bond in the presence of bases was first described by Rauhut et al.42, 43 and later by King et al.44-52 for the alkenes with strong electron-withdrawing substituents. All these works are discussed in detail in a review.4

          Later,53, 54 it has been shown that superbasic systems allows hydrophosphination of weakly electrophilic double bonds of aryl- and hetarylethenes with phosphine to synthesize previously unknown or difficult-to-prepare secondary or tertiary phosphines.53-61 In these processes, instead of pure phosphine, a phosphine-hydrogen mixture generated from red phosphorus suspensions in organic solvents (dioxane, toluene) under the action of aqueous KOH53 (or NaOH) was used. Phosphine thus obtained was successfully utilized in hydrophosphination reactions without further isolation or purification.53-61

          Thus, bis(2-arylethyl)- and bis(2-hetarylethyl)phosphines (1a-i) were selectively synthesized (Scheme 1) in 60-80% yield upon slow addition of alkene to a heated (45-60oC) KOH-DMSO suspension while passing the phosphine-hydrogen mixture through reaction mixture.53, 54, 56-58, 60, 61 Complete and selective aryl(hetaryl)ethylation of phosphine with styrene and vinylpyridines was accomplished (Scheme 1) at 95-98oC and 67-70oC, correspondingly, in the KOH-DMSO system with additional introduction of the alkenes to reaction mixture at the end of the process (after the phosphine feeding was stopped) to give tris(2-phenylethyl)- (2a) and tris(2-pyridylethyl)phosphines (2b-d) in 65-76% yield.58-60

 

 

Scheme 1

 

          At a lower temperature (30-40oC) corresponding primary phosphines are formed in 20-24% yield. Still, the major products (up to 60%) under these conditions remain diorganylphosphines.55, 58

 

2.1.2 Primary and secondary phosphines and phosphine chalcogenides. Unlike PH3, which requires a base catalyst for its addition even to strongly electrophilic alkenes,42-52 primary and secondary phosphines62-65 and phosphine oxides66-70 are capable of adding to electron-deficient alkenes (nitroethenes,64 fluorosulfonylethene,65 acrylonitriles,62, 63 organylacrylates,62, 69, 70 vinylphosphine oxides66-68) without catalyst, thus providing an atom-economic and ecologically benign synthetic rout to various functionalized phosphines and phosphine oxides. Phosphine oxides bearing unsaturated alkenyl and alkynyl radicals are more active in these processes.69, 70

Noticeably, the non-catalyzed addition of secondary phosphine oxides and phosphine sulfides to acroleine and its derivatives proceeds at the carbonyl group with the double bond remained intact to give corresponding unsaturated hydroxyl-containing tertiary phosphine oxides and sulfides.71, 72

In the presence of bases addition of organic phosphines47-52, 65, 73-77 and phosphine oxides68, 78-90 to electron-deficient double bonds results mainly in corresponding tertiary phosphines and phosphine oxides in 27-93% yield.

          Phosphine 3 and phosphine oxide 4 were synthesized through hydrophosphination of divinylsulfone (Scheme 2) under mild conditions (room temperature, KOH-dioxane) in high yield.88

 

 

Scheme 2

 

          Under analogous conditions, secondary bis(2-phenylethyl)- and bis(2-phenylpropyl)phosphine oxides (5a,b) react with vinylsulfoxides,89 divinylsulfoxide90 and divinylsulfone88 to form corresponding functionalized tertiary phosphine oxides 6 or diphosphine oxides 4, 7 in high yield (Scheme 3).

 

Scheme 3

          At a higher temperature (over 50oC), along with the adducts 4, 6, 7, the reaction also gives diorganylvinylphosphine oxides as a result of desulfinylation or desulfonylation of the addition products.88-90

          Recently, first examples of facile hydrothiophosphorylation of organyl vinyl sulfoxides were described.91 Nucleophilic addition of secondary phosphine sulfides to organyl vinyl sulfoxides (KOH-THF, room temperature) proceeds chemo- and regioselectively to give corresponding bis(2-organylethyl)[2-(organylsulfinyl)ethyl]phosphine sulfides in high isolated yield (Scheme 4).

 

 

Scheme 4

 

          Hydrophosphination and hydrophosphorylation of such weakly electrophilic alkenes as styrene,92-94 2-vinylnaphthalene61 and vinylpyridines94 became possible due to superbase catalytic systems. Thus, 2-phenylpropylphosphine reacts with 4-vinylpyridine94 in a KOH-DMSO suspension to give corresponding tertiary phosphine 8 with chiral carbon (Scheme 5). In the case of the reaction of 2-phenylpropylphosphine with sterically hindered 2-vinylnaphthalene, the process stops at the stage of the formation of secondary phosphine 9 (Scheme 5).61

 

 

Scheme 5

 

          Under similar conditions, secondary phosphines 1a,f,h, 9, diphenyl-, bis(3-fluorophenyl)-, bis(4-fluorophenyl), bis(3-trifluoromethylphenyl)phosphines (10a-d), as well as phosphine oxide 5a, diphenyl- and bis[2-(2-methyl-5-pyridyl)ethyl]phosphine oxides (11a,b) add to styrene,60, 61, 92-94 and vinylpyridines94 to form 2-aryl- and 2-pyridylethyldiorganylphosphines 12a-h or phosphine oxides 13a-c (the yields are 47-95%) (Scheme 6), prospective building blocks for design of complex-forming luminophores,32, 38 P,N-chelating ligands37 and flame retardants.13, 33

 

 

Scheme 6

 

          Later, another superbase, t-BuOK-DMSO, was used for hydrophosphination and hydrophosphorylation of alkenes.86, 87 The authors successfully reproduced the reactions with styrene,92-94 vinylpyridines94 and vinyldiphenylphosphine,47 and extended the set of alkenes over vinyltriphenylsilane86, 1-vinylimidazole (in the t-BuOK-toluene system)95 and vinylphenylsulfide.86 The latter two reactions are, to the best of our knowledge, the first examples of nucleophilic addition to such electron-rich double bonds. Unfortunately, the paper86 does not contain any data proving the structures of the compounds obtained.

          The system KOH-DMSO also allowed the reaction of 3-thiolene-1,1-dioxide (14a) with primary phosphines96 and secondary phosphine chalcogenides 5a, 1597, 98 to be carry out. The corresponding adducts were synthesized in high yield. Without KOH or under radical conditions [65oC, 6 h, azabisisobutyronitrile (AIBN)], neither hydrophosphination nor hydrophosphorylation occurs, thus confirming the nucleophilic character of this addition, which, presumably, proceeds via the formation of intermediate 2-thiolene-1,1-dioxide (14b) (Scheme 7).97, 98

 

 

Scheme 7

 

2.2 Radical addition of phosphines and phosphine chalcogenides to alkenes

 

2.2.1 Phosphine. Addition of phosphine to alkenes under radical conditions (organic peroxides, AIBN, UV irradiation) was published mainly as patents and discussed in a review.4 Representative recent investigations are the synthesis of limonene-derived chiral phosphines99 and polyfunctional tertiary phosphines and phosphine oxides from vinylsulfides.100 The use of phosphine-hydrogen mixture53 generated in situ from elemental phosphorus in the latter case demonstrates applicability of this available phosphorylating reagent also for free-radical addition reactions.100

          Thus, the phosphine-hydrogen mixture generated from red phosphorus in the system KOH-toluene-H2O, reacts readily with vinyl sulfides under free-radical conditions (dioxane, AIBN, 65-70oC, atmospheric pressure) to give regiospecifically anti-Markovnikov adducts, tris[2-(organylthio)ethyl]phosphines (16) (Scheme 8).100 The latter easily oxidize by air during their isolation and purification on Al2O3 giving a 56-83% yield of tris[2-(organylthio)ethyl]phosphine oxides (17) (Scheme 8).

 

 

Scheme 8

 

2.2.2 Primary and secondary phosphines. Addition of primary and secondary phosphines to alkenes (linear unsubstituted alkenes101 with terminal double bonds and, less often, internal ones, as well as cycloalkenes,101 aryl- and hetarylalkenes,101, 102 dienes,101 vinyl40, 41, 101 and divinyl103 ethers, vinylsulfides,104, 105 vinyl phosphines,106, 107 unsaturated organohalides,108 acrylic acid derivatives101, 109 etc) under free-radical conditions is widely used in organophosphorus synthesis.110 This pathway allows one to obtain phosphines with hydrophilic substituents,62, 101, 102, 109, 111, 112 including water-soluble phosphines, di- and polyphosphines,106, 107, 113 polydentate P,N-,62, 101, 102, 107, 111, 114 P,O-,62, 101-103, 111 P,S-,104, 105, 107 P,Se-,105 and P,Si-115, 116 ligands.

          Hydrophosphination of vinyl ethers,41 vinyl sulfides105 and vinyl selenides105 with secondary phosphines 1a,g, 18, prepared from elemental phosphorus and electrophiles in superbase systems,53, 117 readily proceeds under UV irradiation or in the presence of AIBN at 65-70oC to form the corresponding phosphines 19 (Scheme 9) in nearly quantitative yields.41, 105

 

 

Scheme 9

 

          Novel optically active polyfunctional tertiary phosphines 20a,b have been synthesized in high yield by the hydrophosphination of chiral vinyl ether 21 (prepared from diacetone-D-glucose and acetylene) with secondary phosphines 1a, 18, proceeding regiospecifically in the presence of AIBN at 65-70oC (Scheme 10).118

 

Scheme 10

 

          With air or elemental sulfur the phosphines 20a,b quantitatively oxidize to the corresponding phosphine oxides or phosphine sulfides, respectively.118 Polydentate phosphines, phosphine oxides and phosphine sulfides thus obtained, containing protected hydroxy functionalized tetrahydrofuran and dioxolane moieties, are promising chelating ligands for metal complex catalysts for asymmetric synthesis.

          Recently, first examples of the hydrophosphinations of available24, 25 N-vinyl- and N-isopropenylpyrroles have been reported.119, 120

          Secondary phosphines 1a,f, 18 add to N-vinylpyrroles regio- and chemospecifically in the presence of AIBN at 65-70oC or under UV irradiation to form almost quantitatively the corresponding tertiary diorganyl-2-(1-pyrrolyl)ethylphosphines (22) (Scheme 11),119 prospective polydentate P,N-ligands.87, 121-123

 

 

Scheme 11

 

          Free-radical addition of secondary phosphines 1a,f, 23 to 1-isopropenylpyrroles (AIBN, 65oC) also proceeds with 100% regioselectivity to give diorganyl-2-(1-pyrrolyl)propylphosphines (24) in 89-92% isolated yields (Scheme 12).120

 

 

Scheme 12

 

2.2.3 Secondary phosphine chalcogenides. Hydrophosphorylation79, 124-130 and hydrothiophosphorylation131-135 of alkenes proceeding under radical initiation and giving anti-Markovnikov adducts are scarcely studied.

          Recently, chemo- and regiospecific synthesis of 2-alkoxyethyl(di-2-phenylethyl)phosphine sulfides 25 in practically quantitative yield (92-98%) was realized by hydrothiophosphorylation of alkyl vinyl ethers with P,S-ambident136 bis(2-phenylethyl)phosphine sulfide (15) in the presence of AIBN (60-65oC, 5 h, THF) (Scheme 13).134

 

 

Scheme 13

 

          The chemo- and regioselective addition of secondary phosphine sulfides to alkyl vinyl ethers contributes to better understanding the reactivity of the both classes of compounds and offers a facile straightforward route to potent cocatalysts and ”hemilabile” ligands137 (e.g., triphenylphosphine sulfide is more effective ligand for palladium-catalyzed bisalkoxycarbonylation of olefins than triphenylphosphine138).

          Later, free-radical addition of diphenylphosphine sulfide to butyl vinyl ether was realized using Et3B/O2 as the initiator.135 Apart from alkenes with electron-rich double bonds, the authors also used a set of alkenes with electron-poor double bonds to prepare phosphine sulfides 26 (Scheme 14).

 

Scheme 14

 

 

3. Nucleophilic addition of phosphines and phosphine chalcogenides to alkynes

 

Addition of P-H reagents to acetylenes4, 47, 93, 101, 109, 139-163 is a convenient and atom-economic method of the C–P bond formation and the simplest route to unsaturated phosphines. At the same time, this field still remains poorly explored and existing publications are mostly related to nucleophilic addition of phosphines and phosphine chalcogenides.4, 47, 93, 139-142, 144, 146-149, 151-153, 155-163

 

3.1 Phosphine

 

The data on the addition of phosphine to the triple carbon-carbon bond are limited to reports concerning phosphorylation of aryl- and hetarylalkynes in the presence of superbase.4, 153, 155 The reaction proceeds under mild conditions (55-60°C, atmospheric pressure) upon passing phosphine-hydrogen mixture generated from red phosphorus and potassium hydroxide in aqueous dioxane through the reaction mixture to give stereoselectively tris(Z-2-organylethenyl)phosphines (27) in 60-80% yields (Scheme 15).153, 155 The stereodirection of these reactions agrees with the common trans-addition scheme.25, 34

Scheme 15

3.2 Primary phosphines

 

Similarly to phosphine, primary phosphines react with acetylenes according to the nucleophilic monoaddition mechanism to form Z-ethenylphosphines. With weakly electrophilic acetylenes, these reactions, as a rule, require strong bases to proceed.

          Phenylphosphine reacts with di(alkynyl)sulfides under the action of base system LiNH2-NH3 to afford 4-phenyl-4H-1,4-thiaphosphinines (Scheme 16).144

 

 

Scheme 16

 

          Primary alkyl- and arylalkylphosphines add to phenylacetylene in the KOH-DMSO suspension (60°C, 1-4 h) giving predominantly or exclusively Z,Z-isomers of bis(2-phenylethenyl)organylphosphines (28) (Scheme 17) in good yield (up to 81%).159

 

 

Scheme 17

 

          Activated phenylcyanoacetylene reacts with alkylphosphines under milder conditions (KOH-dioxane suspension, 20-22oC) to afford, depending on the reactant ratio, either secondary 29 or tertiary 30 phosphines of Z-configuration in the yield of 70-91% (Scheme 18).160 According to ESR and UV data, the addition involves a single electron transfer.160

 

 

Scheme 18

          Organic phosphines were also reported to be capable of adding to arylacetylenes without catalyst, but a high temperature (over 100°C) and long reaction time were required.140, 141, 151 Thus, reaction of 2,6-bis(trifluoromethyl)phenyl]phosphine with phenylacetylene (100-110°C, 40 h) gave E- and Z-isomers of secondary [2,6-bis(trifluoromethyl)phenyl](styryl)phosphine in a ratio of 3/2 (59% yield) (Scheme 19).151

 

 

Scheme 19

 

3.3 Secondary phosphines

 

Unlike primary phosphines, secondary phosphines add to acetylenes with strong electron-withdrawing substituents (cyanoacetylene,146 phenylcyanoacetylene,157, 160 4-hydroxy-4-methyl-2-pentynenitrile,160, 162 methyl 2-propynoate,147 hexafluoro-2-butyne139) without catalysts.

Dialkylphosphines react with cyanoacetylene to afford exclusively or predominantly Z-isomers of the corresponding alkenes Alk2PCH=CHCN.146

          The reaction of bis(2-phenylethyl)- and bis(2-phenylpropyl)phoshines (1a,i) with phenylcyanoacetylene proceeds with the same stereodirection to give mainly monoadducts 31a,b, 157 though in the case of 1i a considerable amount of E-isomer 32b is formed (Scheme 20) that is explained by the competition of trans- and cis-addition to triple bond owing to steric hindrance. According to ESR and UV data, the reaction involves a single electron transfer.157

 

 

 

Scheme 20

 

          An easy stereocontrolled access to functionalized tertiary phosphines 33 of Z-configuration proves to be the addition of dibutyl-, bis(2-phenylethyl)- and bis[2-(2-pyridyl)ethyl]phosphines (18, 1a,f) to 4-hydroxy-4-methyl-2-pentynenitrile (Scheme 21).160, 162

 

 

Scheme 21

 

          Only E-isomers of ethenylphosphines Alk2PCH=CHCO2Me are formed in the reaction of dialkylphosphines with methyl 2-propynoate.147 Authors explain this fact by easy isomerization of the intermediate carbanion.

          Non-catalyzed interaction of diphenylphosphine (10a) with dimethyl 2-butynedioate reveals the effect of second strong electron-withdrawing group, which activates double bond of the intermediate monoadduct. As a result, the reaction affords the saturated a,b-diadduct 34 (Scheme 22).142

 

 

Scheme 22

 

          These reactions of phosphines with activated acetylenes (Schemes 19-22) represent a new general atom-economic approach to the synthesis of versatile reactive building blocks for organic synthesis and prospective polydentate and amphiphilic ligands for design of metal complex catalysts.77, 164

          With weakly electrophilic acetylenes, addition of secondary phosphines requires strong bases or high temperature to proceed.

          Prolonged heating (100°C, 4 days) of diphenylphosphine and diphenylacetylene afforded E-isomer of the corresponding monoadduct Ph2PC(Ph)=CHPh.141 It seems that the formation of E-isomers in this addition141 as well as in the reaction presented in Scheme 19151 is thermodynamically controlled, i.e., under the reaction conditions Z-adduct isomerizes to the E-form.

          Diphenylphosphine with diphenyl(ethynyl)phosphine Ph2PC≡CH in the presence of PhLi furnishes E-Ph2PCH=CHPPh2 in a 72% yield.47 The E-isomer is likely to be formed owing to sterical factors.

          Diphenylphosphine (10a) adds to arylacetylenes in the presence of strong bases giving arylethenylphosphines 35 of unknown configuration (Scheme 23).93, 148 From the 3JHP coupling,148 one may assume165 that the compound 35c is a Z-isomer.

 

Scheme 23

 

          Later, reaction of diphenylphosphine with diarylacetylenes RCºCR1 (R = Ph, R1 = Ph, o-tolyl, m-tolyl or 2-biphenyl; R = m-tolyl, R1 = o-tolyl, m-tolyl) was studied in detail.149, 156 In the system t-BuOK-THF the reaction yields monoadducts Ph2PC(R)=CHR1 and/or diphosphines Ph2PCH(R)CH(R1)PPh2 in a ratio that depends on the reactants ratio and nature of the substituent structure.149, 156

 

3.4 Secondary phosphine chalcogenides

 

Addition of secondary phosphine chalcogenides to acetylenes89, 93, 152, 161, 163 proceeding in the presence of base catalysts usually results in double addition products. Presumably, this occurs due to the strong electron-withdrawing character of phosphoryl or thiophosphoryl group, which activates double bond of monoadducts toward addition of the second phosphine chalcogenide molecule.

          Unsubstituted acetylene, as well as alkyl- and arylacetylenes add secondary phosphine oxides in the superbase system KOH-DMSO to give diphosphine oxides 36 (Scheme 24).89, 93, 152, 161

Scheme 24

          Recently, there was found that the reaction of phenylcyanoacetylene with secondary phosphine oxide 5a and sulfide 15 proceeds under milder conditions (KOH-THF, 22-62°C) forming unexpected α,β-diadducts 37 (Scheme 25).163

 

 

Scheme 25

 

          Unusual here is the second stage of the process, addition of phosphine chalcogenides to the a-position of intermediate acrylonitrile system. Apparently, this occurs due to the competing electron-withdrawing effect of the added phosphoryl group, which changes the polarization of the double bond contributing the zwitterionic forms A and B (Scheme 26).

 

 

Scheme 26

 

          Perhaps, this pathway is the only one also because the alternative addition to the b-carbon is sterically hindered.

          α,β-Acetylenic aldehydes, namely 3-(trialkylsilyl)-, 3-(trialkylgermyl)-2-propynals as well as 2-propynal react with secondary phosphine oxides under mild conditions (-10 to 22oC) by carbonyl group only to give corresponding tertiary phosphine oxides in quantitative yield.166

          Haloacetylenes are usually prone to nucleophilic substitution reactions.167-169 However, bis(2-phenylethyl)phosphine oxide (5a) was found to add to alkylthio(chloro)acetylenes (dioxane, 20-22oC) in the presence of equimolar amount of KOH to form regio- and stereoselectively 1-chloro-2-(alkylthio)vinyl(diphenylethyl)phosphine oxides (38) (Scheme 27) of Z-configuration (the yield is 78-85%).158

 

 

Scheme 27

 

 

4. Conclusions

 

In conclusion, nucleophilic and free-radical additions of now readily available phosphines and their chalcogenides to alkenes and alkynes are attracting increasing attention as heavy-metal free and atom-economic syntheses of valuable, and otherwise inaccessible, functionalized phosphines and phosphine chalcogenides.

 

 

Acknowledgments

 

Financial support of the Russian Foundation for Basic Research (Grant No 04-03-32045) and the Innovation Agency of the Russian Federation (Grant No MK-3775.2004.3) is gratefully acknowledged.

 

 

5. References

 

1.         Giheany, D. G.; Mitchell, C. M. In The Chemistry of Organophosphorus Compounds; Hartley, F. R. Ed.; Wiley: Chichester, 1990; Vol. 1, p 385.

2.         Hudson, H. R. In The Chemistry of Organophosphorus Compounds; Hartley, F. R. Ed.; Wiley: Chichester, 1990; Vol. 1, p 173.

3.         Erastov, O. A.; Nikonov, G. N. Funktsional’nozameshchennye Fosfiny i Ikh Proizvodnye (Functional-Substituted Phosphines and Their Derivatives); Nauka: Moscow, 1986.

4.         Trofimov, B. A.; Arbuzova, S. N.; Gusarova, N. K. Usp. Khim. 1999, 68, 240 [Russ Chem. Rev. 1999, 68, 215 (Engl Transl)].

5.         Lobana, T. S. In The Chemistry of Organophosphorus Compounds; Hartley, F. R. Ed.; Wiley: New York, 1992; Vol. 2, pp 521-5.

6.         Noyori, R. Asymmetric Catalysis in Organic Synthesis; John Wiley & Sons: New York, 1994.

7.         Brandsma, L.; Vasilevsky, S. F.; Verkruijsse, H. Application of Transition Metal Catalysts in Organic Synthesis; Springer-Verlag: Berlin, Heidelberg, New York, 1998.

8.         Jacobsen, E. N.; Pfaltz, A.; Yamamoto, H. Comprehensive Asymmetric Catalysis; Springer: Berlin, 1999.

9.         Ojima, I. Catalytic Asymmetric Synthesis; 2nd ed.; VCH Pubishers: Weinheim, 2000.

10.     Arisawa, M.; Yamaguchi, M. Adv. Synth. Catal. 2001, 343, 27.

11.     Faller, J. W.; Wilt, J. C.; Parr, J. Organic. Lett. 2004, 6, 1301.

12.     Khalturinsky, N. A.; Popova, T. V.; Berlin, A. A. Usp. Khim. 1984, 53, 326.

13.     Malysheva, S. F.; Sukhov, B. G.; Gusarova, N. K.; Shaikhudinova, S. I.; Kazantseva, T. I.; Belogorlova, N. A.; Kuimov, V. A.; Trofimov, B. A. Phosph., Sulf. and Silic. and related elem. 2003, 178, 425.

14.     Korovin, V. Yu.; Randarevich, S. B.; Bodaratsky, S. V.; Trachevsky, V. V. Zh. Neorg. Khim. 1990, 35, 2404.

15.     Yudelevich, V. I.; Komarov, E. V.; Ionin, B. I. Khim. Farm. Zh. 1985, 668.

16.     Mel’nikov, N. N.; Pesticidy. Khimia tekhnologia i primenenie; Nauka: Moscow, 1987.

17.     Gusarova, N. K.; Kuznetsova, E. E.; Shaikhudinova, S. I.; Dmitriev, V. I.; Malysheva, S. F.; Kozlova, G. V.; Trofimov, B. A. Khim. Farm. Zh. 1996, 7, 36.

18.     Malysheva, S. F.; Kuznetsova, E. E.; Belogorlova, N. A.; Kozlova, G. V.; Rakhmatulina, T. N.; Al’pert, M. L.; Gusarova, N. K.; Trofimov, B. A. Khim. Farm. Zh. 1998, 11, 24.

19.     Wicht, D. K.; Glueck, D. S. In Catalytic Heterofunctionalization. From Hydroamination to Hydrozirconation; Togni, A.; Grutzmacher, H. Eds; Wiley-VCH: Weinheim, 2001; pp 143-70.

20.     Douglass, M. R.; Stern, C. L.; Marks, T. J. J. Am. Chem. Soc. 2001, 123, 10221.

21.     Beletskaya, I. P.; Kazankova, M. A. Zh. Org. Khim. 2002, 38, 1447 [Russ. J. Org. Chem. 2002, 38, 1391 (Engl Transl)].

22.     Alonso, F.; Beletskaya, I. P.; Yus, M. Chem. Rev. 2004, 104, 3079.

23.     Tanaka, M. Top. Curr. Chem. 2004, 232, 25.

24.     Trofimov, B. A. Curr. Org. Chem. 2002, 6, 1121.

25.     Trofimov, B. A. In: Modern Problems of Organic Chemistry; VVM: St.-Peterburg, 2004; pp 121-163.

26.     Trofimov, B. A.; Gusarova, N. K.; Мalysheva, S. F.; Vyalykh, E. P.; Rakhmatulina, T. N.; Voronkov, M. G. Izv. Akad. Nauk, Ser. Khim. 1988, 1449 [Bull. Acad. Sci., Div. Chem. Sci. 1988, 37, 1284 (Engl Transl)].

27.     Trofimov, B. A.; Gusarova, N. K.; Malysheva, S. F.; Dmitriev, V. I.; Shaikhudinova, S. I.; Rakhmatulina, T. N. Zh. Org. Khim. 1989, 25, 1563.

28.     Gusarova, N. K.; Trofimov, B. A.; Malysheva, S. F.; Rakhmatulina, T. N.; Vyalykh, E. P.; Voronkov, M. G. Izv. Akad. Nauk, Ser. Khim. 1989, 488.

29.     Malysheva, S. F.; Gusarova, N. K.; Rakhmatulina, T. N.; Kazantseva, T. I.; Dmitriev, V. I.; Trofimov, B. A. Izv. Akad. Nauk, Ser. Khim. 1989, 1712.

30.     Gusarova, N. K.; Trofimov, B. A.; Malysheva, S. F.; Rakhmatulina, T. N.; Voronkov, M. G. Dokl. Akad. Nauk 1989, 305, 355.

31.     Trofimov, B. A. Zh. Org. Khim. 1995, 31, 1368.

32.     Sukhov, B. G.; Malysheva, S. F.; Vakul’skaya, T. I.; Tirsky, V. V.; Martynovich, E. F.; Smetannikov, Yu. V.; Tarasova, N. P. Arkivoc 2003, (xiii), 196.

33.     Malysheva, S. F.; Arbuzova, S. N. In: Sovremenniy organicheskiy sintez (Modern Organic Synthesis); Khimiya: Moscow, 2003; pp 160-187.

34.     Trofimov, B. A.; Rakhmatulina, T. N.; Gusarova, N. K.; Malysheva, S. F. Usp. Khim. 1991, 60, 2619.

35.     Gusarova, N. K.; Brandsma, L.; Arbuzova, S. N.; Malysheva, S. F.; Trofimov, B. A. Zh. Org. Khim. 1996, 32, 269.

36.     Trofimov, B. A.; Gusarova, N. K.; Brandsma, L. Main Group Chem. News 1996, 4, 18.

37.     Gusarova, N. K.; Malysheva, S. F.; Arbuzova, S. N.; Trofimov, B. A. Izv. Akad. Nauk, Ser. Khim. 1998, 1695 [Russ. Chem. Bull. 1998, 47, 1645 (Engl Transl)].

38.     Sukhov, B. G.; Gusarova, N. K.; Malysheva, S. F.; Trofimov, B. A. Izv. Akad. Nauk, Ser. Khim. 2003, 6, 1172 [Russ. Chem. Bull. 2003, 52, 1239 (Engl Transl)].

39.     Hoff, M. C.; Hill, P. J. Org. Chem. 1959, 24, 356.

40.     Dombek, B. D. J. Org. Chem. 1978, 43, 3408.

41.     Malysheva, S. F.; Gusarova, N. K.; Belogorlova, N. A.; Nikitin, M. V.; Gendin, D. V.; Trofimov, B. A. Zh. Obshch. Khim. 1997, 67, 63 [Russ. J. Gen. Chem. 1997, 67, 58 (Engl Transl)].

42.     U.S. Patent 2,822, 376: Chem. Abstr. 1958, 52, 10147d.

43.     Rauhut, M. M.; Hechenbleikner, I.; Currier, H. A.; Schaefer, F. C.; Wystrach, V. P. J. Am. Chem. Soc. 1959, 81, 1103.

44.     King, R. B.; Kapoor, P. N. J. Am. Chem. Soc. 1969, 91, 5191.

45.     King, R. B.; Kapoor, R. N.; Saran, M. C.; Kapoor, P. N. Inorg. Chem. 1971, 10, 1851.

46.     King, R. B.; Kapoor, P. N. Angew. Chem. 1971, 83, 766.

47.     King, R. B.; Kapoor, P. N. J. Am. Chem. Soc. 1971, 93, 4158.

48.     King, R. B.; Cloyd, J. C. Z. Naturforsch B 1972, 27, 1432.

49.     King, R. B.; Cloyd, J. C.; Kapoor, P. N. J. Chem. Soc., Perkin. Trans. 1 1973, 19, 2226.

50.     King, R. B.; Cloyd, J. C. J. Am. Chem. Soc. 1975, 97, 53.

51.     King, R. B.; Cloyd, J. C.; Reimann, R. H. J. Org. Chem. 1976, 41, 972.

52.     King, R. B.; Masler, W. F. J. Am. Chem. Soc. 1977, 99, 4001.

53.     Trofimov, B. A.; Brandsma, L.; Arbuzova, S. N.; Malysheva, S. F.; Gusarova, N. K. Tetrahedron Lett. 1994, 35, 7647.

54.     Trofimov, B. A.; Arbuzova, S. N.; Malysheva, S. F.; Brandsma, L.; Gusarova, N. K. Zh. Obshch. Khim. 1994, 64, 1572.

55.     Gusarova, N. K.; Arbuzova, S. N.; Malysheva, S. F.; Khil’ko, M. Ya.; Tatarinova, A. A.; Gorokhov, V. G.; Trofimov, B. A. Izv. Akad. Nauk, Ser. Khim. 1995, 1597 [Russ. Chem. Bull. 1995, 44, 1535 (Engl Transl)].

56.     Arbuzova, S. N.; Gusarova, N. K.; Malysheva, S. F.; Brandsma, L.; Albanov, A. I.; Trofimov, B. A. Zh. Obshch. Khim. 1996, 66, 56.

57.     Gusarova, N. K.; Brandsma, L.; Malysheva, S. F.; Arbuzova, S. N.; Trofimov, B. A. Phosph., Sulf. and Silic. and related elem. 1996, 111, 174.

58.     Gusarova, N. K.; Trofimov, B. A.; Malysheva, S. F.; Shaikhudinova, S. I.; Belogorlova, N. A.; Arbuzova, S. N.; Nepomnyashchikh, K. V.; Dmitriev, V. I. Zh. Obshch. Khim. 1997, 67, 70 [Russ. J. Gen. Chem. 1997, 67, 65 (Engl Transl)].

59.     Trofimov, B. A.; Brandsma, L.; Arbuzova, S. N.; Malysheva, S. F.; Belogorlova, N. A.; Gusarova, N. K. Zh. Obshch. Khim. 1997, 67, 695 [Russ. J. Gen. Chem. 1997, 67, 650 (Engl Transl)].

60.     Trofimov, B. A.; Shaikhudinova, S. I.; Dmitriev, V. I.; Nepomnyashchikh, K. V.; Kazantseva, T. I.; Gusarova, N. K. Zh. Obshch. Khim. 2000, 70, 43 [Russ. J. Gen. Chem. 2000, 70, 40 (Engl Transl)].

61.     Gusarova, N. K.; Shaikhudinova, S. I.; Kazantseva, T. I.; Malysheva, S. F.; Sukhov, B. G.; Belogorlova, N. A.; Dmitriev, V. I.; Trofimov, B. A. Zh. Obshch. Khim. 2002, 72, 399 [Russ. J. Gen. Chem. 2002, 72, 371 (Engl Transl)].

62.     Arbuzov, B. A.; Vinokurova, G. M.; Perfilyeva, I. A. Dokl. Akad. Nauk 1959, 127, 1217.

63.     Gundermann, K. D.; Garming, A. Chem. Ber. 1969, 102, 3023.

64.     Issleib, K.; Malotki, P. J. Prakt. Chem. 1973, 315, 464.

65.     Issleib, K.; Zimmermann, K. Z. Anorg. Allg. Chem. 1977, 436, 20.

66.     Kabachnik, M. I.; Medved’, T. Ya.; Polikarpov, Yu. M.; Yudina, K. S. Izv. Akad. Nauk, Ser. Khim. 1962, 1584.

67.     Pietrusiewicz, M.; Zablocka, M. Tetrahedron Lett. 1988, 29, 1987.

68.     Bondarenko, N. A.; Bozhko, O. K.; Tsvetkov, E. N. Izv. Akad. Nauk, Ser. Khim. 1995, 139.

69.     Baba, G.; Pilard, J.-F.; Tantaoui, K.; Gaumont, A.-C.; Denis, J.-M. Tetrahedron Lett. 1995, 36, 4421.

70.     Gaumont, A.-C.; Simon, A.; Denis, J.-M. Tetrahedron Lett. 1998, 39, 985.

71.     Ivanova, N. I.; Gusarova, N. K.; Nikitina, E. A.; Albanov, A. I.; Sinegovskaya, L. M.; Nikitin, M. V.; Konovalova, N. A.; Trofimov, B. A. Phosph., Sulf. and Silic. and related elem. 2004, 179, 7.

72.     Trofimov, B. A.; Gusarova, N. K.; Ivanova, N. I.; Konovalova, N. A.; Bogdanova, M. V.; Albanov, A. I.; Avseenko, N. D.; Sukhov, B. G. Zh. Obshch. Khim. 2004, 74, 1748 [Russ. J. Gen. Chem. 2004, 74, 1625 (Engl Transl)].

73.     King, R.; Cloyd, J. C.; Hendrick, P. K. J. Am. Chem. Soc. 1973, 95, 5083.

74.     Knühl, G.; Sennhenn, P.; Helmchen, G. J. Chem. Soc., Chem. Commun. 1995, 1845.

75.     Lavenot, L.; Bortoletto, M. H.; Roucoux, A.; Larpent, C.; Patin, H. J. Organomet. Chem. 1996, 509, 9.

76.     Casey, C. P.; Paulsen, E. L.; Beuttenmueller, E. W.; Proft, B. R.; Matter, B. A.; Powell, D. R. J. Am. Chem. Soc. 1999, 121, 63.

77.     Brauer, D. J.; Kottsieper, K. W.; Nickel, T.; Stelzer, O.; Sheldrick, W. S. Eur. J. Inorg. Chem. 2001, 1251.

78.     Miller, R. C.; Bradley, J. C.; Hamilton, L. A. J. Am. Chem. Soc. 1956, 78, 5299.

79.     Rauhut, M. M.; Currier, H. A. J. Org. Chem. 1961, 26, 4628.

80.     Pudovik, A. N.; Sudakova, T. M. Zh. Obshch. Khim. 1971, 41, 1962.

81.     Kabachnik, M. I.; Medved’, T. Ya.; Goryunova, I. B.; Tikhonova, L. I.; Matrosov, E. I. Izv. Akad. Nauk, Ser. Khim. 1974, 2290.

82.     Kharitonov, A. V.; Antoshin, A. E.; Pushin, A. N.; Tsvetkov, E. N. Zh. Obshch. Khim. 1990, 58, 1021.

83.     Antoshin, A. E.; Evreinov, V. I.; Kharitonov, A. V.; Pushin, A. N.; Yarkevich, A. N.; Safronova, E. V.; Tsvetkov, E. N. Izv. Akad. Nauk, Ser. Khim. 1991, 1860.

84.     Haynes, R. K.; Lam, W. W.-L.; Yeung, L.-L. Tetrahedron Lett. 1996, 37, 4729.

85.     Kolesnik, V. D.; Tkachev, A. V. Izv. Akad. Nauk, Ser. Khim. 2002, 4, 620.

86.     Bunlaksananusorn, T.; Knochel, P. Tetrahedron Lett. 2002, 43, 5817.

87.     Bunlaksananusorn, T.; Knochel, P. J. Org. Chem. 2004, 69, 4595.

88.     Gusarova, N. K.; Malysheva, S. F.; Chernysheva, N. A.; Belogorlova, N. A.; Arbuzova, S. N.; Khil’ko, M. Ya.; Trofimov, B. A. Zh. Org. Khim. 1998, 34, 1107.

89.     Malysheva, S. F.; Gusarova, N. K.; Belogorlova, N. A.; Arbuzova, S. N.; Sinegovskaya, L. M.; Zefirov, N. S.; Trofimov, B. A. Zh. Obshch. Khim. 1998, 68, 1638 [Russ. J. Gen. Chem. 1998, 68, 1565 (Engl Transl)].

90.     Malysheva, S. F.; Gusarova, N. K.; Belogorlova, N. A.; Trofimov, B. A. Sulfur Lett. 1998, 21, 263.

91.     Gusarova, N. K.; Bogdanova, M. V.; Ivanova, N. I.; Chernysheva, N. A.; Sukhov, B. G.; Sinegovskaya, L. M.; Kazheva, O, N.; Alexandrov, G. G.; Dyachenko, O. A.; Trofimov, B. A. Synthesis. 2005, 3103.

92.     Kapoor, P. N.; Pathak, D. D.; Gaur, G.; Kutty, M. J. Organomet. Chem. 1984, 276, 167.

93.     Khachatryan, R. A.; Sayadyan, S. V.; Grigoryan, N. Y.; Indzhikyan, M. G. Zh. Obshch. Khim. 1988, 58, 2472.

94.     Gusarova, N. K.; Malysheva, S. F.; Belogorlova, N. A.; Arbuzova, S. N.; Gendin, D. V.; Trofimov, B. A. Zh. Org. Khim. 1997, 33, 1231.

95.     Kottsieper, K. W.; Stelzer, O.; Wassersceid, P. J. Molecular. Catalysis A: Chemical 2001, 175, 285.

96.     Malysheva, S. F.; Ivanova, N. I.; Belogorlova, N. A.; Khil’ko, M. Ya.; Larina, L. I.; Gusarova, N. K.; Trofimov, B. A. Khim. Geterotsikl. Soedin. 1998, 1195.

97.     Ivanova, N. I.; Gusarova, N. K.; Malysheva, S. F.; Belogorlova, N. A.; Kozyreva, O. B.; Skotheim, T.; Trofimov, B. A. Zh. Org. Khim. 1998, 34, 952.

98.     Gusarova, N. K.; Ivanova, N. I.; Bogdanova, M. V.; Sinegovskaya, L. M.; Sukhov B. G.; Kopylova, L. I.; Trofimov, B. A. Khim. Geterotsikl. Soedin. 2004, 10, 1584.

99.     Robertson, A.; Bradaric, C.; Frampton, C. S.; McNulty, J.; Capretta, A. Tetrahedron Lett. 2001, 42, 2609.

100. Gusarova, N. K.; Ivanova, N. I.; Bogdanova, M. V.; Sinegovskaya, L. M.; Gusarov, A. V.; Trofimov, B. A. Phosph., Sulf. and Silic. and related elem. 2005, 180, 1749.

101. Rauhut, M. M.; Currier, H. A.; Semsel, A. M.; Wystrach, V. P. J. Org. Chem. 1961, 26, 5138.

102. Arbuzov, B. A.; Vinokurova, G. M.; Aleksandrova, I. A. Izv. Akad. Nauk, Ser. Khim. 1962, 290.

103. Tavs, P. Angew. Chem. 1969, 81, 742.

104. Dilworth, J. R.; Griffiths, D. V.; Hughes, J. M.; Morton, S. Phosph., Sulf. and Silic. and related elem. 1992, 71, 249.

105. Trofimov, B. A.; Gusarova, N. K.; Malysheva, S. F.; Ivanova, N. I.; Sukhov, B. G.; Belogorlova, N. A.; Kuimov, V. A. Synthesis 2002, 2207.

106. Issleib, K.; Weichmann, H. Z. Chem. 1971, 11, 188.

107. Du Bois, D. L.; Myers, W. H. J. Chem. Soc, Dalton Trans. 1975, 1011.

108. Cooper, P.; Fields, R.; Haszeldine, R. N. J. Chem. Soc, Perkin Trans. 1 1975, 702.

109. Heesche-Wagner, K.; Mitchell, T. N. J. Organomet. Chem. 1994, 468, 99.

110. Leca, D.; Fensterbank, L.; Lacôte, E.; Malacria, M. Chem. Soc. Rev. 2005, 34, 858.

111. Arbuzov, B. A.; Vinokurova, G. M. Izv. Akad. Nauk, Ser. Khim. 1963, 502.

112. Mitchell, T. N.; Heesche-Wagner, K. J. Organomet. Chem. 1992, 436, 43.

113. Arpac, E.; Dahlenburg, L. Angew. Chem. 1982, 94, 929.

114. Oehme, H.; Thamm, R. J. Prakt. Chem. 1973, 315, 526.

115. Grobe, J.; Moller, U. J. Organomet. Chem. 1971, 31, 157.

116. Couret, C.; Escudie, J.; Satge, J.; Andrimizaka, J. D.; Saint-Roch, B. J. Organomet. Chem. 1979, 182, 9.

117. Arbuzova, S. N.; Brandsma, L.; Gusarova, N. K.; Trofimov, B. A. Rec. Trav. Chim. Pays-Bas 1994, 113, 575.

118. Trofimov, B. A.; Sukhov, B. G.; Malysheva, S. F.; Belogorlova, N. A.; Tantsirev, A. P.; Parshina, L. N.; Oparina, L. A.; Tunik, S. P.; Gusarova, N. K. Tetrahedron Lett. 2004, 45, 9143.

119. Trofimov, B. A.; Malysheva, S. F.; Sukhov, B. G.; Belogorlova, N. A.; Schmidt, E. Yu.; Sobenina, L. N.; Kuimov, V. A.; Gusarova, N. K. Tetrahedron Lett. 2003, 44, 2629.

120. Trofimov, B. A.; Gusarova, N. K.; Sukhov, B. G.; Malysheva, S. F.; Tarasova, O. A.; Belogorlova, N. A.; Maximova, M. A.; Tunik, S. P. Synthesis 2005, 965.

121. Trzeciak, A. M.; Glowiak, T.; Ziolkowski, J. J. J. Organomet. Chem. 1998, 552, 159.

122. Guo, R.; Li, X.; Wu, J.; Kwok, W. H.; Chen, J.; Choi, M. C. K.; Chan, A. S. C. Tetrahedron Lett. 2002, 43, 6803.

123. Mukherjee, A.; Sarkar, A. ARKIVOC 2003, (ix), 87.

124. Fr. Patent 2082398: Ref. Zh. Khim. 1973, 2N109P.

125. B.R.D. Patent 1912708: Ref. Zh. Khim. 1978, 17N91P.

126. B.R.D. Patent 2040280: Ref. Zh. Khim. 1979, 22N108P.

127. B.R.D. Patent 2064574: Ref. Zh. Khim. 1982, 8N95P.

128. Chauzov, V. A.; Kostina, L. P. Zh. Obshch. Khim. 1991, 61, 1265.

129. Jessop, C. M.; Parsons, A. F.; Routledge, A.; Irvine, D. Tetrahedron Lett. 2003, 44, 479.

130. Rey, P.; Taillades, J.; Rossi, J. C.; Gros, G. Tetrahedron Lett. 2003, 44, 6169.

131. Maier, L. Helv. Chim. Acta. 1966, 49, 1249.

132. Niebergall, H. Makromol. Chem. 1962, 52, 218.

133. Dingwall, J.G.; Tuck, B. J. Chem. Soc., Perkin Trans. 1 1986, 2081.

134. Gusarova, N. K.; Ivanova, N. I.; Bogdanova, M. V.; Malysheva, S. F.; Belogorlova, N. A.; Sukhov, B. G.; Trofimov, B. А. Mendeleev Commun. 2004, 216.

135. Parsons, A. F.; Sharpe, D. J.; Taylor, P. Synlett. 2005, 1, 1.

136. Well, M.; Schmutzler, R. Phosph., Sulf. and Silic. and related elem. 1992, 72, 171.

137. Braunstein, P.; Naud, F. Angew. Chem. 2001, 40, 681.

138. Hayashi, M.; Takezaki, H.; Hashimoto, Y.; Takaoki, K.; Saigo, K. Tetrahedron Lett. 1998, 39, 7529.

139. Cullen, W. R.; Dawson, D. S.; Styan, G. E. Can. J. Chem. 1965, 43, 3392.

140. Hoffmann, H.; Diehr, H. J. Chem. Ber. 1965, 98, 363.

141. Aguiar, A. M.; Archibald, T. G. Tetrahedron Lett. 1966, 45, 5541.

142. Shaw, M. A.; Tebby, J. C. J. Chem. Soc. (C) 1970, 5.

143. Märkl, G.; Dannhardt, G. Tetrahedron Lett. 1973, 17, 1455.

144. Schoufs, M.; Meijer, J.; Vermeer, P. Rec. Trav. Chim. Pays-Bas 1974, 93, 241.

145. Berger, H. O.; Nöth, H. J. Organomet. Chem. 1983, 250, 33.

146. Kostyanovsky, R. G.; El’natanov, Yu. I. Izv. Akad. Nauk, Ser. Khim. 1983, 2581.

147. El’natanov, Yu. I.; Kostyanovsky, R. G. Izv. Akad. Nauk, Ser. Khim. 1988, 382.

148. Schmidbaur, H.; Frazão, C. M.; Reber, G.; Müller, G. Chem. Ber. 1989, 122, 259.

149. Bookham, J. L.; McFarlane, W.; Thornton-Pett, M.; Jones, S. J. Chem. Soc., Dalton Trans. 1990, 12, 3621.

150. Mitchell, T. N.; Heesche, K. J. Organomet. Chem. 1991, 409, 163.

151. Karlsted, N. B.; Borisenko, A. A.; Foss, V. L. Zh. Obshch. Khim. 1992, 62, 1516.

152. Khachatryan, R. A.; Grigoryan, N. Y.; Indzhikyan, M. G. Zh. Obshch. Khim. 1994, 64, 1260.

153. Gusarova, N. K.; Malysheva, S. F.; Arbuzova, S. N.; Brandsma, L.; Trofimov, B. A. Zh. Obshch. Khim. 1994, 64, 2062.

154. Brumwell, J. E.; Simpkins, N. S.; Terrett, N. K. Tetrahedron 1994, 50, 13533.

155. Trofimov, B. A.; Gusarova, N. K.; Arbuzova, S. N.; Malysheva, S. F.; den Besten, R.; Brandsma, L. Synthesis 1995, 387.

156. Bookham, J. L.; Smithies, D. M.; Wright, A.; Thornton-Pett, M.; McFarlane, W. J. Chem. Soc., Dalton Trans. 1998, 5, 811.

157. Trofimov, B. A.; Arbuzova, S. N.; Mal’kina, A. G.; Gusarova, N. K.; Malysheva, S. F.; Nikitin, M. V.; Vakul’skaya, T. I. Mendeleev Commun. 1999, 163.

158. D’yachkova, S. G.; Gusarova, N. K.; Nikitin, M. V.; Aksamentova, T. N.; Chipanina, N. N.; Nikitina, E. A.; Trofimov, B. A. Zh. Obshch. Khim. 2001, 71, 1812 [Russ. J. Gen. Chem. 2001, 71, 1717 (Engl Transl)].

159. Malysheva, S. F.; Sukhov, B. G.; Larina, L. I.; Belogorlova, N. A.; Gusarova, N. K.; Trofimov, B. A. Zh. Obshch. Khim. 2001, 71, 2012 [Russ. J. Gen. Chem. 2001, 71, 1907 (Engl Transl)].

160. Gusarova, N. K.; Shaikhudinova, S. I.; Arbuzova, S. N.; Vakul’skaya, T. I.; Sukhov, B. G.; Sinegovskaya, L. M.; Nikitin, M. V.; Mal’kina, A. G.; Chernysheva, N. A.; Trofimov, B. A. Tetrahedron 2003, 59, 4789.

161. Trofimov, B. A.; Sukhov, B. G.; Malysheva, S. F.; Belogorlova, N. A.; Arbuzova, S. N.; Tunik, S. P.; Gusarova, N. K. Zh. Org. Khim. 2004, 40, 138.

162. Arbuzova, S. N.; Shaikhudinova, S. I.; Gusarova, N. K.; Nikitin, M. V.; Mal’kina, A. G.; Sukhov, B. G.; Bogdanova, M. V.; Trofimov, B. A. Zh. Obshch. Khim. 2005, 75, 552.

163. Arbuzova, S. N.; Gusarova, N. K.; Bogdanova, M. V.; Ivanova, N. I.; Ushakov, I. A.; Mal’kina, A. G.; Trofimov, B. A. Mendeleev Commun. 2005, 5, 183.

164. Herd, O.; Hebter, A.; Hingst, M.; Machnitzki, R.; Tepper, M.; Stelzer, O. Catal. Today 1998, 42, 413.

165. Duncan, M.; Gallagher, M. J. Org. Magn. Res. 1981, 15, 37.

166. Gusarova, N. K.; Reutskaya, A. M.; Ivanova, N. I.; Medvedeva, A. S.; Demina, M. M.; Novopashin, P. S.; Afonin, A. V.; Albanov, A. I.; Trofimov B. A. J. Organomet. Chem. 2002, 659, 172.

167. Dickstein, J. I.; Miller, S. I. In: The Chemistry of the Carbon-Carbon Triple Bond, Part 2; Patai, S. Ed.; John Wiley: New York, 1978; pp 813-955.

168. D’yachkova, S. G.; Nikitin, M. V.; Beskrylaya, E. A.; Arbuzova, S. N.; Kashik, T. V.; Gusarova, N. K.; Trofimov, B. A. Zh. Obshch. Khim. 1999, 69, 799 [Russ. J. Gen. Chem. 1999, 69, 767 (Engl Transl)].

169. D’yachkova, S. G.; Gusarova, N. K.; Nikitin, M. V.; Malysheva, S. F.; Dolenko, G. N.; Sinegovskaya, L. M.; Mamaseva, T. V.; Trofimov, B. A. Zh. Obshch. Khim. 1999, 69, 1296 [Russ. J. Gen. Chem. 1999, 69, 1247 (Engl Transl)].

Florida Refinance Mortgage