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Abstract. Multi Agent Based Simulation (MABS) has been used mostly in
purely social contexts. However, compared to other approaches, e.g., traditional
discrete event simulation, object-oriented simulation and dynamic micro simu-
lation, MABS has a number of interesting properties which makes it useful also
for other domains. For instance, it supports structure preserving modeling of the
simulated reality, simulation of pro-active behavior, parallel computations, and
very dynamic simulation scenarios. It is argued that MABS is a useful tech-
nique for simulating scenarios also in more technical domains. In particular,
this hold for the simulation of technical systems that are distributed and involve
complex interaction between humans and machines. To illustrate the advan-
tages of MABS, an application concerning the monitoring and control of intel-
ligent buildings is described.

1   Introduction

Multi Agent Based Simulation (MABS) differs from other kinds of computer-based
simulation in that (some of) the simulated entities are modeled and implemented in
terms of agents. As MABS, and other micro simulation techniques, explicitly attempts
to model specific behaviors of specific individuals, it may be contrasted to macro
simulation techniques that are typically based on mathematical models where the
characteristics of a population are averaged together and the model attempts to simu-
late changes in these averaged characteristics for the whole population. Thus, in macro
simulations, the set of individuals is viewed as a structure that can be characterized by
a number of variables, whereas in micro simulations the structure is viewed as emer-
gent from the interactions between the individuals. Parunak et al. [19] recently com-
pared these approaches and pointed out their relative strengths and weaknesses. They
concluded that “…agent-based modeling is most appropriate for domains character-
ized by a high degree of localization and distribution and dominated by discrete deci-
sion. Equation-based modeling is most naturally applied to systems that can be mod-
eled centrally, and in which the dynamics are dominated by physical laws rather than
information processing.”



We will here extend the work of Parunak et al. and argue for the applicability of
MABS in other domains than it is commonly used, and while doing this compare it to
some traditional simulation paradigms.

2  Multi Agent Based Simulation

MABS should not be seen as a completely new and original simulation paradigm. As
we will see in this section, it is influenced by and partially builds upon some existing
paradigms, such as, parallel and distributed discrete event simulation [16], object
oriented simulation [23], as well as dynamic micro simulation [11,9].

2.1  MABS vs. Object Oriented Simulation

Since there is no commonly agreed definition of the term “agent”, it is difficult to
precisely define what constitutes MABS and how it should be contrasted to Object
Oriented Simulation (OOS). What is referred to as an agent in the context of MABS
covers a spectrum ranging from ordinary objects to full agents. For instance, we may
characterize the entities in a simulation according to the following (not completely
independent) dimensions:

- pro-activeness, ranging from purely reactive entities (cf. objects) to pro-active
fully autonomous entities,

- communication language, ranging from having no communication at all between
entities, via simple signals, e.g. procedure calls, to full agent communication lan-
guages, such as KQML [8],

- spatial explicitness, ranging from having no notion of space at all, to letting each
entity be assigned a location in the simulated physical geometrical space,

- mobility, ranging from all entities being stationary to each entity being able to
move around in the simulated physical space (however, not necessarily between
different machines),

- adaptivity, ranging from completely static entities to entities that learn autono-
mously, and

- modeling concepts, ranging from using only traditional modeling concepts to
using mentalistic concepts, such as beliefs, desires, and intentions.

Thus, there is no clear distinction between MABS and OOS, rather it may be viewed
as a continuum; the further you go in each of these dimensions, the more MABS-like
is the simulation. In an OOS, on the other hand, the simulated entities are typically
purely reactive, not using any communication language, stationary, static, and not
modeled using mentalistic concepts.  How far you go in each of these dimensions is of
course highly dependent on what entities are being simulated and the context in which
they act. For instance, if a human playing soccer is being simulated, it is probably
necessary to go quite far in all dimensions, whereas if a unicellular animal in a test
tube is being simulated only a few dimensions are relevant.



2.2  MABS vs. Traditional Discrete Event Simulation

In principle, almost every simulation model can be seen as a specification of a system
in terms of states and events. Discrete Event Simulation (DES) makes use of this fact
by basing simulations on the events that take place in the simulated system and then
recognize the effects that these events have on the state of the system. In continuous
event simulations, state changes occur continuously in time, whereas they in DES
occur instantaneously at a specific point in time. However, since it is possible to con-
vert continuous models into discrete ones (by just considering the start and the end
moments of the events), we will here only consider DES.

There are two types of DES, time driven, were the simulated time is advanced in
constant time steps, and event driven, were the time is advanced based on when the
next event takes place. The central structure in a traditional event driven DES is a time
ordered event list were (time stamped) events are stored. A simulation engine drives
the simulation by continuously taking the first event out of this list, setting the simu-
lated time to the value of the time stamp of the event, and then simulate the effects on
the system state (sometimes by inserting new events in the event list) caused by this
event. Thus, since time segments where no event takes place are not regarded, event
driven DES has the advantage of being more efficient, i.e., less time is needed to
complete a simulation, than time driven DES. On the other hand, since time is incre-
mented at a constant pace, e.g., in real time, during a simulation in time driven DES,
this is typically a better option if the simulation involves human interaction (or even
just monitoring) at run time, e.g., in training situations.

If we compare MABS to traditional DES we find that it has several advantages.
Just like OOS, it supports structure preserving modeling and implementation of the
simulated reality. That is, there is a close match between the entities of the reality, the
entities of the model, and the entities of the simulation software. This simplifies both
the design and the implementation of the software, and typically results in well-
structured software. In addition, we argue that MABS has the following important
advantages compared to more traditional DES techniques:

- It supports modeling and implementation of pro-active behavior, which is im-
portant when simulating humans (and animals) who are able to take initiatives
and act without external stimuli. In short, it is often more natural to model and
implement humans as agents than objects.

- It supports distributed computation in a very natural way. Since each agent is
typically implemented as a separate piece of software corresponding to a process
(or a thread), it is straight-forward to let different agents run on different ma-
chines. This allows for better performance and scalability.

- Since each agent typically is implemented as a separate process and is able to
communicate with any other agent using a common language, it is possible to add
or remove agents during a simulation without interruption. And, as a conse-
quence of this and the structure preserving mapping between the simulation soft-
ware and the reality, it is even possible to swap an agent for the corresponding
simulated entity, e.g., a real person during a simulation. This enables extremely
dynamical simulation scenarios.



- It is possible to program (or at least specify) the simulation model and software
on a very high level, e.g., in terms of beliefs, intentions, etc., making it easier for
non-programmers to understand and even participate in the software development
process.

Of course, there are also some disadvantages with MABS compared to DES. For
instance, a fully agent-based approach typically uses more resources, both for compu-
tation and communication, which may lead to less efficient (slower) simulations.
Also, whereas MABS is very appropriate for time driven simulations, it is less appro-
priate for event driven simulations. In event driven MABS there is a need for either a
central coordinator that keeps track of which event to be executed next, or a large
amount of synchronization between the agents. Having a central coordinator would be
contrary to some of the ideas that motivated a multi agent based approach in the first
place, and the synchronization would slow down the simulations considerably.

2.3  MABS vs. Dynamic Micro Simulation

The purpose of Dynamic Micro Simulation (DMS) is to simulate the effect of the
passing of time on individuals. Data from a large random sample from some popula-
tion is used to initially characterize the simulated individuals. Some possible sampled
features are, e.g., age, sex, and employment status. A set of transition probabilities is
used to simulate how these features will change over a time period. The transition
probabilities are applied to the population for each individual in turn, and then repeat-
edly re-applied for a number of simulated time periods.

Compared to MABS, DMS has two main limitations. First, the behavior of each in-
dividual is modeled in terms of probabilities and no attempt is made to justify these in
terms of individual preferences, decisions, plans, etc. Second, each simulated person
is considered individually without regard to its interaction with others. Better results
may be gained if also cognitive processes and communication between individuals
were simulated and by using agents to simulate the individuals, these aspects are sup-
ported in a very natural way.

In the past, both MABS and DMS has been applied mostly in purely social contexts
[10], e.g., to validate or illustrate social theories (including biological, economic, and
political theories), or predict the behavior of interacting social entities. Examples of
such domains are:

- actors in financial markets [1]
- consumer behavior [13]
- people in crowds [21] and animals in flocks [20]
- animals and/or plants in eco-systems [5, 6]
- vehicles (and pedestrians) in traffic situations [22]

In most, if not all, of these simulation scenarios, only social entities are present. The
main advantage of MABS explored in these simulations is that it facilitates the simu-
lation of group behavior in highly dynamic situations, thereby allowing the study of
“emergent behavior” that is hard to grasp with macro simulation methods.  MABS has



proven to be well suited for the simulation of situations where there are a large num-
ber of heterogeneous individuals who may behave somewhat differently and is there-
fore an ideal simulation method for the social sciences.

However, as we have seen there are a number of further advantages of MABS
compared to traditional simulation techniques. This suggests that MABS may be a
useful technique also for other types of simulation than of purely social systems. We
argue that MABS is particularly useful for simulating scenarios in which humans in-
teract with a technical system. (A similar argument has been made by Moss et al. [17]
in the context of simulating climate change were humans interact with a physical sys-
tem.) The purpose of such simulations could then be, e.g., evaluation of the technical
system, or for training future users of the system. As a case study, an evaluation of a
“socio-technical” system concerning the controlling of intelligent buildings will be
described.

Many new technical systems are distributed and involve complex interaction be-
tween humans and machines. The properties of MABS discussed above makes this
technique especially suitable for simulating this kind of systems. As illustrated in Fig.
1, the idea is to model the behavior of the human users in terms of software agents. In
particular, MABS seems very suitable in situations where it is too expensive, difficult,
inconvenient, tiresome, or even impossible for real human users to test out a new
technical system.

Of course, also the technical system, or parts thereof, may be simulated. For in-
stance, if the technical system includes hardware that is expensive and/or special pur-
pose, it is natural to simulate also this part of the system when testing out the control
software. In the next chapter we will see an example of such a case, a simulation of an
“intelligent building”.

3 A Case Study (Evaluation)

In a de-regulated market the distribution utilities will compete with added value for
the customer in addition to the delivery of energy. We will here describe a system
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system

Fig. 1. To the left: the fielded system used by people. To the right: agent-based simulation
of people using the system.
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consisting of a Multi-Agent System (MAS) that monitors and controls an office
building in order to provide services of this kind. The system uses the existing power
lines for communication between the agents and the electrical devices of the building,
i.e., sensors and actuators for lights, heating, ventilation, etc. The objectives are both
energy saving, and increasing customer satisfaction through value added services.
Energy saving is realized, e.g., by lights being automatically switched off, and room
temperature being lowered in empty rooms. Increased customer satisfaction is real-
ized, e.g., by adapting temperature and light intensity according to each person’s per-
sonal preferences. A goal is to make the system transparent to the people in the build-
ing in the sense that they do not have to interact with the system in any laborious man-
ner. By using an active badge system [12], the MAS automatically detects in which
room each person is at any moment and adapts the conditions in the room according to
that person’s preferences. This project is currently in its simulation phase, but some
fielded experiments at our test site, the Villa Wega building, in Ronneby Sweden,
have been made to assure that the performance of power line communication is suffi-
cient for controlling, e.g., radiators.

3.1  The Multi-Agent System

Each agent corresponds to a particular entity of the building, e.g., office, meeting
room, corridor, person, or hardware device. The behavior of each agent is determined
by a number of rules that express the desired control policies of the building condi-
tions. The occurrence of certain events inside the building (e.g., a person moving from
one room to another) will generate messages to some of the agents that will trigger
some appropriate rule(s). The agents execute the rule(s), with the purpose to adjust the
environmental conditions to some preferred set of values. The rule will cause a se-
quence of actions to be executed, which will involve communication between the
agents of the system. For the format of the messages a KQML-like [8] approach was
adopted. The language used to implement the MAS is April [15]. The agent-based
approach provides an open architecture, i.e., agents can be easily configured and even
dynamically re-configured. It is possible to add new agents or change their behavior at
run-time without the need of interrupting the normal operation of the system.

There are four main categories of agents in the MAS: Personal comfort agents,
which corresponds to a particular person. It contains personal preferences and acts on
that person’s behalf in the MAS trying to maximize the comfort of that person. Room
agents, which corresponds to and controls a particular room with the goal of saving as
much energy as possible. Environmental parameter agents, which monitors and con-
trols a particular environmental parameter, e.g., temperature or light, in a particular
room. They have access to sensor and actuator devices for reading and changing the
parameter. Finally, the badge system agent keeps track of where in the building each
person (i.e., badge) is situated. More details about the MAS can be found in [2].

Typically, the goals of the room agents and the personal comfort agents are con-
flicting: the room agents maximizing energy saving and the personal comfort agents
maximizing customer value. Another type of a conflicting goal situation would be the
adjustment of temperature in a meeting room in which people with different prefer-



ences regarding temperature will meet. We experimented with different approaches to
conflict resolution, the simplest being based on a priori reasoning. For instance, the
Room agents determine the desired temperature in a room by just accepting the tem-
perature preferred by the person in the room. If many persons are in the room, it either
takes the average of the preferred values, or makes use of priorities, e.g., by taking
into account only the preferences of the manager and/or visitors. Of the run time solu-
tions to conflict resolution, “coin flipping” using a random number generator is the
simplest. A more sophisticated approach is to make use of a mediator, i.e., a third
agent able to make an objective assessment of the situation, to resolve the conflict. We
made some initial experiments using pronouncers [3] as mediators. Finally, we also
regarded the possibility of resolving conflicts using negotiation between the agents.
For example, an agent may propose that “if this time my preferences are used, yours
will be used next time we are in the same room.”

3.2  Evaluation of the MAS

Since it would be quite expensive to equip the Villa Wega building with all the neces-
sary hardware in order to evaluate the approach outlined above, we decided to make a
preliminary evaluation of the approach (i.e., the MAS) through simulations. In this
case, the technical system can be divided into two parts; the hardware, i.e., the build-
ing including sensors and effectors, and the software, i.e., the MAS. Thus, we simulate
the hardware and let the actual MAS, which will be used in the fielded application,
interact with it instead of the actual hardware. Please note that the MAS does not
simulate anything, it “just” monitors and controls the building.

Now, we must also simulate the people working in the building. As indicated ear-
lier, we may do this by MABS where each person corresponds to an agent. This agent
simulates the behavior of that person (to be contrasted to the personal comfort agents
in the MAS which serves the person, i.e., is an agent in the true sense of the word).
Fig. 2 illustrates the different parts of the simulation software.

Fig. 2. Fielded (left) and simulated (right) use of the intelligent building control system.
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By just specifying a few parameters that characterize the behavior of a person (e.g.,
which rooms she/he normally visits and how often, and the mean value and standard
deviation for the time when certain events takes place, e.g., arrival to the building), we
can easily create an arbitrary number widely different simulated persons.  As we also
want to simulate the building without the MAS in order to estimate the amount of
energy saving and increased personal comfort the MAS can achieve, some additional
parameters are needed, e.g., the person’s tendency to forget to turn off the lights etc. A
presentation of the simulation scenarios and the results can be found in [4].

The simulation of the physical properties of the building was based on the thermo-
dynamical models described by Incropera and Witt [14], which were discretized ac-
cording to standard procedures (cf. Ogata [18]). All the thermodynamical characteris-
tics of a room are described by two constants: the thermal resistance, R, which cap-
tures the heat losses to the environment, and the thermal capacitance, C, which cap-
tures the inertia when heating up/cooling down the entities in the room. (In all simula-
tions below we use the sample time 1 minute.). The temperature, Txi, in room x at time
i is described by:

where Pi is the heating power, Touti the outdoor temperature, and Tx(i – 1)  is the tem-
perature one minute ago. Thus, the dynamics of each room is simulated using a tradi-
tional equation-based model, indicating the possibility integrating different simulation
paradigms in order to explore their respective strengths.

4   Concluding Remarks

In the last chapter we gave a high-level description of a project aimed at investigating
the usefulness of multi-agent systems for the design of control systems for intelligent
buildings. The purpose of this case study was to argue for the use of MABS when
evaluating complex technical system that are distributed and involves interaction with
humans. A number of advantages of MABS can be identified, e.g.:

- Since each person is simulated by a separate agent, it is easy to simulate persons
with very different behavioral characteristics.

- It is not necessary create a long event list prior to the simulation. The pro-active
behavior of people moving from one room to another etc. is easily achieved.
Only some parameters describing the simulated person’s behavioral characteris-
tics is needed.

- Well-structured simulation software.
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- It is easy to increase performance since different groups of people may be simu-
lated on different machines (also supports scaling).

- Very flexible simulation scenarios can be constructed since it is easy to add an-
other person to (or remove one from) the scenario during a simulation.

In the case study, the evaluation of customer satisfaction was rather primitive. Al-
though MABS probably is the most suitable simulation technique for making this kind
of evaluation, it is difficult to define a truly meaningful metric for customer satisfac-
tion. The best we can do is to continually measure the difference between the desired
values of the relevant environmental parameters (according to the preferences speci-
fied by the person in question) and the actual values of those parameters during a
simulation. However, we believe that there are more subtle aspects that influence the
satisfaction a person gets from a system such as this. Unfortunately, these are probably
difficult to define explicitly (and therefore hard to measure) but are at least as impor-
tant. One such aspect regards personal integrity. How comfortable is it to know that
your manager may know exactly where you are at any time? Thus, it seems difficult to
make such an evaluation based only on computer simulations; it is necessary to let real
persons use the system. Note, however, that this is not a limitation only for MABS,
but for computer simulations in general.

We have not here demonstrated the usefulness of MABS for the purpose of train-
ing people. However, it is not difficult to find domains in which MABS seem to have
a great potential, e.g., car driving [7], managing troops and other military units, man-
aging companies, etc.

Acknowledgement

The author wishes to acknowledge the valuable contribution from the colleagues in the
ALFEBIITE project.

References

1. Basu N. and Pryor R.J.: Growing a Market Economy. Technical Report SAND-97-2093,
Sandia National Laboratories, Albuquerque, NM, USA (1997)

2. Boman M., Davidsson P., Skarmeas N., Clark K., and Gustavsson R.: Energy Saving and
Added Customer Value in Intelligent Buildings. In: Third International Conference on the
Practical Application of Intelligent Agents and Multi-Agent Technology (1998) 505-517

3. Boman M., Davidsson P., and Younes H.L.: Artificial Decision Making under Uncertainty
in Intelligent Buildings, Fifteenth Conference on Uncertainty in Artificial Intelligence,
Morgan Kaufmann, (1999) 65-70

4. Davidsson P. and Boman M.: Saving Energy and Providing Value Added Services in
Intelligent Buildings: A MAS approach. In: Agent Systems, Mobile Agents, and Applica-
tions, Springer Verlag (2000) 166-177

5. Deutschman, D.H., Levin S.A., Devine C., and Buttel L.A.: Scaling from Trees to Forests:
Analysis of a Complex Simulation Model. In: Science Online: An electronic journal
(1997) (www.sciencemag.org)



6. Drogoul A., Corbara B., and Fresneau D.: MANTA: New experimental results on the
emergence of (artificial) ant societies. In: Gilbert N. and Conte R. (eds.), Artificial Socie-
ties: the computer simulation of social life, UCL Press (1995)

7. El hadouaj S., Drogoul A., and Espié S.: To combine reactivity and anticipation: the case
of conflicts resolution in a simulated road traffic. This volume.

8. Finin T., Fritzson R., and McKay D., et al.: An Overview of KQML: A Knowledge Query
and Manipulation Language. Technical report, Department of Computer Science, Univer-
sity of Maryland, Baltimore County, USA (1992)

9. Gilbert N.: Computer Simulation of Social Processes. Social Research Update, Issue 6,
Department of Sociology, University of Surrey, UK (1994) (www.soc.surrey.ac.uk/sru/)

10. Gilbert N. and Conte R. (eds.): Artificial Societies: the computer simulation of social life.
UCL Press (1995)

11. Harding A. (ed.): Microsimulation and Public Policy. Elsevier (1996)
12. Harter A. and Hopper A.: A Distributed Location System for the Active Office. In: IEEE

Network 8(1) (1994)
13. Hämäläinen R.P.: Agent-Based Modeling of the Electricity Distribution System, In:

IASTED International Conference on Modelling, Identification and Control, (1996) 344-
346

14. Incropera F.P. and Witt D.P.: Fundamentals of Heat and Mass Transfer (3rd edition).
Wiley and Sons (1990)

15. McCabe F.G. and Clark K.L.: April: Agent Process Interaction Language. In Wooldridge
M. J. and Jennings N. R. (eds.), Intelligent Agents, Springer Verlag (1995) 324-340

16. Misra J.: Distributed Discrete-Event Simulation. ACM Computing Surveys, 18(1) (1986)
39-65

17. Moss S., Pahl-Wostl C., and T. Downing: Agent Based Integrated Assessment Modelling:
The example of Climate Change, Integrated Assessment, 1, 2000.

18. Ogata K.: Modern Control Engineering (2nd edition). Prentice-Hall (1990)
19. Parunak H.V.D., Savit R., Riolo R.L.: Agent-Based Modeling vs. Equation-Based Mod-

eling: A Case Study and Users’ Guide. In Sichman, J.S., Conte, R., Gilbert, N. (eds.),
Multi-Agent Systems and Agent-Based Simulation, Springer Verlag (1998) 10-26

20. Reynolds C.W.: Flocks, Herds, and Schools: A Distributed Behavioral Model”, Computer
Graphics, 21(4) (1987) 25-34

21. Williams R.J., “Simulation for public order training and preplanning. In Kanecki D. (ed.),
Emergency Management Conference (1994) 61-66

22. Yang, Q.: A Simulation Laboratory for Evaluation of Dynamic Traffic Management Sys-
tems. Ph.D. Thesis, Center for Transportation Studies, Massachusetts Institute of Tech-
nology, USA (1997)

23. Zeigler B.P.: Object Oriented Simulation with Hierarchical Modular Models. Academic
Press (1990)


