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Abstract— Clustering datasets is a challenging problem needed
in a wide array of applications. Partition-optimization ap-
proaches, such as k-means or expectation-maximization (EM)
algorithms, are sub-optimal and find solutions in the vicinity
of their initialization. This paper proposes a staged approach to
specifying initial values by finding a large number of local modes
and then obtaining representatives from the most separated ones.
Results on test experiments are excellent. We also provide a
detailed comparative assessment of the suggested algorithm with
many commonly-used initialization approaches in the literature.
Finally, the methodology is applied to two datasets on diurnal
microarray gene expressions and industrial releases of mercury.

Index Terms— Toxic Release Inventory, methylmercury, multi-
Gaussian mixtures, protein localization, singular value decompo-
sition

I. INTRODUCTION

There is a substantial body of literature devoted to the issue
of grouping data into an unknown number of clusters [1]-[13].
Indeed, the numerous methods proposed in the literature reflect
both the challenges and the wide applicability of the problem.
Most approaches involve a certain degree of empiricism but
broadly fall into either the hierarchical clustering or the
partition-optimization categories. The former provide a tree-
like structure for demarcating groups, with the property that all
observations in a group at some branch node are also together
higher up the tree. Both agglomerative and divisive approaches
exist, with groups merged or split at a node according to a
previously defined between-groups similarity measure.

An entirely different class of clustering algorithms divides
the dataset into a number of homogeneous clusters based on
some optimality criterion such as the minimization of some
aspect (commonly the trace or determinant) of the within-
sums-of-squares-and-products (S.SPy) matrix [14], [15], or
the maximization of likelihood and estimation of parameters
in a model-based setting, followed by an assignment of each
observation to the class with maximum posterior probability.
In a one-dimensional framework, an optimal partition is found,
following Fisher’s [16] algorithm which is computationally
intractable in a multivariate setting. Available algorithms
are sub-optimal in all but the most trivial of cases: two
common methodologies are k-means and the expectation-
maximization (EM) approach to estimation in an appropriately
specified mixture model. Several generalizations of k-means
exist: the k-medoids algorithm (¢f Chapter 2 of Kaufman
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and Rousseeuw [17]) is perhaps the one most familiar to
statisticians. These are all iterative approaches, finding optima
in a neighborhood of their initialization, with identified groups
heavily dependent on these starting values [18]. Thus, it is
imperative to have methodology that provides good initializers
for these algorithms, two applications of which are presented
next.

A. Two Case Studies in the Life and Health Sciences

This section illustrates two scenarios in the public health
and biological sciences that would benefit from improved
initialization methods for partition-optimization algorithms.
The first is in the context of analyzing microarray gene
expression data on the diurnal starch content of Arabidopsis L.
Heynth leaves. A second application profiles mercury releases
reported by different industrial facilities in the United States
in the year 2000, in a first step towards understanding and
addressing factors behind this important public health concern.

1) Identifying Similar-Acting Genes in a Plant’s Diurnal
Cycle: The processes and pathways involved in the synthesis
and degradation of starch — the most abundantly stored form
of carbon in plants, a major source of calories in the human
diet, and an important industrial commodity — is not fully
understood. In Arabidopsis, the two are integrated processes,
occurring at rates that relate to the duration of day and night.
Further, the chemical structure and composition of starch in
Arabidopsis leaves is similar to that in crops, so a detailed
investigation of its synthesis and degradation in the former can
provide clarification and deeper understanding of the processes
in the plastids of living cells [19], [20].

According to Smith et al [21], the Arabidopsis genome
sequence reveals many genes encoding enzymes potentially
involved in starch synthesis and degradation. While the func-
tionality of some of these genes may be considered to be
well-established, having been extensively studied in other
species, that of several other genes is uncertain. Determining
the latter is an important step in determining the processes
of starch breakdown and synthesis. One approach is to cor-
relate changes in their abundance levels to those of the
known genes. Microarray technology readily permits such
measurement: the European Arabidopsis Stock Centre web-
site at hitp : //nasc.nott.ac.uk provides Affymetrix ATHI
microarray data on 22,810 genes from plants exposed to equal
periods of light and darkness in the diurnal cycle. Leaves were
harvested at eleven time-points, at the start of the experiment
(end of the light period) and subsequently after 1, 2, 4, 8 and
12 hours of darkness and light each. The whole experiment
was repeated on plants in the same growth chamber, resulting
in data from a randomized complete block design (RCBD).

Some of the genes encoding enzymes in the dataset are
believed to be involved in starch synthesis — eg PGI1, PGM1,



APLs, AGPase and STS are surmised to encode predicted
plastidial transit properties [21]. The pathway for effecting
starch breakdown is even less understood, with the presumed
involvement, with varying degrees of certainty, of GWDs
and their derivatives, AMYs, BAMs, DPEs and so on. Func-
tionality can be identified by grouping the transcriptomes
into homogeneous clusters of similar-acting genes. A distance
measure of choice here is correlation because it can be used to
group genes that act together, regardless of the exact value of
the gene expressions. This can be used in conjunction with k-
means, for instance, to derive clusters of similar-acting genes
in the starch diurnal cycle. An added incentive for the choice
of k-means is that standard software can be used because the
Euclidean distance applied to observations transformed to be
on the zero-centered unit sphere orthogonal to the unit vector,
is the square root of an affine transform of correlation. Having
thus arrived at a grouping, one could investigate membership
and potentially draw conclusions on the roles of different
enzymes in starch breakdown and synthesis. Here again, the
potential use of k-means draws attention to the need for an
effective initialization strategy.

2) Profiling Industrial Facilities that Release Mercury: Pre-
natal exposure to mercury (and the more toxic methylmercury)
has been a long-standing concern for public health officials be-
cause it can cause adverse developmental and cognitive effects
in children, even at low doses [22], [23]. Such children are at
elevated risk of performing neurobehavioral tasks poorly, and
possible adverse effects on their cardiovascular, immune, and
reproductive systems [24], [25]. Despite the US government’s
decades-long efforts to curtail home uses of mercury, the
2003 Environmental Protection Agency (EPA) [26] report on
“America’s Children and the Environment” found that about 8
percent of women of child-bearing age in 1999-2000 (defined
to be in the age group of 1649 years) had at least 5.8
parts per billion (ppb) mercury in their blood. There is no
safe limit for methylmercury, which is more readily absorbed
in the body than inorganic mercury and therefore, more
potent. It enters the food chain following its conversion from
elemental mercury in the environment by bacteria, and is then
transferred to humans through eating contaminated fish. The
elemental form of mercury entering the food chain is believed
to originate as emissions and releases from industrial facilities,
sometimes carried over long distances on global air currents
far away from their source [27]. Devising effective policies
for limiting industrial releases of mercury is essential, and a
first step towards this goal is to understand the characteristics
of its many different aspects.

The EPA’s Toxic Release Inventory (TRI) database contains
annual release data on a list of chemicals as reported by eligi-
ble industrial facilities. Only 1,596 of 91,513 reports submitted
in 2000 concerned mercury and its compounds. Combining
multiple reports from the same facility resulted in 1,409 sepa-
rate facility reports for releases of mercury (in pounds) into air
(whether as fugitive or stack air emissions), water, land, un-
derground injection into wells, or as off-site disposal. Electric,
gas and sanitary services facilities accounted for 539 of these
reports (with coal- or gas-combusting electricity-generating
plants submitting 464 reports) followed by facilities involved

with chemicals manufacture or processing (162 reports), stone,
clay, glass and concrete products (149 reports), primary metals
(115 reports), petroleum refining and related products (110
reports) and paper and allied products (100 reports). In all,
24 different broad classes of industrial facilities, as identified
by the 2-digit Standard Industry Classification (SIC) codes,
reported mercury releases in the year 2000.

An unsupervised learning approach is an invaluable tool
in understanding the different characteristics of industrial
mercury releases because the conclusions flow directly from
the reported data. Finding facilities that are similar in the
context of their reported releases, and hence their impact on
public health, would make it possible to draw profiles for each
category. Groups of particular interest could be analyzed fur-
ther in terms of industry and regional compositions, resulting
in the formulation of more targeted policies designed to have
maximum impact on reducing mercury pollution. Clustering
thus becomes an effective tool in framing public policy in this
environmental health scenario. There are no natural hierarchies
expected in such groupings, which means that we are led to
use an partition-optimization algorithm, and inherently to the
need for methods to effectively initialize them.

B. Background and Significance

A number of somewhat ad hoc approaches are currently
used to assign starting values to partition-optimization al-
gorithms. The statistical package Splus obtains initializing
centers for k-means from a hierarchically clustered grouping
of the data, while R [28] uses & randomly chosen observation
points as the default initializer. Lozano et al [29] show that this
is, on the average, a viable strategy for initialization: however,
obtained clusterings can sometimes be very erroneous, as seen
in the two-dimensional example of Figure 1 which provides
the results on four successive calls to 7-means, using R’s
default settings. If the number of clusters is known to be seven,
the correct grouping for most observations is very apparent.
Further, the groups appear to be quite homogeneous so that
k-means is a good choice for partitioning the dataset. Indeed,
with initial seeds from the correct clusters, the algorithm
provides the most apparent solution. But the random-starts
strategy has a fair chance of not getting initial representatives
from different clusters in the above example, making the task
of ultimately obtaining the correct grouping more difficult.

A common strategy suggested to alleviate the above prob-
lem is to run the algorithm with several random starts and to
choose the best solution. Such a strategy is not always practi-
cal, especially for high-dimensional datasets. As a refinement,
Bradley and Fayyad [30] and Fayyad, Reina and Bradley [31]
proposed clustering several sub-samples of the data, using
k-means or EM, depending on the clustering methodology
being used and random-starts. The cluster centers obtained
from each sub-sample are again partitioned using k-means,
with initial values serially provided by the final cluster centers
from each sub-sample. Each exercise provides a further set
of cluster means, and the initializing values for the k-means
algorithm are chosen from amongst this last set to be closest
in a least-squares sense to all of them. Both methods give
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Fig. 1.

Results of running the k-means algorithm with seven clusters and using four different starting points, each randomly chosen from the dataset. Each

identified group is identified by a different plotting character and color. The role of the plotting character and color here and in Figures 2 and 4 is nominal.
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Fig. 2. Results of running the EM-algorithm with three clusters, initialized from parameter estimates obtained using hierarchical clustering with (a) Ward’s
minimum variance criterion, (b) single, (c) average and (d) likelihood gain (with Mclust) linkages.

rise to some concern about bringing in a random component
to an essentially deterministic algorithm, with no clear way
of assessing and controlling for variability in the estimation
process. Further, the logic behind the choice of the final step in
Fayyad et al [31] appears unclear and has the strong potential
for providing infeasible starting values and for eliminating
smaller clusters that are wide apart but which should be natural
candidates to be picked up by any reasonable algorithm.

The alternative approach of using hierarchical clustering
into seven groups (using any merge criterion) to obtain initial
seeds for k-means and EM approaches performs very well in
Figure 1. However, consider the example in Figure 2, modified
from the one in Kettenring [8], with three clear clusters, one
dominant and accounting for 90% of the dataset. The other
two clusters are smaller, equal-sized, considerably farther away
from the larger cluster and closer to each other. In keeping with
practical scenarios, the two smaller clusters have substantially
lower dispersion than the larger one. Performance of k-means

is understandably poor in this setting, even when initialized
with the true centers, so performance using EM on multi-
Gaussian mixtures is explored. Figure 2 shows the results upon
initializing the algorithm with hierarchical clusterings obtained
with four different linkages. In all four cases, performance is
poor. Note that the likelihood gain merge criterion is used in
the popular Mclust algorithm [32].

The choice of hierarchical clustering to initialize partition-
optimization algorithms is in itself debatable, given the inher-
ent assumption of a regimentation structure in the dataset with
the number of groups determined by the resolution at which
the dataset is summarized (or in practical terms, at the height
at which the tree is cut). Partition-optimization algorithms do
not subscribe to this limited world-view, but using hierarchical
clustering to initialize them results in a de facto prescription.
Further, most hierarchical clustering algorithms combine in
essentially a binary fashion, with dissimilarities measured in
terms of combinations of paired inter-point distances rather



than some comprehensive metric. More practically, a dissim-
ilarity matrix requires computations an order of magnitude
higher than the number of observations, so the size of the
datasets that can be handled is severely restricted. In many
modern applications, such as the complete microarray dataset
introduced in Section I-A.1, this is too severe a restriction.

Other methods have also been proposed and investigated
in the context of different applications. Tseng and Wong [33]
proposed an initialization approach in the context of finding
centers of tight clusters, which cuts the tree into k x p groups,
with p representing dimensionality of the observations, and
then choosing the k£ most populated clusters. Al-Daoud [34]
suggests choosing as initial set of means the data-points closest
to the modes of the projection of the data on the first principal
component. An inherent assumption behind clustering is that
an unknown grouping is the dominant source of variability
in the dataset: the suggestion is unsatisfactory when the first
principal component is inadequate in capturing most of the
variability in the data. In the context of EM algorithms for
Gaussian clustering, Biernacki, Celeux and Govaert [35] do
a detailed analysis of several initialization methods and find
that using several short runs of the EM initialized with valid
random starts as parameter estimates — with validity defined
by existence of likelihood — provides the best initializer in
terms of ultimately maximizing the likelihood. They call this
the em-EM approach. Specifically, each short run consists of
stopping the EM algorithm, initialized with a valid random
start, according to a lax convergence criterion. The procedure
is repeated until an overall number of total iterations is
exhausted, at which point the solution with the highest log-
likelihood value is declared to be the initializer for the long
EM. This approach is computationally intensive and suffers
from the same comments on random starts mentioned above.
Further, note that just using one random start of the EM, as
well as choosing from several random initializing points and
deciding on the set with highest likelihood are special cases of
the above method of initialization. Intuitively, it is debatable
whether computer time is not better utilized in increasing the
number of random starts (and no short runs of the EM). Indeed,
our experiments indicate this as an acceptable alternative, even
with ignoring the computational advantage and keeping the
same number of random starts as the total number of iterations
of the short run iterations. In fact, a larger number of random
starts can actually be considered because the computational
overhead from the task of actually performing short runs of
the EM-step is completely removed. We call this approach
Rnd-EM and illustrate that its performance is comparable even
when the number of random starts is kept the same as the total
number of short em iterations in em-EM.

This paper provides a staged deterministic approach to
initializing partition-optimization algorithms. The basic idea,
detailed in Section 2, is to obtain a large number of modes of
the dataset, and then to choose representatives from the most
widely-separated ones. In a specific implementation of the
above, we first propose finding modes in the one-dimensional
projections along the direction of the singular vectors. For
datasets with all singular values positive, we also find modes
in the each standardized dimension of the original dataset. The

product set of all these modes, after thinning for points with
no representation in the data, is fed into a k-means algorithm
to obtain a large number of local multivariate modes, which
are then explored for representatives from the ones that are
farthest apart. For the k-means algorithms, the result provides
the initial values, while the initializers for EM are provided by
parameters estimated from the classification of the data to the
closest mode. Performance evaluations on test experiments are
detailed in Section 3. The gene expression and the mercury
release datasets introduced in this section are analyzed in
Section 4. The paper concludes with some discussion.

II. METHODOLOGY

Let X4, Xo,...X,, be a random sample, each from one of
an unknown number K of p-variate populations. In a model-
based setup, given K, the density of each X; is assumed to
be given by f(x) = Ele gk (x; Or), where gi(-) denotes
the kth sub-population multivariate density with parameter 0y,
and 7 is the mixing proportion of the kth subpopulation. A
commonly-used density, and the one considered throughout
this article, is the multivariate Gaussian, with 6 representing
the corresponding mean and dispersion parameters. One goal is
to estimate the number of sub-populations K, the parameters
01s and mys; however our primary interest is in classifying
the observations into their correct group. The EM approach to
solving the problem, given K, assumes class membership as
the missing information, and proceeds to set up an iterative
scheme to estimate the parameters, starting with a set of initial
parameter estimates. Once these parameters are estimated, they
are used to classify observations into groups based on their
posterior probabilities of inclusion. (Note that, as very kindly
pointed out by a referee, the Gaussian means are all assumed to
be different: this assumption, while reasonable from a practical
standpoint in clustering, also obviates identifiability issues in
parameter estimation.)

The k-means algorithm, on the other hand makes no overt
distributional assumptions even though it can be formulated
as a solution to the likelihood equation for the means and
class identities of a fixed-partition model of multinormal
distributions with equal and spherical dispersion matrices.
Formally, here we have a random sample X1, Xo,... X,
with joint likelihood given by [T, EZK:1 0k d( X i5 g, 021)
where ¢(-) is the multivariate normal density and 7); j, is one
if X; is in the kth subpopulation, zero otherwise. In this
setup, the 7; ’s and p;’s are parameters to be estimated, o
is a nuisance parameter. A local solution to this likelihood
problem is provided by k-means, which starts with a set of
initial centers and partitions the dataset by assigning each
observation to the closest (according to some metric) cluster
center, updates the cluster center in each partition and iterates
till convergence. Like EM, convergence is to a local optimum
in a neighborhood of the initializer and can be far from the
global solution. Initialization methods that perform well are
important: we propose a class of such algorithms next.

A. A Multi-Stage Initializer

Let X be the n x p data matrix with rows given by
the observations X = {X, Xao,...,X,}. Our objective is



to find initial seeds for partitioning algorithms to group the
dataset into K clusters, assuming that K is known. Consider
the following multi-stage algorithm:

1) Obtain the singular value decomposition (SVD) of the
centered data X* = UDV’, where D is the diagonal
matrix of the m positive singular values d; > dy >

> d,,, and U and V matrices of order n x m
and p x m, both with orthonormal columns (in 7-
and p-dimensional space, respectively). For a given m*,
consider the reduced n x m* projection given by U,
consisting of the first m* columns of U given by
Ui, U2, ..., Up,~. We propose working in the reduced
space.

2) For each coordinate in the reduced space, we obtain an
appropriate number of local modes. We choose more
modes in those coordinates with higher singular values
(or standard deviations of the principal components),
under the assumption that information in the dataset
is more concentrated along those projections corre-
sponding to higher values, and therefore these would
contain more information about the clusters. Specifi-
cally, we propose choosing the number of modes, k;
in the jth reduced-space coordinate to be equal to
[(Cop—n= K ) 707 1d;/drm~ rounded to the nearest integer,
with [z] denoting the smallest integer greater than or
equal to x, and ¢ is non-decreasing and concave in
k. While one could use Fisher’s [16] computationally
demanding prescription for one-dimensional partitions,
we propose one-dimensional k-means to determine the
modes in the jth reduced coordinate data space initial-
ized using the quantiles corresponding to the k; equal
increments in probabilities in (0,1). The choice of k-
means is appropriate because the goal here is to find a
large number of univariate local modes for input into
the next step.

3) Form the set of candidate multivariate local modes in the
reduced space by taking the product set of all the one-
dimensional modes. Eliminate all those candidates from
the product set which are not closest to any observation
in U . The remaining k* modes are used as initial points
for a k-means algorithm that provides us with k* local
modes. Note that typically, £* >> k.

4) Obtain the £* local modes of the dataset using the k-
means algorithm with the starting points provided from
above. Also, classify the observations, and obtain the
corresponding group means in the original domain.

5) At this point, we have k£* local modes of the dataset in
the reduced space and the corresponding group centers
in the original space. The goal is to obtain k representa-
tive points from the above which are as far as possible
from each other. We use hierarchical clustering with
single-linkage on these k£* modes and cut the tree into k
groups. Since a single-linkage merge criterion combines
groups based on the least minimum pairwise distance
between its members, its choice in the hierarchical
clustering algorithm here means that we obtain k groups
of local modes (from out of k*) that are as far apart in

the transformed space as possible. Means, and if needed,
relative frequencies and dispersions, of the observations
in the dataset assigned to each of the k& grouped modes
are calculated: these provide the necessary initialization
points for the partition-optimization algorithms.
The above algorithm is practical to implement: perhaps the
most computer-intensive step in this exercise in the singular
value decomposition, requiring about O(p®) computations (see
page 237-40 of Demmel [36]. The series of univariate mode-
finding steps can be executed quite easily using existing
quicksort algorithms for finding the appropriate quantiles, and
then using k-means in the one-dimension. The product set of
the univariate modes can be obtained by direct enumeration,
essentially an O(k) operation. Using k-means to provide
for the k* local modes keeps the algorithm efficient, while
hierarchical clustering is done on the k* modes and therefore,
a distance (dissimilarity) matrix of around O(k?)-elements
needs to be stored and computed. Thus, unlike the case when
hierarchical clustering is used to obtain initializing values, the
size of the dataset n is not a major limiting factor in the
computation.

The above strategy can throw up initial groups, some with
less than p data-points. In the EM context with general
variance-covariance matrix structures, this is problematic be-
cause it results in singular initial dispersion estimates for those
clusters. When such a case arises, we estimate a common
3} for those groups for which the initial dispersion matrices
are singular. This is done by taking the average of the initial
variance-covariance matrices for those clusters with nonsin-
gular initial estimates of dispersions. This is done only for
the initialization. This approach was used in the experimental
evaluations reported in this paper. Finally in this regard, we
note that when there is more specific information about the
covariance structures in the mixture model, that can be used
in obtaining the initializers.

The choice of m* is crucial in the suggested setup. Our
recommendation, which we adopt in our experiments and
software, is to run the algorithm values for different values
of m* which d;s are positive, and then to choose, for k-
means, those starting values for which | SSPy, | is minimum.
For the EM algorithm, we choose the set of initial values
maximizing the likelihood. When X is of full column rank,
we also compare with the above method modified for use
in the original coordinate-space. Specifically, we standardize
the variables to have zero mean and unit variance in each
coordinate, obtain the product set of the univariate modes
using one-dimensional k-means started from the product set
of the quantiles and then use hierarchical clustering to get
representatives from the K most widely separated groups
of local modes. The observations are then classified and
initializing parameters obtained. The goal behind this strategy
is to insure against possible masking effects, but also to
use projections to drive us to good initializing values when
projections are more helpful.

Our next comment pertains to invariance. The specific im-
plementation above is invariant to both rotation and translation.
but not to arbitrary linear transformations on the data. The
method is also not scale-invariant in the reduced domains,



though the standardizing operations on the original domain
makes it so for those computations. In general, we believe that
our approach will provide initializing values when the affinely
transformed data preserves the grouping — it is unclear whether
clustering itself makes a lot of sense in other contexts. In
general, if invariance to affine transformations is an important
consideration, one may consider other approaches to finding
the candidate set of local modes, such as the bump-hunting of
Friedman and Fisher [37].

Another comment pertains to the choice of ¢, which should
be such that more local univariate candidates are chosen for
lower-dimensional projections of the data, while at the same
time ensuring that the number does not grow very rapidly.
Our experiments use ¢; = [k + 1], though other choices for
ci (such as [logk + 1]), and thus k;, satisfying the general
philosophy of (2) could also be considered. An additional
possibility, which we do not implement in our experiments
in this paper, is to try out different candidate sets of ci’s
and choose the initializer with lowest | SSPy | (for k-
means) or highest log-likelihood for EM-clustering. Finally,
although also not implemented in the software for this paper,
this approach can be readily parallelized for computational
speed and efficiency.

III. EXPERIMENTAL EVALUATIONS

The performance of the initialization scheme is evaluated
in a series of simulation experiments, starting with the two
bivariate examples introduced in Section 1. We then follow
through with a range of simulations on a variety of test
case scenarios in many dimensions and degrees of separation
between clusters. We evaluate the performance of our methods
numerically via the adjusted Rand [38] measure of similarity
between two partitions. (One criticism of the Rand [39]
measure is that it is more likely to be close to 1 and does
not weigh disagreements in grouping adequately. The adjusted
Rand measure is designed to spread the weight around more
equitably so we report only this measure.) Our comparisons
are with groupings obtained from the unlikely scenario of
running the partition-optimization algorithm initialized with
the true parameter values.

Clustering using our suggested initialization strategy is
compared with some of the common or better-performing
methods used in the literature. In the k-means context, we
compare with (1) initialization from the best (in terms of
lowest | SSPy |) of p? randomly chosen data-points (Rnd-
KM), (2) hierarchical clustering (Hclust-KM) into k groups
using Ward’s criterion (experimentally shown to be among
the most competitive for a range of k-means initializers [40]),
(3) the extension of hierarchical clustering (Hclust-TW-KM)
proposed by Tseng and Wong [33] and (4) Bradley and
Fayyad’s [30] approach of choosing the centroid of centers
obtained from p2 random starts (BF-KM). For EM, our com-
parisons are with clusterings obtained using (1) initialization
from the best (in terms of highest log-likelihood values) of
p? valid sets of randomly chosen data-points (Rnd-EM), (2)
Mclust which uses hierarchical clustering and likelihood gain
and (3) initialization using p? short EM’s initialized from a

set of randomly chosen valid data-points (em-EM). We also
tried using Fayyad et al’s (1998) suggestions to initialize
EM, but were very often unable to come up with a valid
set of means, and dispersions even after several attempts. We
use Ward’s and likelihood gain criterion respectively in the
hierarchical clustering initialization using k-means and EM,
because these criteria are used in the corresponding objective
function for which the respective optima are desired. The
latter is used by the R package Mclust, and we use this
to denote the strategy. The choice of p? replications in the
cases above corresponds on the average to about 2-3 times the
time taken by our suggested approach to find an initializer.
Note that k-means is done all through using Hartigan and
Wong’s [41] implementation. Further, although not a focus of
this paper, we also study the proposed initialization scheme
in the context of estimating the number of clusters using
Marriott’s [42] criterion for k-means or the Bayes Information
Criterion (BIC) of Schwarz [43], assuming a Gaussian mixture
model (Fraley and Raftery [32]. Finally, simulation variability
in the performance evaluations is accounted for by replicating
each experiment 25 times.

A. Bivariate Examples

Our first bivariate example, also used to demonstrate our
methodology, uses 500 observations (Figure 1) from seven
bivariate normal clusters with same dispersion (correlation
p = 0, standard deviations ¢ = 2 in both dimensions).
The clusters were centered at (1.05, 4), (3,1.05), (2.97,3.94),
(-0.08,4.07), (0.93,2.96), (0.05, 0.93) and (3.92,2.96) with
mixing probabilities of 0.1, 0.16, 0.2, 0.21, 0.17, 0.11 and
0.06 respectively. Figure 3a illustrates the application of our
proposed methodology in the projection space for m* =
2. The final centers and classification (Figure 3b) obtained
using our suggested initialization strategy are essentially in-
distinguishable from those obtained upon running the k-
means algorithm using the true centers as starting points (Fig-
ure 3c). The adjusted Rand (R,) measure of similarity was
1.0, indicating a perfect match between the two clusterings.
While not displayed, the results match mixtures-of-Gaussians
model-based clustering done using the EM algorithm and our
suggested starting points. Finally, both Marriott’s criterion
(when using k-means) and BIC (upon using EM) identified
seven as the optimal number of clusters. This is also true
upon using k-means initialized using Hclust-KM. However,
Hclust-TW (R, = 0.952), Rnd-KM (R, = 0.782) and BF-
KM (R, = 0.797) initialization perform much worse in
the context of 7-means. Moreover, in these cases, Marriot’s
criterion finds 9, 13 and 10 clusters (R, = 0.958,0.922
and R, = 0.943, respectively), with the latter often yielding
initializers proximate to no data-point and hence not consistent
with k-means starting values. In the EM context, Mclust is
also perfect whether or not k£ is known, while Rnd-EM and
emEM both identify 9 optimal clusters with R, = 0.978 in
each case. When the number of clusters is provided, R, was
0.818 and 0.794 respectively. For the 25 replicated datasets,
when using k-means, our suggested algorithm and Hclust-
KM were always perfect in both partitioning and estimating
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Fig. 3.

Illustration of proposed algorithm. (a) Projection of centered dataset along left singular vectors, with unfilled circles denoting product set of centers

of partitions along each projection. Filled circles represent the thinned subset to initialize the k-means algorithm in Step 4, the output of which is represented
by unfilled triangles. Filled triangles represent the centers in projection space obtained upon using hierarchical clustering with single-linkage on the centers
with unfilled triangles. (b) The starting values (unfilled triangles) and final centers (X) for k-means in original space, together with the derived classification.
(c) Final centers (x) and grouping arrived at using k-means initialized by the true centers (unfilled triangles).

k, while Rnd-KM, BF-KM and Hclust-TW were less so, with
median adjusted Rand (R;0.5) values of 0.944, 0.949 and
0.962 for 7-means and with inter-quartile ranges (/QR,) of
0.011, 0.051 and 0.018 respectively. With k& unknown, the cor-
responding median adjusted Rand values (Rq;0.5,,,, ), inter-
quartile ranges (/QRq;,,,) and median number of estimated
clusters (kopt:0.5) were (0.978, 0.02, 8), (0.982, 0.032, 8) and
(0.982, 0.046, 8). With EM, our suggested algorithm and
Mclust were essentially perfect (Rq;05 = Ra;0.5,k0, = 1.0,
IQR, = IQRuk,,, =0, kopt = 7) but Rnd-EM and emEM
were less so whether £ was given (Rg;0.5 = 0.942 and 0.948,
IQR, = 0.066 and 0.040) or estimated (Ra;0.5,k0p: = 0.984
and 0.982, IQRg,,, = 0.016 and 0.0.021, k,ps05 = 8 in
both cases).

Our second experiment revisits the case study of Figure 2.
Here, there are 400 bivariate normal observations from the
larger cluster, centered at (40,36), with equal variances of
4,000 and a correlation coefficient of 0.015. The remaining
observations were simulated in equal parts from bivariate
normal populations with equal variances in both dimensions
of 80, but with different centers, at (250,250) and (300,300)
and correlations of 0.075 and -0.05, respectively. Initializing
the EM algorithm with our methodology for three clusters
correctly identified the grouping and matched exactly that
obtained by initializing the algorithm with the true parameters.
Expectedly, R, = 1.0. Further, BIC identified correctly the
number of clusters in the data. On the other hand, performance
using Rnd-EM initialization is substantially worse, whether the
number of clusters is known (R, = 0.392) or unknown (6
clusters identified; R, = 0.417). The same pattern is repeated
with emEM regardless of whether the number of clusters is
known to be three (R, = 0.356) or optimally estimated
using BIC (5 clusters; R, = 0.422). Mclust is no better
whether the number of clusters is known (R, = 0.356)

or optimally estimated via BIC (5 clusters; R, = 0.4058).
Finally, performance evaluations on the 25 replicated datasets
were uneven and reflected Kettenring’s (2006) comments on
the difficulty of the clustering problem: when the number of
clusters were given, our suggested algorithm had R,.0.5 = 1,
IQR, = 0.588, Mclust had R,.0.5 = 0.367, ZQR, = 0.468,
Rnd-EM had R,05 = 0.374, ZQR, = 0.015 and emEM
had R, 05 = 0.386, ZQR, = 0.071. When the number of
clusters is required to be estimated from the data, the measures
for (Ra;0.5,k0ps {QRask s Kopt) are (1.0, 0.491, 7) for our
suggested strategy, (0.421, 0.06, 5) with Mclust, (0.454, 0.563,
4) with Rnd-EM and (0.576, 0.582, 4) when using emEM.
Our final bivariate experimental setup (Figure 4), suggested
very kindly by a referee, is in some ways the antithesis of the
previous one. Here, there are nine small (each with mixing
proportion 0.09) but overlapping clusters centered at (62, -15),
(18, 189), (186, -115), (95, 86), (-25, -103), (-39, 67), (125,
161), (176, 18) and (50, -150), and with common dispersions
(p = 0.05;0 = 20 in both dimensions). A larger elongated
cluster is centered at (400, 400) and has dispersion given by
o = /3000 in both dimensions and p = 0.8. It is readily
obvious that this is not an easy problem to cluster, especially
when the number of clusters is not known. Performance of
k-means on this dataset of 500 observations is unsurprisingly
poor, even when initialized using the true centers, with the
algorithm thrown off-keel by the point (273.824, 267.431).
However, clustering via EM initialized using our strategy (Fig-
ure 4a) was indistinguishable (R, = 1.0) with that started
from the true parameter values (Figure 4b) and performed very
well. BIC chose the number of clusters correctly. On the other
hand, Mclust had difficulty whether the number of clusters
was given (R, = 0.795) or unknown (R, = 0.780; kope = 9).
In both cases, the elongated cluster was split. Performance
was better using emEM or Rnd — EM when the number
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Fig. 4. Clustering obtained using the EM-algorithm with ten clusters, initialized using the (a) suggested methodology, (b) true parameter values, (c) Mclust

and (d) emE M.

of clusters was estimated (8 clusters, R, = 0.944 and 6
clusters, R, = 0.926 respectively) or given (R, = 0.919
— see Figure 4d — and 0.914). The stray point (273.824,
267.431) for this dataset is what hurts the performance of
the alternative strategies: performance evaluations over 25
replicated datasets are somewhat different. These yielded
(Ra05IQR,) = (0.966,0.013) for our suggested algorithm
when the K = 10 was given. On the same replicates, Mclust
reported Rq.05 = 0.969, TQR, = 0.034 and Rnd-EM had
Ra05 = 0.955 and ZQR, = 0.02 and emEM had R.05 =
0.0.949 and ZQR, = 0.048. Corresponding measures for
(Ra;0.5,k0pt s IQRasky e » Kopt) With unknown number of clus-
ters were (0.967, 0.024, 10) using our suggested strategy,
(0.978, 0.009, 12) using Mclust and (0.967, 0.019, 9) and
(0.968, 0.021, 9) with Rnd-EM and emEM.

The performance of the different initialization strategies
above points to their pitfalls. If the true cluster parameters
are not close to being represented at the initialization stage
itself, there is often very little chance of their recovery. The
suggested approach on the other hand seems to do a better job
more consistently. We now report comparative performance
evaluations in higher dimensions.

B. Experiments in Higher Dimensions

The next suite of experiments detail evaluations on datasets
of size 500, 1,000 and 1,500 generated from 7-, 9- and 11-
component multivariate normal mixtures in 5-, 7- and 10-
dimensional space, respectively. In each case cluster means,
mixing proportions, and dispersion matrices were gener-
ated randomly but satisfying certain criteria of represen-
tation of and separation between clusters. Following Das-
gupta [44], two p-variate Gaussian densities N(u;, X;) and
N(p;,X;) are defined to be c-separated if || p; — p; [|>
cy/pmax (Amax (i), Amax (X)), where Apax (X) denotes the
largest eigenvalue of the variance-covariance matrix 3. We
modify this definition to add equality in the above for at least
one pair (7,7). This means that we are insisting on exact-
c-separation for at least two of the clusters. According to
Dasgupta [44], there is significant overlap between at least two
clusters for ¢ = 0.5 and ¢ = 1.0 and good separation between
all clusters for ¢ > 2.0. For instance, in the experiment of
Figure 1, ¢ = 0.37 and indeed, there is considerable overlap

between some of the clusters. There is not much overlap
between the clusters in Figure 2 for which ¢ = 3.327. It is a
bit surprising however to note that ¢ = 2.787 for the dataset of
Figure 4. This last measure points to a major shortcoming in
the definition above in that the degree of separation between
clusters as defined above depends only on the means and
the largest eigenvalues of the cluster dispersions, regardless
of their orientation. Further, other factors (such as mixing
proportions) beyond separation also play a role in determining
the degree of difficulty of clustering: hence clustering difficulty
of a dataset is only partially captured by the measure of c-
separation between two clusters.

Using R code, available on request, we implement exact-
c-separation between groups in our experiments via the ad-
ditional restriction that there is at least one pair of cluster
densities for which equality is very close (at a value of between
c and ¢+0.005) to being attained. For each of our experiments,
we choose our parameters to satisfy c-values of 0.8, 1.2, 1.5
or 2.0, corresponding to a sliding scale of overlap from the
substantial to the very modest. Further, our mixing proportions
were stipulated to each be at least 0.056, 0.032 and 0.025 for
the 5-, 7- and 10-dimensional experiments, respectively. These
minimum values were chosen so that there were almost surely
at least p observations in each of the clusters.

Table I summarizes the performance of k-means clustering
over the replicated datasets initialized using the different
strategies. When k is known, Hclust-KM is the top performer
for all experiments: however, our suggested algorithm is very
close. The performance of the other competing algorithms
is mixed. While BF-KM does well in smaller dimensions
and higher separation, that advantage evaporates in higher
dimensions. Among the weakest performed for all sets of
experiments are Hclust-TW-KM and Rnd-KM. Interestingly
with unknown k, the suggested algorithm outperforms Hclust-
KM and all others in terms of the grouping obtained. This
is encouraging because most often (and as in the expression
microarray application), the true & is unknown but interest still
is on the grouping obtained. The results of these simulation
experiments provide confidence that k-means initialized using
our suggested algorithm yields groupings closest to the true.

The performance of Gaussian clustering using EM initial-
ized with the competing strategies is summarized in Table II.




TABLE I
SUMMARIZED ADJUSTED RAND SIMILARITY MEASURES (R,) OF GROUPINGS OBTAINED OVER 25 REPLICATIONS FOR EACH SETTING WITH k-MEANS

USING DIFFERENT INITIALIZATION STRATEGIES (starts). SIMILARITIES ARE CALCULATED FROM GROUPINGS OBTAINED BY RUNNING k-MEANS FROM
THE TRUE PARAMETER VALUES. THE SUMMARY STATISTICS REPRESENTED ARE THE MEDIAN R, WHEN k IS KNOWN (Ra;o,g,) OR ESTIMATED

(Ra?kom;oﬁ) AND THE CORRESPONDING INTERQUARTILE RANGES (ZQR, AND ZQR,, i,

opt ). FOR THE LATTER CASE, THE MEDIAN OPTIMAL NUMBER

OF CLUSTERS (kopt;O.S) ESTIMATED IS ALSO PROVIDED. FINALLY, #tops ALSO REPRESENTS THE NUMBER OF REPLICATIONS (OUT OF 25) FOR WHICH

THE GIVEN INITIALIZATION STRATEGY DID AS WELL AS THE BEST STRATEGY WITH kK KNOWN AND UNKNOWN (IN ITALICS).

@ p=>5k="7mn=>500 p="7k=9,n=1,000 p=10,k=11.n = 1,500
E Statistic separation c separation c separation c
e 0.8 \ 1.2 \ 1.5 \ 2.0 0.8 \ 1.2 \ 1.5 \ 2.0 0.8 \ 1.2 \ 1.5 \ 2.0
Ra0.5 0.928 | 0.952 | 0.930 | 0.958 || 0.940 | 0.948 | 0.934 | 0.938 || 0.953 | 0.960 | 0.965 | 0.947
=~ IQRa0.5 0.059 | 0.052 | 0.064 | 0.092 || 0.053 | 0.033 | 0.052 | 0.039 || 0.042 | 0.023 | 0.038 | 0.043
e Rea,kopt;0.5 0.931 | 0.948 | 0.957 | 0.952 || 0.939 | 0.953 | 0.942 | 0.962 || 0.964 | 0.976 | 0.966 | 0.964
2 TQRa kop0.5 || 0.033 | 0.046 | 0.036 | 0.052 || 0.040 | 0.025 | 0.048 | 0.035 || 0.033 | 0.028 | 0.032 | 0.022
a kopt;0.5 10 9 10 9 12 11 12 11 13 12 12 12
#tops 4,8 35 3,7 8,3 1,3 34 0,1 1,2 2,7 2,5 0,4 0,3
Ra0.5 0.950 | 1.0 1.0 1.0 0.961 | 0.970 | 0.983 | 0.978 || 0.976 | 0.988 | 0.985 | 0.978
= IOR40.5 0.059 | 0.026 0 0.058 || 0.036 | 0.039 | 0.046 | 0.040 || 0.038 | 0.018 | 0.024 | 0.048
e~ Reakopt;0.5 0.931 | 0.936 | 0.946 | 0.925 || 0.937 | 0.945 | 0.944 | 0.963 || 0.971 | 0.980 | 0.982 | 0.977
Eé TORa kopr:0.5 || 0.015 | 0.044 | 0.032 | 0.042 || 0.028 | 0.031 | 0.037 | 0.034 || 0.024 | 0.023 | 0.017 | 0.026
kopt;0.5 10 10 9 10 12 12 12 11 13 13 13 12
#tops 9,1 16,3 | 19,3 17,1 6,2 5,1 8,1 7.5 8,6 6,3 74 3,7
Ra0.5 0.966 1.0 1.0 1.0 0.998 1.0 1.0 1.0 1.0 1.0 1.0 1.0
E IORa40.5 0.033 0 0 0 0.040 0 0 0 0 0 0 0
< Rea,kope:0.5 0.927 | 0.924 | 0.932 | 0.924 || 0.936 | 0.938 | 0.930 | 0.947 || 0.964 | 0.967 | 0.965 | 0.963
= | IQRakpp05 || 0.021 | 0.028 | 0.025 | 0.021 || 0.029 | 0.019 | 0.029 | 0.018 || 0.013 | 0.016 | 0.015 | 0.013
T kopt;0.5 10 10 10 10 12 12 12 12 13 13 13 13
#tops 17,1 | 24,3 | 25,1 | 25,0 13,0 | 23,0 | 25,0 | 25,0 19,0 | 25,0 | 25,0 | 25,0
= Ra0.5 0.931 | 0.943 | 0.949 | 0.933 || 0.934 | 0.933 | 0.923 | 0.924 || 0.946 | 0.950 | 0.942 | 0.939
X IORa0.5 0.028 | 0.047 | 0.041 | 0.067 || 0.051 | 0.044 | 0.037 | 0.046 || 0.020 | 0.043 | 0.047 | 0.032
E Reakopt;0.5 0.925 | 0.932 | 0.945 | 0.927 || 0.940 | 0.940 | 0.924 | 0.949 || 0.959 | 0.960 | 0.963 | 0.951
‘§ TORa kop:0.5 || 0.020 | 0.041 | 0.039 | 0.047 || 0.024 | 0.029 | 0.041 | 0.050 || 0.033 | 0.032 | 0.043 | 0.036
< kopt;0.5 10 10 9 10 12 11 11 11 13 13 12 12
T #tops 2,3 3,1 3,3 1.4 0.4 1,1 0,0 0,2 0,0 1,0 1,1 0,1
Ra0.5 0960 | 1.0 1.0 1.0 0.968 1.0 1.0 1.0 0.978 1.0 1.0 1.0
S IORa40.5 0.084 | 0.020 0 0 0.050 | 0.006 0 0 0.027 0 0 0
z Rea,kope:0.5 0.941 | 0.966 | 0.989 | 0.991 || 0.961 | 0.998 1.0 | 0.986 || 0.973 | 0.994 | 0.992 | 0.992
;.ﬁ IQRa kop0.5 || 0.044 | 0.041 | 0.053 | 0.033 || 0.042 | 0.019 | 0.012 | 0.019 || 0.032 | 0.013 | 0.016 | 0.014
@ kopt;0.5 10 9 8 8 12 10 9 10 13 13 12 12
#tops 8,13 | 18,16 | 23,14 | 25,18 || 10,16 | 18,20 | 24,24 | 25,16 || 4,12 | 20,18 | 25,17 | 25,14

Interestingly, Mclust is the best performer for cases with
substantial overlap, but its performance surprisingly degrades
with increased separation. The suggested algorithm is however
a consistently strong performer and shows excellent perfor-
mance with higher degrees of separation. The slightly worse
performance of our approach in the case of substantial overlap
can be explained by the fact that it is based on locating
multiple local modes in the dataset: when there is very little
separation, it is harder for it to correctly locate their widely
separated representatives. Note that, as mentioned in Section I-
B, Rnd-EM and emEM have similar performance in almost all
cases. Further, when the number of clusters is not known,
EM initialized by our approach and in conjunction with BIC
does an excellent job in identifying the number of clusters
and, more importantly, the correct grouping. This is of course,

a consequence of the benefits of a good partitioning, which
flows from the good performance of our initialization strategy
in these experiments.

C. Protein Localization Data

Our final experiment explores applicability of clustering
on a multivariate protein localization dataset for which class
information is available. This dataset, publicly available from
the University of California Irvine’s Machine Learning Repos-
itory [45] concerns identification of protein localization sites
for the E. coli bacteria, an important early step for finding
remedies [46]. Although information is available on 336
protein sequences from eight sites, we only use data on
324 sequences from five sites as in Maitra [47], because
the others have too little information to perform (supervised)



TABLE 11
SUMMARIZED ADJUSTED RAND SIMILARITY MEASURES (R4) OF GROUPINGS OBTAINED OVER 25 REPLICATIONS FOR EACH SETTING WITH GAUSSIAN

CLUSTERING USING EM WITH DIFFERENT INITIALIZATION STRATEGIES (starts). SIMILARITIES ARE CALCULATED FROM GROUPINGS OBTAINED BY
RUNNING EM FROM THE TRUE PARAMETER VALUES. THE SUMMARY STATISTICS REPRESENTED ARE AS IN TABLE 1.

@ p=>5,k="7n=>500 p="7k=9,n=1,000 p=10,k=11.n=1,500
E Statistic separation c separation c separation c
e 0.8 \ 1.2 \ 1.5 \ 2.0 0.8 \ 1.2 \ 1.5 \ 2.0 0.8 \ 1.2 \ 1.5 \ 2.0
Ra0.5 0.949 | 0.941 | 0.933 | 0.928 || 0.965 | 0.946 | 0.946 | 0.943 || 0.962 | 0.956 | 0.959 | 0.942
= IORa40.5 0.060 | 0.059 | 0.087 | 0.064 || 0.052 | 0.060 | 0.036 | 0.064 || 0.062 | 0.042 | 0.067 | 0.059
N R kopi:0.5 0.984 | 0.992 | 0.998 | 0.994 || 0.983 | 0.991 | 0.992 | 0.994 || 0.990 | 0.994 | 0.994 | 0.988
3 TIQRa kop0.5 || 0.024 | 0.014 | 0.023 | 0.016 || 0.026 | 0.015 | 0.017 | 0.027 || 0.013 | 0.012 | 0.012 | 0.013
= kopt;0.5 7 8 8 8 9 10 11 10 11 12 12 12
#tops 5,6 1,3 3,10 | 3,10 3,3 1.4 34 0,6 1,3 1,3 0,5 0,2
Ra:0.5 0.971 | 0.941 | 0.943 | 0.940 || 0.953 | 0.944 | 0.945 | 0.941 || 0.959 | 0.953 | 0.953 | 0.953
ZORa0.5 0.053 | 0.076 | 0.046 | 0.067 | 0.042 | 0.047 | 0.082 | 0.056 || 0.070 | 0.045 | 0.047 | 0.047
E Reakope;0.5 0.993 | 0.978 | 0.992 | 0.990 | 0.984 | 0.994 | 0.992 | 0.992 || 0.994 | 0.994 | 0.990 | 0.992
S TQRa kop:0.5 || 0.016 | 0.033 | 0.021 | 0.029 || 0.025 | 0.021 | 0.015 | 0.017 || 0.007 | 0.010 | 0.011 | 0.012
kopt;0.5 7 8 8 8 10 10 10 10 12 12 12 12
#tops 8,7 1,6 3,12 2,7 2,6 1,7 1,3 1,6 3,7 L5 0,2 0,2
Ra0.5 1.0 1.0 | 0.980 | 0.982 1.0 | 0.992 | 0.959 | 0.963 1.0 | 0.995 | 0.984 | 0.973
- IORa40.5 0.037 | 0.017 | 0.043 | 0.055 || 0.041 | 0.032 | 0.073 | 1.183 || 0.02 | 0.048 | 1.135 | 1.150
5 R kopi:0.5 1.0 1.0 | 0.992 | 0.982 1.0 | 0.994 | 0.994 | 0.986 1.0 | 0.997 | 0.993 | 0.989
§ TIQRa kop:0.5 || 0.012 0 0.028 | 0.030 || 0.015 | 0.020 | 0.040 | 0.015 || 0.002 | 0.010 | 0.015 | 0.017
kopt;0.5 7 7 8 7 3 3 9 8 11 11 11 10
#tops 18,15 | 17,24 | 11,11 | 12,12 || 16,15 | 13,12 | 5,5 44 20,19 | 11,10 | 6,6 44
Ra0.5 0940 | 1.0 1.0 1.0 0.960 | 1.0 1.0 1.0 0948 | 1.0 1.0 1.0
3 IORa40.5 0.073 | 0.046 0 0 0.066 | 0.002 0 0 0.224 | 0.008 0 0
iz Reakope;0.5 0987 | 1.0 1.0 1.0 0978 | 1.0 1.0 1.0 0.975 1.0 1.0 1.0
% TORa kope:0.5 || 0.025 | 0.002 0 0 0.023 | 0.004 0 0 0.091 | 0.004 0 0
Z kopt;0.5 8 7 7 7 9 9 9 9 11 11 11 11
#tops 7.8 | 16,17 | 24,24 | 25,25 6,6 | 17,18 | 24,24 | 25,25 4,3 | 18,18 | 25,25 | 25,25
classification via quadratic discriminant analysis (QDA), much  experiments.

less (unsupervised) clustering using Gaussian-mixture assump-
tions. (This dataset was shown in Maitra [47] to perform
considerably better using QDA rather than linear discriminant
analysis (LDA) so clustering using a k-means algorithm was
not considered.) See Horton and Nakai [48] and the references
therein for details on the attributes and the protein localization
sites.

QDA on this dataset provides us with a correct classification
rate of 90.74%, with R, = 0.942 vis-a-vis the site-grouping.
The measure is obtained using a supervised learning method
under multi-Gaussian-mixtures assumptions and so may be
regarded, in some sense, as an upper benchmark for the per-
formance of any clustering algorithm applied on this dataset.
Using BIC with EM initialized using Rnd-EM and emEM
identified 4 and 8 optimal locations, but the obtained grouping
was poor with R, equal to 0.511 and 0.489, respectively.
Initializing EM via our suggested methodology, determined
five groups as optimal for the dataset. The corresponding clus-
tering had R, = 0.914. However, Mclust did somewhat better,
choosing 5 clusters (R, = 0.927). Despite being slightly
out-performed by Mclust, it is clear that using mixture-of-
Gaussians EM-clustering with a good initialization is captures
the classification and is an appropriate tool to use in such

The above experiments indicate excellent performance of
partition-optimization clustering approaches when initialized
with the algorithm outlined in this paper. Further, clustering
in the context of unknown number of groups perform very well
using our approach. We next apply the above methodology to
the microarray and mercury release datasets.

IV. APPLICATION TO STARCH AND MERCURY RELEASE
DATASETS

A. Grouping Similar-Acting Genes in the Diurnal Starch Cycle

As described in Section I-A.1, the dataset is on expression
levels of 22,810 genes collected over eleven time-points.
Interest centers only on those genes that show activity during
the stages of the day-night cycle, so our first step was to
use RCBD analysis to identify such genes. Controlling for
the expected false discovery rate (FDR) of Benjamini and
Hochberg [49] at ¢ = 0.05 identified 4,513 most significantly
active genes. We analyzed this reduced set of genes in order
to understand their role in the diurnal starch cycle.

Genes were clustered using the expression data on the
mean of the two replicates. Each replicate was also clus-
tered separately to get an assessment of the variability in
our clustering procedure and then compared with the result
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Heatmap of standardized expression data and class centers of active genes that correspond to starch synthesis and degradation in the Arabidopsis

diurnal cycle. To facilitate comparison and variability assessment, each time-period is displayed using three measurements representing (a) the two replicates
with their mean sandwiched between them and (b) the centers of the separately clustered replicates, with those of the mean sandwiched between them.

obtained previously. As explained earlier, data on the means
and the replicates were separately centered and sphered in the
temporal dimension to provide observations that are on the
eleven-dimensional zero-centered unit sphere, restricted to be
orthogonal to the eleven-dimensional unit vector. Figure Sa
provides a heatmap display of the standardized microarray
gene expression data used in our analysis. In order to portray
variability in measurement, the observed replicated data at
each time-point are displayed along with the mean. The
display indicates moderate variability — this is not entirely
surprising, given that these are the most significant genes in
the entire dataset.

The initialization algorithm suggested in this paper was used
to set up initial seeds for the k-means algorithm, for given
numbers of clusters, with Marriott’s criterion used to choose
the optimal number. Note that resampling approaches such as
the Gap statistic [50] are not directly applicable here because
of the constraints brought in by the standardization of the
dataset.) Further, SSS Py is singular because of the centering,
so we use the (11, 11) minor as a surrogate for | SSPy |.
(The (11, 11) minor is the determinant of a square matrix
obtained after eliminating its 11th row and the 11th column.)
For the two replication datasets, Marriott’s criterion identified
21 and 22 as the optimal number of clusters, while partitioning
with 21 clusters was optimal for the mean expression. The
slight difference in the number of groups is indicative of the
variability in the clusterings. Figure 5b is a corresponding
heatmap display of Figure 5a of the mean values of the cluster
to which each gene is assigned by the k-means algorithm. The

k cluster means have been standardized to lie on the eleven-
dimensional zero-centered unit sphere. The figure indicates
some variability in the assignments, even though many of
the assigned group centers are virtually indistinguishable from
the others at the same time-point. However, it is encouraging
to note that where there is variability, the values of the
centers assigned on the basis of clustering the means are
intermediate to the ones assigned on the basis of the individual
replications. Finally, we also performed pairwise comparisons
on the three clusterings: the two groupings on the replicated
samples reported R, = 0.925. Thus there is some discrepancy
in the two groupings. Comparing the grouping provided by
clustering the mean gene expression data to the two individual
replicates provided similar values of 0.932 for R,. These
reported measures help quantify, in some sense, the variability
in the derived groupings.

In the sequel, we discuss briefly the groupings obtained
upon partitioning the data on the replicated expression levels
D1, Dy and their means M. Among the genes mentioned
in Section I-A.1, we note that PGM1, STS4, SBE3, ISA3
and DPE1 are identified as having similar activity patterns
in the diurnal cycle, whether in clustering Dy, Dy or M.
These genes are among those that encode phosphoglucomu-
tase, starch synthase IV, starch branching enzyme III, starch
debranching enzyme - isoamylase II and glucanotransferase.
Further genes encoding both plastidial (PHS1) and cytostolic
glucan phosphorylase (PHS2) are also identified as acting to-
gether in all three groupings. The clustering of both replicates
identifies them as acting together with the previous group of



genes: however, the grouping based on M identifies these
genes as acting together in a separate second group that is
a bit more distinctive than the first. The grouping for glucan
water dikinase 1 (GWDI1 and SEX1) is a bit less certain:
it agrees with the first group of genes in the clustering of
D5 and M, but with the second grouping in the partitioning
of the replicates. Genes encoding starch synthase I (STS1)
are identified as acting together with the second group in
the clustering of the two replicates but not of M. Similar is
the case for ADP-Glc phosphorylase (large subunit 2) (APL2)
and transglucosidase (DPE2) which are identified as acting in
concert in all partitionings, and also in concert with the second
set of genes above in partitionings of both D; and M but not
of Ds. Further, genes encoding starch debranching enzyme:
isoamylase I (ISA1) share the same partition as APL2 and
DPE2 for Dy and M but not for D;. Further, among those
genes in Table 1 of Smith et al [21] whose assignment is not
supported by experimental evidence, glucan water dikinase-
like 3 (GWD3) acts in conjunction with the first group
mentioned above in all three partitionings, and (3-amylase 9
(BAM9 and BMY?3) is also identified in all clusterings to act
together with S-amylase 9 (BAM3, BMYS8 and ctBMY). There
is also some evidence that a-glucosidase-like 2 (AGL2) acts
together and in conjunction with the first group above, being
in the same partitions of D; and M, but not of D,. Similar
is the case for (3-amylase 6 (BAMG6) which is identified as
acting in concert with the gene encoding starch debranching
enzyme: isoamylase IT (ISA2 and DBE1) from clusterings of
D1 and Ds but not M. Also, a-glucosidase-like 5 (AGLS) is
identifying as sharing activity patterns with ISA1, APL2 and
DPE2 in case of both Dy and M but not D;. These derived
partitions can be further analyzed for potentially deepening
understanding into the complex process of starch synthesis
and breakdown over a twenty-four-hour period. The fact that
there is variability in some of these groupings also indicates
that there is need, in some cases, for more experiments and
further analysis. In any case, it may be noted that the above
results are dependent on the choice of the most significant
genes (by setting the choice of the expected FDR at 5% above).
Indeed, PGII and several other genes mentioned in Smith e?
al [21] are not in the reduced set. An alternative may be to use
the tight clustering approach for clustering in the presence of
scatter, using perhaps a refinement (or a possible refinement
thereabout) of Tseng and Wong [33] on the entire dataset.
However, we note that even then, initialization remains an
issue, since their suggestion of using hierarchical clustering to
obtain starting values is not practical on a dataset with 22,810
genes.

B. Profiling Industrial Facilities Based on Mercury Releases

Given the severely skewed nature of the release data,
we modeled a transformation Z = (X) of the re-
ported releases from each facility X in terms of f(z) =
Zszl Ted(2; by, 2), where ¢(z; py, ) denotes the multi-
variate Gaussian density with mean g, and common disper-
sion 3 evaluated at z, Z = (Z1,22,...,2Zp) and Z;, =
log (1 +log (14 X;)). Marginally, the density reduces to a
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Fig. 6. Distribution of members in each identified group from largest (top) to
smallest (bottom), with area of the displayed rectangles proportional to group
size. For each coordinate, the imaged intensities represent, on a common
loglog scale, the deciles of the marginal release data for each group and
release type.

mixture of distributions similar to the loglognormal introduced
by Lin [51]. We adopt this distribution based on descriptive
analyses and its inherent simplicity. Even then, there are
some very outlying observations, so we also postulate a
homogeneous dispersion assumption on the transformed data.
As a result, we can identify both groupings and extreme
observations in one stroke.

For different numbers of clusters, we initialized the EM
algorithm using our suggested methodology and iterated till
convergence. BIC identified 113 optimal clusters, and the
corresponding grouping had classes ranging in size from a
singleton to 281 (20.01%) reporting facilities. A substantial
number of extreme observations are identified. All 113 classes,
and the marginal distributions of their memberships, in terms
of their deciles, are displayed in Figure 6. In order to be
able to portray the quantiles, the intensities are mapped on
a shifted loglog scale, corresponding to the -transformation
above. The display indicates widely divergent distribution of
release characteristics for the different groups and visually
provides confidence in the clustering obtained. About 48 of
these groups are singletons, representing records that are far
unlike any other. The 17 largest groups are enough to account
for at least 80% of the data. While a study of outlying and very
dissimilar release profiles may be of interest, our focus was
on characterizing the many different aspects of these releases.
We now describe the nature and composition of the five largest
groups accounting for just under 59% of all facilities.

The largest group had air emissions — like most others
almost entirely from the stack — reporting a median (& = 24.55
Ibs.) and a mean (p = 88 1bs.). Only a few facilities in this
group disposed very small amounts of mercury via land or
offsite. Seventy-six, or 51% of all facilities manufacturing
stone, clay, glass and concrete products form the largest bloc in
this group, followed by electrical services facilities (66 reports)
and chemicals and petroleum-refining facilities (41 and 21
reports, respectively). Given the composition of the facilities
in this group, it is not very surprising that Texas (31) accounts



for the largest number, followed by Pennsylvania (22) and a
number of midwestern and southern states.

The second largest group was characterized largely by
facilities that report substantially large amounts of (stack) air
emissions (u = 249.17 1bs., i = 177 1bs.) and large releases
to land (p = 186.11 Ibs., 1 = 81.88 Ibs.). Over 76.62% (118)
of the reports were from facilities in the electrical services
industry: in particular, all but one of these were from fossil-
combusting facilities. Further, most of these facilities were
from the midwestern and southern states. The third largest
group consists of facilities that report moderate stack air
releases (¢ = 79.26 lbs., 1 = 31 1bs.) and offsite disposal
(@ = 4488.18 1bs., i = 19.46 lbs.). About (56%) of the 148
facilities in this group are from the electric generation services,
while 14 are from petroleum refining and allied industries.

The fourth largest group can be categorized as the “clean-
est”, characterized by low stack air emissions (u = 0.54
Ibs., i = 0.15 1lbs.) and low land and offsite disposals. This
group had very similar numbers of facilities from the major
industries, with no clear pattern. Out of the 19 facilities from
the fossils-combusting electricity generating facilities, 12 were
from Puerto Rico, California and Massachusetts, with the
remaining seven scattered over several states.

The fifth largest group of reports are characterized by
large quantities of offsite mercury disposals (u = 1,253.55
Ibs., i = 30 1bs.) coupled with low releases to land or to
air through the stack. Perhaps unsurprisingly, refuse systems
formed the largest category here. These facilities are all in an
industry category called “Business Services”. However, this
group also had a few facilities manufacturing chemicals and
allied products as well as coal- and ol-fired electrical utilities.

Analysis of the major groups in the dataset suggests that
coal- and gas-powered electric services facilities dominated
groups characterized by high volumes of mercury releases to
air. While some preponderance is expected, given that they
filed almost 35% of all mercury release reports in 2000,
their presence in these groups was disproportionately high.
Further down, the seventh largest group had releases, almost
all to land (u = 843.3 lbs., it = 74.25 lbs), and with
the majority composed by mining facilities. In both cases,
some facilities of the same types were also in groups with
low releases, indicating that local factors may influence their
release behaviors, and should be studied further in formulating
appropriate policies for public health.

The use of our methodology to initialize partition-
optimization algorithms in the two areas above is promising.
While k-means and EM-clustering algorithms could be used
here using any initialization strategy, the performance evalua-
tions of Section III provide some confidence in the groupings
picked up in these two applications. At the same time, many of
the classes identified in each of these applications are intuitive
and lend further strength to conclusions on inferred group
properties and behaviors.

V. DISCUSSION

The main contribution of this paper is the development
of a computationally feasible deterministic algorithm for

initializing greedy partition-optimization algorithms. Prelim-
inary results on an extensive suite of test experiments and
a classification dataset are very promising. We also provide
detailed simulation studies to evaluate performance of several
commonly-used initializers. Our evaluations are over a vast
range of cases, from scenarios ranging from substantially-
overlapping to well-separated groups with differing inclusion
probabilities. It is very unlikely that any algorithm can uni-
formly be the best among all initializers in all cases: indeed,
the performance evaluations in this paper strongly suggest
otherwise. However, they also indicate that the suggested
approach can be added to the toolbox of good candidates
for use as an initializer. Implements from this toolbox can
be used on clustering problems and the best chosen from
amongst them. We have also developed ISO/ANSI-compliant
C software for our algorithm. Our algorithm is computer-
intensive, but practical, and took no more than a few seconds
to suggest an initializer, even on a moderately-sized dataset.
Further, as a consequence of the excellent performance in
partitioning the experimental datasets, algorithms initialized
via our suggested methodology performed very well in the
difficult task of clustering when the number of groups was
unknown. We also applied our algorithm with k-means to
analyze microarray gene expression data on the diurnal starch
cycle in Arabidopsis leaves. We also used it, together with
a model-based EM clustering approach to group different in-
dustrial facilities that reported releases of mercury or mercury
compounds in the year 2000. While the goal behind the first
application is to obtain a better understanding of the pathways
and processes involved in starch synthesis and breakdown,
the second application was geared towards characterizing the
different kinds of mercury releases in order to effectively frame
policies to improve public health. In each case, the results
arrived at were both interpretable and provided additional
insight into the underlying factors governing the two datasets.
Clustering is widely used in several applications in the health
and biological sciences, and partition-optimization algorithms
are often employed to achieve the task. There is therefore
need for effective initialization strategies for these algorithms
and this paper suggests methodology for this purpose. At the
same time, there is need for adaptation of methodology for
cases where the distance metric for clustering can not be
reduced to a transformation of Euclidean distance, or when
the underlying mixing distributions are not Gaussian. Another
area not addressed is the issue of when we have a large number
of coordinates, which renders the specific implementation of
our algorithm using SVD computationally prohibitive. Thus,
while our suggested methodology can be regarded as an im-
portant statistical contribution towards strategies for effective
initialization, there are issues that require further attention.
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