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Abstract: Genes and gene products interact on several levels, forming transcriptional regulatory-,
protein interaction-, metabolic- and signal transduction networks. Genetic, biochemical and mol-
ecular biology techniques have been used for decades to identify biological interactions; newly
developed high-throughput methods now allow for the construction of genome-level interaction
maps. In parallel, high-throughput expression data paired with computational algorithms can be
used to infer networks of interactions and causal relationships capable of producing the observed
experimental data. Graph-theoretical measures and network models are more and more frequently
used to discern functional and evolutionary constraints in the organisation of biological networks.
Perhaps most importantly, the combination of interaction and expression information allows the
formulation of quantitative and predictive dynamic models. Some of the dominant experimental
and computational methods used for the reconstruction or inference of cellular networks are
reviewed, also the biological insights that have been obtained from graph-theoretical analysis
of these networks, and the extension of static networks into various dynamic models capable of
providing a new layer of insight into the functioning of cellular systems is discussed.
1 Definition of cellular networks

A system of elements that interact or regulate each other can
be represented by a mathematical object called a graph (or
network) [1]. At the simplest level, the system’s elements
are reduced to graph nodes (also called vertices) and inter-
actions are reduced to edges connecting pairs of nodes.
Edges can be either directed, specifying a source (starting
point) and a target (endpoint), or non-directed. Thus, the
interactions among genes and gene products can be depicted
graphically as networks with either directed or non-directed
edges. Directed edges are suitable for representing the flow
of material from a substrate to a product in a reaction or the
flow of information from a transcription factor to the gene
whose transcription it regulates. Non-directed edges are
used to represent mutual interactions such as protein–
protein binding. Graphs can be augmented by assigning
various attributes to the nodes and edges: multi-partite
graphs allow representation of different classes of node
(such as mRNA and protein), and edges can be character-
ised by signs (positive for activation, negative for inhi-
bition), or weights quantifying confidence levels, strengths
or reaction speeds.

In this review, we will focus on graphs constructed from
molecular-to-cellular level interactions. At the genomic
level, transcription factors activate or inhibit the transcrip-
tion of genes to give mRNA. Since these transcription
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factors are themselves products of genes, the ultimate
effect is that genes regulate each other’s expression as
part of gene regulatory networks. Similarly, proteins partici-
pate in diverse post-translational interactions that lead to
modified protein functions or they bind to form protein
complexes: the totality of these processes is called a
protein–protein interaction network. The biochemical reac-
tions of cellular metabolism can likewise be integrated into
a metabolic network whose fluxes are regulated by enzymes
catalysing the metabolic reactions. In many instances these
different levels of interactions are integrated, as is done, for
example, when the presence of an external signal triggers a
cascade of interactions that involves both biochemical
reactions and transcriptional regulation.

Genome-level information concerning cellular networks
is often described using five ‘omes’: genome (DNA
sequence information), transcriptome (the totality of tran-
scribed genes), proteome (all the proteins in a cell), metabo-
lome (all the metabolites in a cell), and interactome (the
totality of protein interactions). Though all the ‘omes’,
with the exception of the interactome, essentially provide
vertex information, metabolome and transcriptome data
can be used to infer networks of indirect interactions.
During the last decade, the respective omics have
produced an incredible quantity of molecular expression
and interaction data, contributing to maps of specific
cellular networks [2, 3].

The full representation of transcriptional regulatory maps
associates two separate node classes with transcription
factors and mRNAs, respectively, and has two types of
directed edge, which correspond to transcriptional regulation
and translation [4]. The edges describing transcriptional
regulation can have two regulatory effects (signs): acti-
vation and inhibition. In protein interaction graphs, the
nodes are proteins, and two proteins are connected by a non-
directed edge if there is strong evidence of their association.
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A metabolic network can be represented as a directed and
weighted tri-partite graph, whose three types of node are
metabolites, reactions, and enzymes, and whose two types
of edge represent mass flow and catalytic regulation,
respectively (see Fig. 1). Fig. 1a shows the most detailed
picture includes three types of node: reactants (circles),
reactions (ovals) and enzymes (squares) and two types of
edge, corresponding to mass flow (solid lines) or catalysis
(dashed lines). The edges are marked by the stochiometric
coefficients of the reactants. The metabolite network
(Fig. 1b) shows that all the reactants that participate in the
same reaction are connected by non-directed edges, and
thus the network is composed of a set of completely con-
nected subgraphs (triangles in this case). The reaction
network (Fig. 1c) shows two reactions that are connected
by a non-directed edge if they share a reactant. A similar
graph can be constructed for the enzymes.

Mass flow edges connect reactants to reactions and reac-
tions to products, and are marked by the stoichiometric coef-
ficients of the metabolites [5, 6]; enzymes catalysing the
reactions are connected by regulatory edges to the nodes sig-
nifying the reaction [7]. Several simplified representations
include the substrate graph, whose nodes are reactants,
joined by an edge if they occur in the same chemical reaction
[8], and the reaction graph, whose nodes are reactions, con-
nected if they share at least one metabolite.

Signal transduction networks, connecting extracellular
signal inputs to the control of transcription factors, share a
significant overlap with protein interaction networks and
metabolic networks, as they involve both protein inter-
actions and biochemical reactions. The nodes of signal
transduction networks can be categorised by the function
of the corresponding protein or molecule, and the edges
are mostly directed, indicating the direction of signal propa-
gation. Finally, information on gene co-expression [9], gene
co-occurance [10], or genetic interactions [11] can be used
to construct networks of gene functional relationships. For
example, a synthetic lethal interaction, connecting a pair
of genes whose combined knock-out causes cell death, indi-
cates that these genes buffer for one another (see Fig. 2).
The hypothetical cellular network module in Fig. 2 receives
exogenous signals through the central top node, and the
transfer of information (denoted by an arrow) to its sink
node (bottom centre node) determines the response to the
signal (or the phenotype). The nodes B–F form two syner-
gistic functional complexes. The large (source and sink)
nodes of this network correspond to essential genes. All
other nodes represent non-essential genes, as there are two
node-independent (redundant) pathways between the
source node and sink node that can compensate for each
Fig. 1 Three possible representations of a reaction network with
three enzyme-catalysed reactions and four reactants
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other. Synthetic lethal interactions (paler lines) are indi-
cated by pairs of nodes whose loss causes the disconnection
of the source and sink nodes. Genetic interactions reflect a
complex functional compensatory relationship and not a
physical interaction [11].

This review focuses on four major questions. First, how
can one map or infer the regulatory network underlying a
biological system, and at what scale should such a map be
constructed for an optimal understanding of the system?
Second, what are the best measures that capture the most
salient features of a biological network? Third, what are
the selective constraints that determine how biological
networks evolve? And finally, how does the topology of
biological systems influence their dynamics and function?
We aim to present a representative (while by necessity
not comprehensive) picture of recent progress made in
answering these questions. Several excellent books [12,
13] and reviews [14–16] offer a complementary reading
on the state of the art in systems biology.

2 Experimental methods to detect interactions

Advances in molecular biology techniques increased the
resolution to which interactions could be detected and
gave flexibility to the implementation of other experimental
techniques. More recently, in tandem with improvements
in computational techniques for the analysis of complex
systems, improved experimental methods capable of detect-
ing a large number of interactions among biomolecules
have produced high-throughput data. These improvements
promise to change the focus of cell biology from an
understanding of local, binary interactions to an understand-
ing of the aggregation of these interactions into a functional
system. In this section we review some of the methods
currently used to obtain binary interaction data, and we
examine the potential of these methods to produce high-
throughput data.

2.1 Transcriptome data

Transcriptome data convey the identity of each expressed gene
and its level of expression (the abundance of its transcribed
mRNA) for a defined population of cells. High-throughput
mRNA data can be obtained by different approaches: for
example, serial analysis of gene expression (SAGE) [17],
hybridisation to small, high-density arrays containing syn-
thetic oligonucleotides [18], and the most frequently used
method, DNA microarrays [19, 20]. While the transcriptome
Fig. 2 Connections between pathway redundancy and synthetic
lethal interactions
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constitutes node (component)-level information without infor-
mation on interactions, it can be used to generate networks of
functional relationships between genes. Gene expression data
studied across time can be combined with computational
methods to extract interactions [21, 22] (see Section 3).

The construction of transcriptional regulatory networks
requires the large-scale detection of transcription factor
(TF)–DNA interactions. Detection of a TF-bound nucleo-
tide sequence confirms a TF–DNA binary interaction.
Once the nucleotide sequence is known, array technology
is used to look for the binding of other known TFs to the
same site. The protocol for the detection of nucleotide
sequences entails isolating the specific nucleotide sequence,
followed by its analysis and identification.

Methods for TF binding-site isolation include DNA foot-
printing and chromatin immunoprecipitation (ChIP), with
which the bound TF protects a target DNA segment from
DNase-instigated degradation or shearing [23, 24]. For
ChIP the protein and the bound DNA fragments are precipi-
tated using a specific antibody against the TF [25]. The
ChIP method has been used in recent high-throughput
studies investigating 106 TFs [4] and 11 TFs that function
at the G1/S transition [26]. A third method is based on
the fact that DNA around the binding sites is preferentially
methylated by DNA adenine methyltransferase [27].
Subsequently, the non-methylated DNA fragments are
digested and removed by specific enzymes [28, 29]. Sun
et al. [29] used this technique to map protein–DNA inter-
actions at high resolution along large segments of
Drosophila melanogaster genomic DNA.

After the binding sites have been isolated, they are ana-
lysed with electrophoresis methods or autoradiography. In
most cases, the concentration of the sequence is below
detection level, and hence polymerase chain reaction
(PCR) is used for amplification. The ChIPchip technique
combines the ChIP technique with DNA microarray tech-
nology [26, 30]: thousands of DNA fragments are first pur-
ified via the ChIP method, and are then identified
simultaneously with microarray experiments. Known infor-
mation about binding site sequences can be retrieved by
web-based tools that query databases such as the transcrip-
tion factor database (TRANSFAC) [31], regulon database
(RegulonDB) [32], and the Kyoto encyclopedia of genes
and genomes (KEGG) [33].

2.2 Interactome data

The interactome represents protein–protein interactions,
including the formation of enzyme complexes (which, in
turn, direct biochemical interactions, post-translational
modifications etc.) and interactions involved in signal
propagation.

Protein precipitation methods (pull-down assays [34])
(Fig. 3) are most commonly used for detecting these inter-
actions. Potential interactors can be targeted with native,
processed or post-translationally modified proteins (baits)
[35]. For high-throughput experiments, the bait is tagged
by Hemaglutinin (HA), TEV (tobacco etch virus) [36] or
a tandem affinity purification (TAP) tag (which consists of
two IgG binding domains of Staphylococcus aureus
protein A and a calmodulin binding peptide separated by
a TEV protease cleavage site) [37]. For metazoans,
tagging is combined with siRNA-mediated downregulation
of the endogenous form of the bait protein [38]. The bait is
allowed to interact with potential interactors (in for instance
cell lysates), and it is then recovered with antibodies against
the tag bound to a solid support along with its interacting
partner. The final step in protein purification often involves
IET Syst. Biol., Vol. 1, No. 2, March 2007
Fig. 3 Steps in a protocol of a traditional protein pull-down
assay. Reprinted from [34] with permission from Springer
Science and Business Media
using protease cleavage (e.g. by Trypsin) to release the
complexes from the support. The recovered sample is
passed over a column (e.g. calmodulin), and is then eluted
(e.g. with Ca2þ chelators). This two-stage purification
ensures low background noise and correspondingly high
sample purity, but risks losing weak interacting partners
or complex components due to the harsh purification
procedure. The recently introduced protein chip method
combines pull-down assay technology with microarray
techniques and is used for large-scale studies [39].

The above methods capture only those interactions that
have a certain minimum affinity and that occur in undis-
turbed cells. An often-used alternative, the yeast two
hybrid (Y2H) method, exploits the interaction between the
DNA binding (DB) domain and the activation domain
(AD) of the yeast transcription factor GAL4p to detect
binary interactions. Hybrid proteins are created by fusing
the two proteins or domains of interest (generally called
‘bait’ and ‘prey’) to the DB and AD regions of Gal4p.
These two hybrid proteins are introduced into yeast, and
if transcription of Gal4p-regulated reporter genes is
observed, the two proteins of interest are deemed to have
formed an interaction, thereby bringing the DB and AD
domains of Gal4p together and reconstituting the functional
transcriptional activator.

Various mass spectroscopic (MS) methods, such as
matrix assisted laser desorption/ionisation (MALDI), elec-
trospray ionisation (ESI), or mass fingerprinting [40], are
used to sequence proteins in a complex. The high accuracy
of MS spectra, combined with knowledge of the genomic
sequence of the organism in question, permits rapid and
accurate identification of the proteins involved in the recov-
ered complex. Quantitative MS can be used to detect low
affinity (specific) interactions. The bait and a closely
related, but binding-deficient, control bait are exposed to
normal and isotopically labeled cell lysates, respectively.
The associated proteins are mixed and analysed; the quanti-
tative ratio of the label recovered by the bait and its close
relative indicates the degree of exclusive binding to the
bait. Non-specifically binding proteins are identified by
their failure to show a significant quantitative difference
in the ratio [41]. This method has been applied to identify
signal-dependent, phosphorylation-mediated interactions
[41]. In another adoption of the same principle, synthetic
peptides were used as baits to selectively capture inter-
actions of phosphopeptides, while the non-phosphorylated
peptide acted as the control [42].

In two independent large-scale studies, hundreds of yeast
proteins were tagged either by a small epitope tag [43] or by
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the TAP tag [44]. Besides yielding interactions for about
25% of the yeast proteome, this study also revealed a
higher-order organisation of complexes, defined via their
shared components in different pull-downs. Y2H yielded
the first interaction maps of metazoans, namely D. melano-
gaster [45], Caenorhabditis elegans [46] and Homo sapiens
[47]. The density of biologically relevant interactions (true
positives) in the highest-confidence subset of these maps
was estimated at around 40–90%. Protein chips were used
to assess the yeast proteome [48] by using tagged calmodu-
lin bound to several wells, recapitulating known interaction
partners and revealing many novel ones. The protein chip
technique is especially suited to determining peptide or
protein-domain interactions [49] and, in combination with
Y2H data, has been used to establish interaction partners
of the entire repertoire of yeast.

Once proteins have been identified, proteome and interac-
tome databases can be mined for available information on
interaction partners. Many interactome databases are main-
tained, including the database of interacting protein (DIP)
[50], the biomolecular interaction network (BIND) [51],
that of the Munich Information Center for Protein
Sequences (MIPS) [52], the human protein reference data-
base (HPRD) [53], and the yeast proteome database
(YPD) [54].

2.3 Metabolome data

A substantial portion of the genome encodes enzymes that
interconvert metabolites, synthesise cofactors, or regulate
small molecule metabolism. Metabolites can, in turn,
control gene expression and are allosteric regulators of
enzymes. Experimental techniques of metabolome analysis
include methods to trace and identify metabolites and to
characterise enzymes catalysing reactions.

To characterise enzymes, either gene modification or
enzyme isolation/purification methods are used. For
example, Bussow et al. [55] prepared a set of Escherichia
coli strains expressing tagged proteins in a 96-well
format, spotted them onto a filter, and screened them for
glyceraldehyde-3-phosphate dehydrogenase activity [56].
High-throughput methods of gene modification include the
use of mutagens, followed by PCR amplification and identi-
fication [57]. Protein and DNA microarrays are also used to
identify enzyme-encoding genes. The intracellular concen-
tration of metabolites can reveal the activity of metabolic
enzymes. Quantification of the change of several metabolite
concentrations relative to the concentration change of one
selected metabolite can reveal the site(s) of action in the
metabolic network [58]. In the same way, comprehensive
analyses of metabolite concentrations in mutants, providing
‘metabolic snapshots’, can reveal functions when snapshots
from strains deleted for unstudied genes are compared to
those deleted for known genes.

Metabolite identification necessitates the location and
extraction of metabolites. Isotopic labelling (C-14, C-13)
is used to trace carbon flow in a pathway; in E. coli 100
metabolites were identified using this technique [59].
Isotopic labelling can be used in conjunction with measure-
ment of natural isotope levels to estimate fluxes [60].
Classical liquid–liquid extraction of cellular material is
often used to extract phospholipids. Depending on the
classes of metabolites (their mass range, thermostability
and volatility) to be separated, different types of chromato-
graphy and MS techniques can be used. Field desorption
was the first MS method used to analyse intact phospholi-
pids; MALDI and electrospray ionisation (ESI), are used
for high-throughput studies. The major advantages of
64
ESI-MS are high accuracy, sensitivity, reproducibility,
and the applicability of the technique to complex phospho-
lipid solutions. Recently, Soga and colleagues developed a
powerful analytical method using capillary electrophoresis–
electrospray ionisation mass spectrometry that dramatically
increases the number of metabolites that can be measured
simultaneously [61, 62].

For flux quantification, MS [63, 64] combined with the
separation ability of gas chromatography has been used
for many years to measure the mass isotopomer distribution
of intracellular metabolites in cell lysates for flux quantifi-
cation in the context of disease diagnosis [65, 66].
Various other networks were analysed in subsequent
studies using the same method [67, 68]. Other parameters
that can be estimated in metabolic pathways are half-lives
and turnover rates. The in vivo method includes intravenous
injection of a labelled substrate that is integrated in a well
defined metabolic pathway to determine its plasma input
function to the tissue by following the tracer over time
using positron emission tomography (PET) or autoradiog-
raphy [69]. The function and metabolic pathways of ident-
ified metabolites can be looked up in the Encyclopedia of
Metabolic Pathways (MetaCyc) [70] and the KEGG [33].

3 Computational methods for inferring network
structure

Computational inference (also referred to as reverse engin-
eering) aims to extract causal relationships from transcrip-
tome, proteome and metabolome data. Inference of
cellular networks allows for a clearer comprehension of
the inner machinery of the cell, and when combined with
modelling, can also be used to make experimentally verifi-
able predictions about cellular networks. A variety of com-
putational methods for network inference exists; choosing a
specific computational method depends on the nature of the
data from which inferences will be made, on the type of
network under consideration, on the features of the system
one would most like to illuminate, and on the amount of
computational time available to the researcher. Loosely
speaking, computational methods fall into one of three
classes: probabilistic, deterministic, and probabilistic/
deterministic hybrids. In this section, we examine the domi-
nant methods available in each of these classes, and we
describe the circumstances under which a choice of
method from a particular class is appropriate.

3.1 Probabilistic methods

Probabilistic methods, including clustering analyses [71,
72], data-mining [73, 74], and naïve Bayesian networks
[75, 76], are applicable both to the inference of protein–
protein interactions, and to the inference of functional
relationships among genes based on similarities in gene
expression profiles. In clustering algorithms, the correlation
of the expression profiles of two target genes or proteins is
scored against their individual correlations with all other
profiles in the data set [72]. Genes or proteins with statisti-
cally similar profiles are then clustered using, for example,
hierarchical clustering algorithms [21], self-organising
maps [77], or K-mean clustering algorithms [78].
Recently-developed methods use topological measures to
establish correlation thresholds for determining whether or
not pairs of genes are co-expressed: transitivity criteria
lead to excellent agreement with Bacillus subtilis operon
structure and differential regulation [79], and heterogeneity
criteria lead to experimentally validated gene modules in
human glioblastoma [80]. Because of the strong evidence
IET Syst. Biol., Vol. 1, No. 2, March 2007



of correlations between protein co-expression and protein
interactions [72, 81], clustering methods can effectively
be used for the inference of protein–protein interaction net-
works. Such methods have, for instance, been applied to the
Saccharomyces cerevisiae interactome [81]. While it is
possible to deduce functional similarities among gene
products by clustering the genes according to probabilistic
correlations in their micro-array expression profiles [72,
81], clustering is less useful for the inference of specific
gene-regulatory relationships, since correlation between
mRNA expression profiles associated with two or more
genes does not necessarily imply a causal relationship
among these genes. Nevertheless, clustering of genes on
the basis of expression profiles can give insight into the
classes of genes that respond in a similar manner to
varying conditions, and that might therefore be co-regulated
[72, 80, 82, 83], and these functional clusters can be used as a
starting point for determining gene-regulatory relationships.

Data-mining can be used to infer protein–protein inter-
actions, gene-regulatory relationships, and even metabolic
pathways [73, 74]. Data-mining schemes typically extract
information on relationships between two entities based
on the statistical co-occurrence of features of interest
associated with the entities, for example, their inclusion in
databases and biomedical journals [74]. In this case, by cor-
relating the frequencies of the keywords with the probability
that a given interaction is addressed in a paper (estimated
from a training set) [73, 84], machine learning algorithms
can determine whether or not a particular paper is likely to
discuss a specific interaction. Algorithms of this nature
have been used extensively to augment the yeast protein–
protein interaction network [73]. Search tools such as
STRING (http://string.embl.de/) employ similar data-mining
methods for the inference of both direct and indirect protein–
protein interactions in eukaryotes and prokaryotes [85, 86].

Bayesian network protocols are used to integrate multiple
data sets, having variable reliability, for network inference
[75, 87]. Bayesian networks are graphical representations
of joint probability distributions, consisting of two parts, a
directed, acyclic graph (DAG) that qualitatively describes
the dependency relationships among variables in the
system, and a set of local joint probability distributions
that statistically convey these relationships [87]. A node j
is assumed to depend conditionally on a node i if there is
a directed path from i to j in the DAG. Knowing that the
observed state of node j is conditionally dependent on the
states of (some or all) other nodes with which j has a depen-
dency relationship, the task of Bayesian inference is to find
the posterior distribution of nodes that engender the
observed state of node j. The posterior distribution is a com-
bined probability, and the distribution yielding the highest
logarithmic value (i.e. the highest Bayesian score) is
chosen as the best fit to the data.

Bayesian network analysis typically produces multiple can-
didate networks for a single data set, and these candidates are
scored against the observed data and against one another [88].
The links in each network’s initial DAG can be established
either randomly, or heuristically, based on an initial assess-
ment of the experimental data. An iterative search-and-score
algorithm is generally employed: for example, a genetic
algorithm might randomly swap edges between two candidate
networks, recalculating the posterior distribution and
Bayesian score for each network and discarding the networks
whose score is lower than a previous score [88].

Benchmarks for weighting Bayesian networks are
typically obtained by determining the likelihood, within a
given data set, of observing particular events that have
been confirmed in the open literature; inferred dependency
IET Syst. Biol., Vol. 1, No. 2, March 2007
relationships can then be weighted by the overall accuracy
of the data set to which they belong [75]. Bayesian networks
have been employed to sort yeast proteins into functional
groupings based on a multi-variate Bayesian score achieved
by each protein [75]. These methods have also been applied
to the inference, from DNA hybridisation-array data, of
gene–protein interactions of the S. cerevisiae cell cycle
[87]. A dynamic extension of the naïve Bayesian network
approach can also be used to uncover regulatory relation-
ships from time-course data [87], giving a time-dependent
joint probability distribution. However, these dynamic
Bayesian networks require extensive pre-existing knowl-
edge of the biological system under consideration, and
such knowledge is not always available.

3.2 Deterministic methods

Deterministic methods employed for the inference of
gene-regulatory networks from time-course gene expression
(micro-array) data seek to correlate the rate of change in the
expression level (mRNA concentration) of a given gene
with the levels of other genes in the network by describing
the interdependence in expression in one of two ways: con-
tinuous deterministic methods postulate a system of differ-
ential equations [89, 90], while Boolean and other logical
methods predict a discrete relationship [91, 92].
Deterministic methods based on systems of linear differen-
tial equations have, for example, been used to infer
gene-regulatory networks in B. subtilis [90] as well as regu-
latory networks specific to the central nervous system of the
rat [89]. Experimental data on gene expression levels is sub-
stituted into the relational equations, and the ensuing system
of equations is then solved for the regulatory relationships
between two or more components [90]. Because often
there are far more biochemical components in the network
than there are experimental time points, multiple networks
will be possible solutions; for this reason, a plausible optim-
isation procedure (e.g. assuming maximum sparseness) is
also incorporated into the method [90]. Although differen-
tial equation-based deterministic methods tend to be fairly
accurate, nonlinear deterministic methods, in particular,
are computationally cumbersome and difficult to
implement.

Deterministic Boolean methods (and other logical
methods), in their simplest form, replace the linear or non-
linear differential equations, with Boolean logical functions
for each node [91, 92]. The standard Boolean method
assumes that the expression level of each node can be
approximated with a binary variable: each node is either
expressed/ON or not expressed/OFF. Each node’s logical
function is found by determining the minimum set of
nodes whose (changing) expression levels can explain the
observed changes in state of the given node in all exper-
imental trials. Generally, an optimization technique, such
as the coefficient of determination [93] is employed for
this inference. It is possible that more than one minimum
set may be found for a particular node, and, in this case,
multiple networks explain the experimental observations.
While less accurate than differential equation-based
methods, Boolean methods are usually more computation-
ally tractable, and algorithms, such as REVEAL (reverse
engineering algorithm) [94], offer promising first steps
towards large-scale network inference.

Metabolic pathway reconstruction from known stoichio-
metric information is usually performed by constraint-based
deterministic methods [95]. Particular network states of inter-
est can be found from flux balance analysis [96, 97]; for time
series analyses S-systems, power-law approximations
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of enzyme-catalysed reactions, are used [98]. Recently, a
bi-level linear optimisation strategy that first selects an
optimal active subset of a predetermined set of metabolic
reactions, and then optimises the metabolic flux distri-
bution, was proposed [99]. A similar framework identified
the changes in an E. coli genome-scale metabolic model
that are needed to minimise the discrepancy between
model predictions of optimal flux distributions and exper-
imentally measured flux data [100].

3.3 Hybrid methods

The accuracy and realism of network inference methods is
increased by incorporating stochastic fluctuations in
expression levels due to the potential variability of the syn-
thesis and degradation rates of network constituents [92,
101]. For example, probabilistic Boolean methods [91,
102] bridge the gap between discrete and continuous
deterministic methods, while incorporating the effects of
uncertainty by assigning to each node N Boolean functions,
each with some probability of being chosen to advance the
state of the node to which it belongs [91, 102]. An optimis-
ation procedure, usually a machine learning algorithm [93,
102], then selects the updating function for each node at
each time point. A novel regulatory network involved in
embryonic segmentation and muscle development in D.
melanogaster [103] was recently produced using a probabil-
istic Boolean method. Although probabilistic Boolean
networks are attractive in that they maintain the large-scale
inference ability of standard Boolean methods while
relaxing the determinism of the basic method, they can be
problematic to use for the extraction of large networks,
since successful implementation of the optimisation
algorithms requires the estimation of a large number of
parameters, and since the amount of training data needed
for useful predictions is often prohibitively extensive.

The majority of network inference methods presented in
this section use node-level (expression) information to infer
causal relationships. There is also a complementary
problem: inferring interactions from indirect causal
relationships. Indeed, experimental information about the
involvement of a protein in a process is often restricted to
evidence of differential responses to a stimulus in wild-type
organisms versus an organism where the respective pro-
tein’s expression or activity is disrupted. These observations
can be incorporated by two intersecting paths in an (incom-
pletely mapped) interaction network; the inference algor-
ithm must integrate indirect and direct evidence to find a
network consistent with all experimental observations
[104]. This inference problem is less studied [104–106],
but we expect it will play an increasing role when integrat-
ing information from disparate data sources.

4 Network measures

With a set of experimentally determined or inferred inter-
actions in hand, the relevant cellular network can be
constructed. A graph-theoretical analysis of a cellular
network can then provide powerful biological insights into
the structural organisation and function(s) of the system.
Here we present a handful of graph-theoretical measures
that can serve as the basis of such an analysis.

4.1 Degree and degree distribution

The degree of a node is the number of edges adjacent to that
node. If the directionality of interaction is important, a
node’s total degree can be broken into an in-degree and
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an out-degree, quantifying the number of incoming and out-
going edges adjacent to the node. For example, in Fig. 4,
node J has both in-degree and out-degree 2. In a graph
whose edges are quantified by weights one can also define
a node strength, the sum of the weights of the edges adjacent
to the node. For example, in Fig. 4, the strength of the node
P is 4. While the degree of a specific node is a local
topological measure, this local information can be
synthesised into a global description of the network by
reporting the degrees of all nodes in the network in terms
of a degree distribution, P(k) [P(kin) and P(kout) in directed
networks], which gives the probability that a randomly
selected node will have degree k (Fig. 4). The degree
distribution is obtained by first counting the number of
nodes, N(k), with k ¼ 1, 2, 3, . . . edges, and then dividing
this number by the total number of nodes, N, in the network
(the same procedure can be employed to find in- and out-
degree distributions for a given directed network).

The majority of cellular networks has been shown to have
(out-) degree distributions that are scale-free, meaning that
the high diversity of node degrees precludes the existence of
a typical node that could be used to characterise the rest of
the nodes in the network (reviewed in [107]). The degree
distribution of these scale-free networks is close to a power-
law: P(k) ’ Ak2g, where A is a normalisation constant, and
where the degree exponent g is typically similar for similar
networks. The degree distributions of protein interaction
networks, metabolic networks and the out-degree distri-
bution of most gene-regulatory networks, for example, are
power laws with 2 , g , 3 [4, 108, 109].

4.2 Clustering coefficient

The clustering coefficient quantifies the extent to which a
node’s first neighbourhood is a completely connected sub-
graph (clique) [110]. Mathematically, the local clustering
coefficient is given by

Ci ¼
2Ei

kiðki � 1Þ

where Ei is the number of edges connecting the immediate
neighbours of node i, and ki is the degree of node i. For
example, in Fig. 4, the clustering coefficient of node E is
1, since nodes E, F, and G are maximally cohesive (i.e.
form a clique). By averaging the clustering coefficients of
all nodes in a network to obtain an average clustering
Fig. 4 Illustration of frequently used network measures
IET Syst. Biol., Vol. 1, No. 2, March 2007



coefficient, an idea of the strength of the connectivity within
the network can be established. Protein–protein interaction
networks and metabolic networks [8] exhibit large average
clustering coefficients, indicating a high level of redundancy
and cohesiveness. Alternatively, the average clustering
coefficient of nodes with degree k can be plotted as a func-
tion of node degree, C(k) (Fig. 4). It has been found that for
a wide variety of cellular networks, this clustering-degree
relation has the functional form C(k) ¼ B/kb, where the
exponent b typically falls between 1 and 2 [111, 112].

4.3 Connectivity, paths, distances, efficiency and
graph components

Two nodes of a graph are connected if a sequence of adja-
cent nodes, a path, links them [113]. A path can signify a
transformation route from a nutrient to an end product in
a metabolic network, or it could represent a chain of
ligand-induced reactions from the source to the sink in a
signal transduction network. The distance (path length)
between any two nodes in a network is defined to be the
number of edges in the shortest path connecting those
nodes. For example, in Fig. 4, the distance between nodes
V and Z is 1 and the distance between nodes A and C is 2
(along the ABC path). If the edges of a network are
weighted (e.g. with rate constants), then the distance
between two nodes will be the sum of the edge weights
along the path for which this sum is a minimum [114].
Often, the average path length, d ¼ kdijl that is, the
average number of edges in the shortest path between any
two nodes in a network (Fig. 4), scales with the natural log-
arithm of the number of nodes in the graph: d � ln(N ). This
small world [110] property implies that path lengths remain
small, even if the networks become very large, and it is a
feature of metabolic and protein interaction networks.

Particularly when a network is directed, it is possible that
by starting at an edge adjacent to a given node and tracing a
path along consecutive edges, only a fraction of the nodes in
the network will be accessible to the starting node. If a
network is either directed or unconnected, it is often more
advantageous to define the graph’s global efficiency ¼
k1/dijl [115, 116]. Unconnected nodes’ distance is infinite
by definition, and thus these node pairs do not contribute
to the network’s efficiency. If, however, a path does exist
between every pair of nodes in a network, the network is
said to be connected. Directed networks having directed
paths, in both directions, between every pair of nodes are
said to be strongly connected. Even if a cellular network
is not (strongly) connected it is beneficial to identify con-
nected partitions of the network. For example, a directed
network has one or several strongly connected components,
a subgraph(s) whose node pairs are connected in both direc-
tions. Each strongly connected component is associated
with an in-component (nodes that can reach the strongly
connected component, but that cannot be reached from it)
and an out-component (the converse). For example, in
Fig. 4, nodes J, K, and M of the directed graph constitute
a strongly-connected component of the graph. The in-
component of the graph contains nodes H and I, while the
out-component contains nodes N and L. It has recently
been suggested that the nodes of each of these components
share a component-specific task within a given network. In
signal transduction networks, for example, the nodes of the
in-component tend to be involved in ligand-receptor
binding; the nodes of the strongly connected component
form a central signaling subnetwork; and the nodes of the
out-component are responsible both for the transcription
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of target genes as well as for phenotypic changes [117,
118]. By identifying large connectivity classes within a
network, one may be able to gain a sense of how the
network is organised functionally.

4.4 Betweenness centrality, sources and sinks

The number, (net) directionality, and strength of connec-
tions associated with a given node are measures of that
node’s local centrality, and can be synthesised into distri-
butions over all nodes in a network to give valuable
insight both into the heterogeneity of node interactivity
levels within a cellular network, and into the flow of infor-
mation, mass, or other entities through the network. In par-
ticular, the sources and sinks of the network – those nodes
with only outgoing or incoming edges, respectively, rep-
resent the initial and terminal points of the flow. In signal
transduction networks, for example, extracellular ligands
and/or their receptors are typically sources, acting as the
injection points for chemical signals; these chemical
signals then terminate at effectors, the networks’ sinks
[117]. If a node is neither a source nor a sink, its between-
ness centrality the number of (shortest) paths from node s to
node t passing through the node, divided by the total number
of (shortest) st-paths (Fig. 4) indicates the importance of
that node to the propagation of flow within the network
[119, 120]. For example, in Fig. 4, the weighted and
unweighted betweenness centralities of node P are higher
than the betweenness centralities of the other nodes in the
graph, since all paths involving node O must pass through
node P. One can similarly define the betweenness centrality
of an edge [121]. Even though a node’s betweenness
centrality is not necessarily correlated with its degree,
betweenness centralities are usually power-law distributed,
with a characteristic exponent close to 2 [122]. Holme
et al. have demonstrated that while the most ubiquitous
substrates in biochemical pathways may not have the
highest degrees in the network, they often have the
highest betweenness centralities [123].

5 Network properties of cellular networks

To date, few cellular networks have been reconstructed and
analysed in full. However, transcriptional regulatory maps
exist for E. coli [124] and S. cerevisiae [4, 108, 125], and
protein–protein interaction maps have been constructed
for a variety of organisms, including viruses [126], prokar-
yotes such as Helicobacter pylori [127], and eukaryotes
such as S. cerevisiae [128], C. elegans [46], D. melanoga-
ster [45] and H. sapiens [47]. Graph-theoretical analysis
of these and other cellular networks has yielded a wealth
of information regarding structural organisation and
functioning at the cellular level.

Both prokaryotic and eukaryotic transcription networks
exhibit an approximately scale-free out-degree distribution,
signifying the potential of transcription factors to regulate a
multitude of target genes. The in-degree distribution is a
more restricted exponential function, illustrating that com-
binatorial regulation by several transcription factors is
observed less than regulation of several targets by the
same transcription factor (see Fig. 5). Neither the E. coli
nor the yeast transcription network has strongly connected
components, suggesting a uni-directional, feed-forward
type regulation mode. Note that although purely transcrip-
tional feedback loops are under-represented, feedback is
still frequently accomplished through the protein-level
regulation of transcription factors, often via auto-regulation.
The subgraphs found by following the paths that start from
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Fig. 5 Genome-wide distribution of transcriptional regulators in
S. cerevisiae

a Full symbols represent the number of transcription factors bound per
promoter region (corresponding to in-degree of regulated gene)
Open symbols represent in-degree distribution of a comparable ran-
domised network.
b Distribution of number of promoter regions bound per regulator (i.e.
out-degree distribution of transcription factors)
Reproduced from [4] with permission from the American Association
for the Advancement of Science
non-transcriptionally regulated genes have relatively little
overlap [129], reflecting the fact that distinct environmental
signals tend to initiate distinct transcriptional responses.
The source–sink distances are small in both networks,
and the longest regulatory chain has only four (in E. coli)
or five (in S. cerevisiae) edges (see Fig. 5).

The current versions of protein interaction maps are, by
necessity, incomplete, and also suffer from a high rate of
false positives. Despite these drawbacks, there is an emer-
ging consensus in the topological features of the maps of
different organisms (Fig. 6). For example, all protein inter-
action networks have a giant connected component and the
distances on this component are close to the small-world
limit given by random graphs [45, 112]. This finding
suggests an illustration of pleiotropy, since perturbations
of a single gene or protein can propagate through the
network, and have seemingly unrelated effects. The
degree distribution of the yeast protein interaction
network is approximately scale-free (see Fig. 6). The
Drosophila protein network exhibits a lower-than-expected
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fraction of proteins with more than 50 interacting partners.
This deviation is suspected to be caused by incomplete cov-
erage and could change as more interactions are discovered,
as was the case for the yeast protein interaction network
[45, 112, 130]. The heterogeneous clustering-degree func-
tion C(k) ¼ B/kb [112], where the exponent b is around
2, and the inverse correlation between the degree of two
interacting proteins [131] indicate that the neighbourhood
of highly connected proteins tends to be sparser than the
neighbourhood of less-connected proteins.

The largest reconstructed signal transduction network
was synthesised from more than 1200 articles in the exper-
imental literature and contains 1259 interactions among 545
cellular components of the hippocampal CA1 neuron [118].
This network exhibits an impressive interconnectivity: its
strongly-connected component (the central signalling
network) includes 60% of the nodes, and the subgraphs
that start from various ligand-occupied receptors reach
most of the network within 15 steps. The average input–
output path-length is near 4, suggesting the possibility of
very rapid response to signalling inputs. Both the in- and
out-degree distributions of this network are consistent
with a power-law with an exponent around 2, and the
highest degree nodes include the four major protein
kinases (MAPK, CaMKII, PKA and PKC).

All metabolic network representations indicate an
approximately scale-free [7, 8, 132] or at least broad-tailed
[133] metabolite degree distribution. Fig. 7 illustrates the
idea that functionally different metabolities tend to cover
different ranges of the degree spectrum. The degree distri-
bution of enzymes is strongly peaked, indicating that
enzymes catalysing several reactions are rare [7]. The varia-
bility of metabolite degrees can be accounted for if they are
functionally separated into high-degree carriers and low-
degree metabolites unique to separate reaction modules
(such as catabolism or amino acid biosynthesis) [132].
However, such a picture does not seem to explain the fre-
quency of intermediate degrees. The clustering-degree
function follows the relationship. C(k) ’ 1/k.

The substrate and reaction graphs indicate a remarkably
small and organism-independent average distance among
metabolites and reactions [7, 8]. If the preferred directional-
ity of the reactions is known and is taken into account, only
the largest strongly connected component (whose nodes can
Fig. 6 Topological properties of the yeast protein interaction network constructed from four different databases

a Degree distribution, solid line corresponds to a power law with exponent g ¼ 2.5
b Clustering coefficient – degree function, solid line corresponds to function CðkÞ ¼ B=k2

c Size distribution of connected components
All networks have a giant connected component of more than 1000 nodes (on the right) and a number of small isolated clusters
Reproduced from [111] with permission from Wiley InterScience
IET Syst. Biol., Vol. 1, No. 2, March 2007



Fig. 7 Rank (cumulative distribution) of metabolite node degree
(left panel) and reaction node degree (right panel) for metabolic
networks of H. pylori

Straight lines correspond to a power-law degree distribution with
exponent g ¼ slope þ 1 ¼ 2.32
Reproduced from [131] with permission from the American Physical
Society
reach each other in both directions) has a well defined
average path length. While this average path length is still
small in all the organisms studied, the strongly connected
component itself contains less than 50% of the nodes
[134]. An alternative representation of the E. coli metabolic
network defines the edges among metabolites as structural
changes that convert the source metabolite into the target
metabolite [133]. As separate reactions can involve the
same structural change in a metabolite, this alternative rep-
resentation has less than half as many edges as the metab-
olite graph defined by [7], and consequently it yields
metabolite distances that are twice as high, on average.

The general architectural features of molecular inter-
action networks described so far are shared to a large
degree by other complex systems, ranging from technologi-
cal networks to social networks. While this universality
is intriguing, it is arguably more important to discern
whether, and how, the graph properties of cellular networks
reflect their functional and evolutionary constraints.

5.1 Hubs

In a scale-free network small-degree nodes are the most
abundant, but the frequency of high-degree nodes decreases
relatively slowly. Thus, nodes that have degrees much
higher than average, so-called hubs, exist. Because of the
heterogeneity of scale-free networks, random node
disruptions do not lead to a major loss of connectivity, but
the loss of the hubs causes the breakdown of the network
into isolated clusters [107]. The validity of these general
conclusions for cellular networks can be verified by
correlating the severity of a gene knockout with the
number of interactions the gene’s products participate in.
Indeed, as much as 73% of the S. cerevisiae genes are
non-essential – i.e. the knockout has no phenotypic
effects [135]. This confirms the cellular networks’ robust-
ness in the face of random disruptions. The likelihood that
a gene is essential (lethal) or toxicity-modulating (toxin-
sensitive) correlates with the number of interactions its
protein product has [130, 136]. This indicates that the cell
is vulnerable to the loss of highly interactive hubs. It
should be noted that different network representations can
lead to distinct sets of hubs and there is no rigid boundary
between hub and non-hub genes or proteins. Among the
most well known examples of hub proteins is the tumor sup-
pressor protein p53, which has an abundance of incoming
edges – interactions regulating its conformational state
(and thus its activity) and its rate of proteolytic degradation
– and which also has many outgoing edges in the genes
whose transcription it activates. The tumor suppressor p53
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is inactivated by a mutation in its gene in 50% of human
tumors, corroborating the fact that cellular networks are vul-
nerable to loss of their most connected hubs [137]. High
interactivity is not the only marker of functional import-
ance, however: low-degree nodes in genome-wide
metabolic networks of various micro-organisms are almost
as likely to be critical to the overall network functions as
high-degree nodes [138].

5.2 Modularity

Cellular networks have long been thought to be modular,
composed of functionally-separable sub-networks corre-
sponding to specific biological functions [139]. Since
genome-wide interaction networks are highly connected,
modules should not be understood as disconnected com-
ponents but rather as components that have dense intra-
component connectivity but sparse inter-component con-
nectivity. Several methods have been proposed to identify
functional modules on the basis of the physical location or
function of network components [140], or on the topology
of the interaction network [141, 142]. The challenge is
that modularity does not always mean clear-cut subnet-
works linked in well defined ways, since there is a high
degree of overlap and cross-talk between modules [143].
A heterogeneous degree distribution, inverse correlation
between degree and clustering coefficient (as seen in meta-
bolic and protein interaction networks) and modularity,
taken together, suggest hierarchical modularity, in which
modules are made up of smaller and more cohesive
modules, which themselves are made up of smaller and
more cohesive modules etc. [144].

5.3 Motifs and cliques

Cellular networks contain recurring interaction motifs,
small subgraphs that have well defined topologies (Fig. 8).
Interaction motifs such as autoregulation (usually a negative
feedback) and feed-forward loops have a higher abundance
in transcriptional regulatory networks than expected from
randomly connected graphs with the same degree distri-
bution [124, 129]. Protein interaction motifs such as short
cycles and small, completely connected subgraphs are
both abundant [45] and evolutionarily conserved [145],
partly because of their enrichment in protein complexes.
Feedforward loops and triangles of scaffolding (protein)
interactions are also abundant in signal transduction net-
works, which additionally contain a significant number of
feedback loops, both positive and negative [118].
Yeger-Lotem et al. have identified frequent composite tran-
scription/protein interaction motifs such as interacting tran-
scription factors coregulating a gene or interacting proteins
being coregulated by the same transcription factor [146].
The abundant motifs of integrated mRNA/protein networks
are often signatures of higher-order network structures that
correspond to biological phenomena such as interacting
transcription factors regulating the same target gene or
co-regulation of members of a protein complex [147].

The functional relevance of recurring network motifs has
been investigated both theoretically and experimentally.
Coherent feed-forward loops have been shown to cause
sign-sensitive delay: coherent feed-forward loops whose
output gene is regulated by an AND function filter out
brief signal fluctuations [148], while coherent feed-forward
loops with an OR or SUM function prolong expression fol-
lowing deactivation of the signal [149]. Incoherent feed-
forward loops, having an AND NOT regulation of the
output gene, accelerate signalling through an overshoot
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Fig. 8 Examples of network motifs in the yeast transcriptional
regulatory network

Regulators are represented by circles
Target gene promoters are represented by rectangles
Binding of a regulator to a promoter is indicated by solid arrows
Genes encoding regulators are linked to their respective regulators by
dashed arrows
Reprinted from [4] with permission from the American Association for
the Advancement of Science
dynamics [149]. The comparative abundance of negative
feedback loops in the early steps of signal transduction net-
works and of positive feedback loops at later steps suggest
that weak or short-lived signals are filtered by early barriers
posed by negative feedback loops, while strong and persist-
ent signals are amplified and are able to evoke a biological
response [118].

5.4 Path redundancy

Any response to a perturbation requires that information
about the perturbation spreads within the network. Thus
the short path lengths of metabolic, protein interaction
and signal transduction networks (their small world prop-
erty) [7, 118, 130] is a very important feature that ensures
fast and efficient reaction to perturbations. Another very
important global property related to paths is path redun-
dancy, or the availability of multiple paths between a pair
of nodes [150]. Either in the case of multiple flows from
input to output, or contingencies in the case of perturbations
in the preferred pathway, path redundancy enables the
robust functioning of cellular networks by relying less on
individual pathways and mediators.

6 Graph models

An often-used means of testing how organizational features
such as those described in the previous section reflect the
networks’ functions is to construct model networks based
on features or assembly principles deemed most salient.
The predictive power of the model is determined by a
graph-theoretical comparison of the model network to the
original. In the following we examine three general families
of network models as well as a family of network models
formulated specifically for intracellular networks.
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6.1 Erdó́s–Rényi (ER) random graphs

Mid-twentieth-century work on uniformly random graphs
[151] pioneered many of the basic measures and analytic
techniques mentioned in the previous sections. An
Erdó́s–Rényi (ER) random graph is formed by randomly
connecting N nodes with E edges. For large N, the
degree distribution of such a graph is Poissonian, implying
that most nodes have degree k, close to the average degree
in the graph, kkl ¼ 2E/N. Therefore, unlike most cellular
networks, ER random graphs are largely homogeneous in
degree. In addition, the average clustering coefficient of
ER random graphs scales inversely with the size of the
network, such that kCl ¼ kkl/N, and the clustering coeffi-
cient distribution of an ER random graph (unlike that of
most cellular networks) is independent of node degree,
peaking at a value equal to the connection probability p.
Finally, the average path length of ER random graphs
kdl ’ ln (N )/lnkkl, remains small even for large networks
[113], and is consistent with the average path length of
several real networks [107].

6.2 Scale-free random graphs

Scale-free random graphs adhere to a prescribed degree dis-
tribution, though individual links in the graphs are estab-
lished randomly [152]. Scale-free random graphs have
smaller average path lengths [153] than comparably sized
ER random graphs, and they exhibit clustering coefficients
similar to their ER counterparts [154]. Thus, while the clus-
tering coefficient of biological networks is not captured by
scale-free random graphs, scale-free random graphs are
approximately comparable to scrambled, but degree
distribution-preserving versions of real networks. For this
reason, they serve as a better null model of biological net-
works than do ER random graphs, a point corroborated by
the fact that scale-free random graphs are often used as
baselines from which to establish statistical significance
thresholds for features and properties of biological networks
[155, 156]. While scale-free random graphs are, by defi-
nition, able to capture the scale-free degree distribution
found in most real networks, they make no attempt to
explain why such heterogeneity in connectivity exists in
real networks. Accounting for this feature necessitates a
shift from modelling network topology to modelling
network assembly.

6.3 Evolving network models

A large (and growing) class of network models addresses
the question of how scale-free topologies arise in real net-
works by describing network assembly and evolution. The
simplest of these evolving network models is the
Barabási–Albert (BA) model [157], which introduced two
core assumptions: growth (i.e. an increase in the number
of nodes and edges over time) and preferential attachment
(i.e. a greater likelihood that nodes of high degree will
acquire new edges). The BA model assumes linear growth
and proportional preferential attachment, and leads to a
power-law degree distribution P(k) ¼ Ak23 that captures
the upper end of the range of observed degree-distribution
exponents in biological networks. Networks generated
with the BA algorithm have small average clustering coeffi-
cients, a constant clustering-degree function C(k) [111] and
slightly smaller average path lengths than are found in com-
parable random graphs [158], features that prevent them
from capturing all the topological characteristics of real net-
works. Numerous models, augmenting linear growth and
IET Syst. Biol., Vol. 1, No. 2, March 2007



proportional preferential attachment with features such as:
nonlinear attachment [159], initial attractiveness of isolated
nodes [160], accelerated growth [161], aging [162], fitness
[163] and node loss [164] have offered successful solutions
for the shortcomings of the basic BA model. For example,
the asymptotically linear preferential attachment [160,
164] of the linear preferential attachment (LPA) class of
models enables tuning of the degree exponent; for recent
reviews of evolving network models see [165, 166].

A recent model proposed by Ravasz et al. is based on a
self-similar growth pattern and not on preferential attach-
ment [144]: here, the network grows by iterative network
duplication and subsequent integration of the duplicated
elements to the network’s original core. The net result of
the replication model is a degree-distribution exponent,

g ¼ 1 þ
logðnÞ

logðn� 1Þ

where n is the size of the seed graph. For small n, the repli-
cation model produces a degree-distribution exponent very
close to 2, comparable to what is seen in cellular networks.
In addition, in contrast to all previous models, the replica-
tion model produces a clustering coefficient that is indepen-
dent of the size of the network and that scales inversely with
node degree, properties that also seem to characterise
protein interaction and metabolic networks.

6.4 Models of cellular network evolution

The topology of cellular networks is shaped by dynamical
processes such as gene duplication or point mutations,
occurring on evolutionary time scales. Interestingly, both
gene duplications and point mutations, unique biological
processes, lead to a preferential increase of the degree of
highly connected proteins, that is to preferential attachment
[167, 168]. Estimates of gene duplication rate and the rate at
which point mutations lead to the gain or loss of protein
interactions indicate that the latter is two orders of magni-
tude higher [169]. Duplication events often lead to asym-
metric change in edge dynamics for the two gene copies;
moreover a large fraction of duplicate genes (44.4% in
yeast [170]) are deleted during evolution, making it difficult
to trace ancient gene duplication events. Several growing
network models based on random gene duplication or
mutation and subsequent functional divergence have dis-
played good agreement with the topology of protein inter-
action networks [169, 171–173]. Note that these network
models aim to identify the main evolutionary mechanisms
shaping the topology of cellular interaction networks
across organisms and not to predict individual gene dupli-
cation events. The modelling of the evolution of transcrip-
tional, metabolic and signal transduction networks has
added challenges due both to these networks’ directed
nature and to the complexity of the regulatory mechanisms
involved, but rapid progress is expected in these fields
[174, 175].

7 Evolutionary relevance of the observed
topology

The previous section illustrated that generic models based
on gene duplication attain a reasonable agreement with
the large-scale organisation of cellular networks. More
specific lessons can be learned from integrating compara-
tive genomics (identifying substitutions, insertions,
fusions or deletions in DNA sequences) and comparative
network analyses. Overlaying networks of orthologous
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proteins across a large number of genomes revealed
conserved functional modules of physically interacting,
biochemically related, or genetically interacting (compensa-
tory) proteins [176]. Such analysis also enables prediction
of new functionally relevant interactions, recognition of
conserved co-ordination between cellular processes, and
evaluation of the effects of loss of duplicated or mutated
genes [177]. In this section we will briefly discuss the evol-
utionary relevance of node degree and network motifs.

Heterogeneous networks are vulnerable to targeted attack
of the highly connected nodes (hubs) described in the pre-
vious section, while having a significant tolerance to the
loss of other nodes. Thus one can hypothesise that hubs
are subject to severe selective and evolutionary constraints.
Hahn et al. [178] have correlated the rate of evolution of
yeast proteins with their degree in the protein interaction
network, and the rate of evolution of E. coli enzymes with
their degree in the core metabolic reaction graph con-
structed by [8]. Although they obtained statistically signifi-
cant (albeit weak) negative correlation between yeast
protein degree and evolution rate, no such correlation was
evident in the E. coli enzyme network. The latter result
has the caveat that the edges linking enzymes do not corre-
spond to interactions; thus further studies are needed to gain
a definitive answer.

The abundant transcription factor motifs of E. coli and
S. cerevisiae do not show common ancestry but are a
result of repeated convergent evolution [179]. These
studies, taken together with the dynamical repertoire of
the interaction motifs, suggest that these motifs represent
elements of optimal circuit design [13, 180]. Vergassola
et al. observed cooperative co-evolution within cliques of
interacting proteins of S. cerevisiae [181], implying that
co-operative compensatory mutations are a globally rel-
evant mechanism to preserve the specificity in the assembly
of complexes throughout evolutionary divergence pro-
cesses. Cliques of interacting proteins are simple instances
of motifs, suggesting that the multi-point coevolution corre-
lations might be a general feature of the modular architec-
ture of biological networks.

A recent study inferring the conserved patterns of tran-
scriptional regulatory networks of 175 prokaryotes based
on the known E. coli transcription network found that pro-
karyotic transcription factors are typically less conserved
than, and evolve independently of, their target genes
[182]. As illustrated in Fig. 9, the study suggests that organ-
isms with different lifestyles and environments have
convergently acquired similar network structures approxi-
mating a scale-free topology. Metagenomics analysis of
microbial communities also found environment-specific
genes in closely related organisms [183]; thus it will be
interesting to combine such comparative analyses with
growth models addressing the evolution of higher
organisms.

8 Modelling the dynamics of cellular networks

The graphs comprising cellular networks are static rep-
resentations of dynamic processes. Moreover, the nodes of
cellular networks often represent entire populations of pro-
teins or molecules without reflecting the abundance or
activity of these populations. To capture the changes in
gene expression levels or in protein/molecule abundances
in response to external or internal stimuli, the interaction
networks must be augmented with node-level information
characterising the expression, abundance, and activity,
that is the state, of each node. A dynamical model of an
interacting system is based on the premise of locality in
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Fig. 9 Proposed distance tree of prokaryotic transcriptional
regulatory networks, prokaryotic genomes are clustered according
to the interactions they conserve

(i) Genomes in the same phylogenetic group generally cluster together
(ii) Parasitic genomes cluster together
(iii) Genomes of organisms with a similar lifestyle but belonging to
different phylogenetic groups are clustered together
Reprinted from [182] with permission from Elsevier
the network space and consists of a set of equations
indicating how the state of each node changes in response
to changes in the state of its regulators (including itself),
where the identity of the regulators is given by the
interaction network.

Dynamic models have as input information: (i), the inter-
actions and regulatory relationships among components (i.e.
the interaction network); (ii), the manner in which the
strength of the interactions depends on the state of the inter-
acting components (i.e. the transfer functions, including
kinetic parameters for each interaction), and (iii), the
initial state of each component in the system. Given these
inputs, the model will output the time evolution of the
state of the system, for example the system’s response to
the presence or absence of a given signal. Due to the
demanding prerequisites of dynamic modelling, most
dynamic networks so far constructed have been quite
small (e.g. [15, 184–186]). In this section we briefly
outline some of the most promising techniques so far devel-
oped for modelling the dynamics of cellular networks, and
we review the successes and implications of these
models’ results.

8.1 Continuous and deterministic models

These are formulated as differential equations based on
mass-action (or more general) kinetics for the production
and decay of all components [98]. With sufficiently
thorough knowledge of the biochemical interactions com-
prising a system (i.e. a compilation of all pairwise inter-
actions among the system’s components, measurements or
estimates of kinetic parameters such as dissociation con-
stants and half-lives, and a known initial state for the
system) it is possible to quite accurately reproduce the
dynamic behaviour of a complex biological system by
describing the constituent interactions as coupled (usually,
nonlinear) differential equations. For example, using a
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continuous deterministic model, von Dassow et al. repro-
duced the expression patterns of segment polarity genes in
D. melanogaster, and demonstrated that these patterns are
remarkably robust to changes in the kinetic parameters gov-
erning the biochemical reactions that result in gene
expression [186].

There are a number of approaches aimed at incorporating
stochasticity and discrete events into dynamic models of
cellular systems (for a review, see [187]). In general, sto-
chastic models either formulate a master equation that
follows the time evolution of the probabilities of each of a
system’s possible configurational states (the probability
density function), or they append stochastic (noise) terms
to differential equations. The former method usually uses
a Monte Carlo (Gillespie) algorithm to select a state of
the system, compatible with the master equation, at each
time step. The sequence of these states will form one time
course for the system, and the results of multiple iterations
will then be interpreted statistically. The time-evolution of a
system’s probability density function can also be estimated
from stochastic differential equations by using a Monte
Carlo algorithm to select (multiple times) the noise
addenda to the differential equations; statistics are then
used to interpret the results in terms of probability densities
[188, 189]. While stochastic master equation methods are
tractable for small systems, their computational complexity
becomes prohibitive as the size of the system grows, and it
is often necessary to work with the states of classes of inter-
acting entities, instead of with individual entities, a simpli-
fication that may be too restrictive for cellular systems in
which the individual entities of a single class could be in
different states at a given time. Recent algorithms such as
StochSim (http://www.pdn.cam.ac.uk/groups/comp-cell/
StochSim.html) discretise the chemical master equation by
finding the probability of pairwise interaction between indi-
vidual entities in the system on the basis of experimentally
determined reaction rates; the state of the entire system is
then manifest from the states of its components. StochSim
has been applied to signalling networks in bacterial chemo-
taxis [188, 190] and has been shown to be asymptotically
equivalent to the stochastic master equation approach [189].

8.2 Boolean models

These assume binary states for network nodes and are for-
mulated as logical rules describing the change in state of
each regulated node as a function of its regulators. The
utility of Boolean dynamic models lies in their ability to
predict dynamic trends in the absence of detailed kinetic
parameters. For example, Boolean models successfully
described the wild type or mutant expression patterns of
segment polarity genes in D. melanogaster and predicted
a significant error correcting ability for the gene regulatory
network [184, 191]. Boolean modelling also reproduced
observed gene expression patterns and mutant behaviour
of the floral organs of Arabidopsis thaliana [192].
Recently, asynchronous Boolean modelling of the abscisic
acid signal transduction network of Arabidopsis thaliana
led to experimentally verified predictions regarding stoma-
tal responses in wild type plants as well as in plants sub-
jected to gene disruptions and pharmacological
interventions [104]. The fact that simple Boolean methods
can capture the same (broad) dynamic trends and predict
the same asymptotic, biologically viable behaviours as
their far more detailed differential equation-based
counterparts often makes them a more feasible approach
for studying a system’s dynamics.
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Fig. 10 Overview of applications of network analysis in studying
cellular networks
8.3 Hybrid dynamic models

These meld Boolean logical functions with continuous syn-
thesis and decay [193–196]. In this approach, the rates of
change in concentration of the effector molecules are
expressed as differential equations, and combinatorial regu-
lation is described by Boolean functions. Genes that are
known to have a clear activation threshold within a
narrow range of effector concentrations are assumed to act
as threshold-dependent ON/OFF switches, while the
expression levels of genes for which activation can occur
over a much broader range of effector concentrations are
instead described as continuous, graded functions [193,
194]. For example, the dynamics of the cis-regulatory
system governing the embryonic expression of the
Endo16 sea urchin gene has been successfully modelled
with a hybrid model, demonstrating that combinatorial tran-
scriptional regulation is essentially logical and hard-wired
into an organism’s DNA [194]. This type of hybrid
approach is appealing in that its continuous features can
incorporate a great deal of quantitative detail while its dis-
crete features allow potential uncertainty in interactions
[195]. Being less computationally intensive than strict
deterministic models, and requiring fewer initial estimates
and less initial input, hybrid approaches can be applied to
larger networks than is possible with pure continuous
models.

9 Conclusions

Our understanding of cellular processes at the systems level
grows as the result of an ongoing dialogue and feedback
among experimental, computational and theoretical
approaches. Fig. 10 shows that high-throughput experiments,
in conjunction with inference methods allow optimal
network construction. Graph-theoretical analysis of these
networks then enables general insight into the topological
and functional organisation of cellular regulation and into
the evolutionary roots of this organisation. Finally, compara-
tive network analysis feeds back to network inference [79,
80, 197, 198], also expanding the tools of graph theory to
incorporate the diversity of molecular interactions.

Most inference methods operate on the assumption that a
system can be reduced to interactions taking place on a
single temporal scale. However, as experimental data con-
tinues to amass, it is becoming increasingly evident both
that biochemical reactions occurring within or between
cells take place on time-scales that can differ from one
IET Syst. Biol., Vol. 1, No. 2, March 2007
another by many orders of magnitude [16], and that these
time-scales can be dictated by any number of factors,
including the spatial scale on which interactions take
place, the types of biomolecules or complexes that are inter-
acting, and the environmental conditions to which the
system is subjected [143, 199]. Dynamic models integrate
interaction (topological), state (expression or activity) and
temporal information regarding a system into a description
of its predicted dynamical trajectory in normal and per-
turbed conditions. Experimental testing of these predictions
validates the models’ initial hypotheses or generates alter-
nate hypotheses, in either case leading to new biological
discoveries.

While the use of extensive dynamic modelling is limited
by computational complexity and the availability of detailed
transfer functions and kinetic parameters, intermediary
approaches such as the work of Ma’ayan et al. [118] demon-
strate that it is possible to glean a pseudo-dynamical view of
cellular processes from graphical representations of cellular
networks by mapping the propagation of a chemical signal
through the network from an extracellular signal source to
sinks within the cell. Similarly, augmenting the currently
available directionless interactome networks with infor-
mation regarding the sources (signals) and outputs of the
network and the cause-and-effect (directional) relationships
along the edges will significantly enhance their functional
information content.

While genome-level interaction maps help us in under-
standing regulatory design features and evolutionary rules,
dynamic modelling of systems with a less than genome-
wide scope and specified inputs and outputs allows the
identification of key regulatory components or parameters
(as opposed to general trends). Emergent qualitative and
hybrid modelling techniques give hope that even in the
event that exhaustive knowledge of parameters is unreach-
able, predictive modelling of (sub)cellular processes will
still be possible. As experimental and computational tech-
niques continue to improve, adding to the scope and detail
captured by network models, future generations of
dynamic network models promise to greatly augment our
current understanding of biological systems, perhaps
causing us to modify our initial assumptions about cellular
network structure and function, and unquestionably further-
ing our understanding of the machinery of the cell.
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