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Abstract. This work is concerned with the problem of computing the
set of reachable states for linear time-invariant systems with bounded
inputs. Our main contribution is a novel algorithm which improves sig-
nificantly the computational complexity of reachability analysis. Algo-
rithms to compute over and under-approximations of the reachable sets
are proposed as well. These algorithms are not subject to the wrapping
effect and therefore our approximations are tight. We show that these ap-
proximations are useful in the context of hybrid systems verification and
control synthesis. The performance of a prototype implementation of the
algorithm confirms its qualities and gives hope for scaling up verification
technology for continuous and hybrid systems.

1 Introduction

Computing reachable states for continuous or hybrid systems subject to bounded
disturbances has become a major research issue in hybrid systems [ACH+95],
[G96], [CK98], [DM98], [CK03], [GM99], [ABDM00], [BT00], [MT00], [KV00],
[D00] [ADG03], [G05], [F05]. One may argue that focusing on this question,
which is concerned with transient behaviors of dynamical systems, can be seen as
a major contribution of computer science to enriching the ensemble of standard
questions (stability, controllability) traditionally posed in control [ABD+00],
[M02]. For hybrid systems in which the continuous dynamics has constant deriva-
tives in every discrete state, such as timed automata or “linear” hybrid automata,
the computation of the reachable states in a continuous phase is simply a mat-
ter of linear algebra [ACH+95], [AMP95], [HHW97], [F05]. For systems with
a non-trivial continuous dynamics, an approximation of the reachable states is
generally computed by a combination of numerical integration and geometrical
algorithms [GM99], [CK03], [ABDM00], [D00], [BT00], [KV00] [G05].
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As an illustration consider a continuous linear time-invariant system of the
form ẋ(t) = Ax(t). The computation of the set of states reachable from an ini-
tial set I within a time interval [0, T ] can be handled as follows. We choose an
integration step r = T/(N + 1) and compute a sequence of sets Ω0, . . . , ΩN

such that Ωi contains all the states reachable from I within [ir, (i + 1)r] time.
The first set of the sequence, Ω0, can be obtained by bloating the convex hull
of the sets I and ΦI where Φ = erA (see [CK03], [ABDM00], [D00], [G05]).
Then, the other elements of the sequence can be computed from the recurrence
relation Ωi+1 = ΦΩi. For obvious reasons, the choice of the representation of
the sets Ωi usually consists of classes of sets closed under linear transforma-
tions such as polytopes [CK03], [ABDM00], ellipsoids [KV97], [KV00], [BT00]
or zonotopes [G05].

When dealing with continuous linear time-invariant systems with bounded
inputs of the form ẋ(t) = Ax(t) + Bu(t), where the value of u(t) is constrained
in some bounded convex set, a similar algorithm is possible. The computation of
the influence of the inputs on the reachable sets can be handled according to two
main approaches. The first one uses techniques borrowed from optimal control
[V98], [ABDM00], [KV00] to compute for each point on the boundary of Ωi the
input u that transforms it in the most “outward” manner. The second approach
consists in computing the reachable set using the autonomous dynamics ẋ(t) =
Ax(t) and then adding (in the sense of the Minkowski sum) a set which accounts
for the influence of the inputs [ADG03], [G05]. The recurrence relation between
Ωi and Ωi+1 is then of the form Ωi+1 = ΦΩi ⊕ U where U is a bounded convex
set. This is the approach considered in this paper.

The major contribution of this paper is a new implementation scheme for the
recurrence relation Ωi+1 = ΦΩi ⊕ U which improves significantly (both theo-
retically and empirically) the computation of the reachable sets of linear time-
invariant (LTI) systems with bounded inputs. A version of this algorithm based
on zonotopes decisively outperforms related algorithms. In addition, algorithms
for the computation of over- and under-approximations of the reachable sets
are proposed. These algorithms are not subject to the wrapping effect (prop-
agation of approximation errors through the computations [K98], [K99]) and
therefore our approximations are tight in the sense of [KV00]. In the context
of hybrid systems, we show that over- and under-approximations can be com-
puted such that they both intersect the guards if and only if the exact reachable
set does. We also show that our under-approximations can be used for control
synthesis.

2 Reachability Computations for LTI Systems

We consider the problem of computing an over-approximation of the reachable
set of a linear time-invariant system over R

d with bounded inputs within a
bounded time interval. As explained in the introduction, this can be done with
arbitrary precision by computing the first N elements of a sequence of sets
defined by a recurrence relation of the form:
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Ωi+1 = ΦΩi ⊕ U, i ∈ N (1)

where Φ is a d × d matrix, U is a convex bounded subset of R
d (not necessarily

full dimensional) and ⊕ denotes the Minkowski sum. The derivation of this
recurrence relation from the continuous-time system is not detailed in the present
paper but can be found, for instance, in [ADG03], [G05]. Note that since the
system is time-invariant, the matrix Φ and the set of inputs U resulting from
time discretization are independent of i.

For representations closed under linear transformation and Minkowski sum
such as polytopes or zonotopes, the complexity of Ωi grows due to the Minkowski
sum. As a consequence, the computation of the next element of the sequence be-
comes more expensive as the cost of the linear transformation is proportional
to the complexity of the set to which it is applied. For representations with
bounded complexity such as oriented rectangular hulls, ellipsoids or zonotopes
with bounded order, the Minkowski sum enforces us to make over-approximations
at each step. The propagation of these errors through the computations, known
as the wrapping effect [K98], [K99], can lead to dramatic over-approximations
when considering reachability problems for large time horizons.

For linear time-invariant systems we present an algorithm free of any of these
problems. Let us remark that from the recurrence relation (1), we have:

Ωi+1 = Φi+1Ω0 ⊕ ΦiU ⊕ . . . ⊕ U, i ∈ N.

Then, let us define the auxiliary sequences of sets:

X0 = Ω0, Xi+1 = ΦXi,
V0 = U, Vi+1 = ΦVi,
S0 = {0}, Si+1 = Si ⊕ Vi.

(2)

Equivalently, we have

Xi+1 = Φi+1Ω0, Vi+1 = Φi+1U and Si+1 = ΦiU ⊕ . . . ⊕ U.

Therefore, Ωi+1 = Xi+1⊕Si+1 where Xi+1 is the reachable set of the autonomous
system from the set of initial states Ω0, and Si+1 is the reachable set of the system
with inputs from the initial set {0}. Note that the decomposition of the linear
transformation and the Minkowski sum in the computation of Si+1 is possible
only because the system is time-invariant. Algorithm 1 implements the reachable
set computation based on the recurrence relations (2).

Let us remark that this algorithm does not depend on the class of sets chosen
for the representing of the reachable sets. However, this class has to be closed
under linear transformation and Minkowski sum (e.g. polytopes, zonotopes).
The main advantage of this algorithm is that the linear transformations are
applied to sets whose complexity does not increase at each iteration and this
constitutes a significant improvement over existing algorithmic realizations of
the recurrence relation (1). Thus, the time complexity of Algorithm 1 is bounded
by O(NL(nin) + NK(nout)), where L is the complexity of performing a linear
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Algorithm 1. Reachability of linear time-invariant systems.
Input: The matrix Φ, the sets Ω0 and U , an integer N .
Output: The first N terms of the sequence defined in equation (1).
1: X0 ← Ω0

2: V0 ← U
3: S0 ← {0}
4: for i from 0 to N − 1 do
5: Xi+1 ← ΦXi � Xi+1 = Φi+1Ω0

6: Si+1 ← Si ⊕ Vi � Si+1 = ΦiU ⊕ · · · ⊕ U
7: Vi+1 ← ΦVi � Vi+1 = Φi+1U
8: Ωi+1 ← Xi+1 ⊕ Si+1 � Ωi+1 = Φi+1Ω0 ⊕ ΦiU ⊕ · · · ⊕ U
9: end for

10: return {Ω1, . . . , ΩN}

transformation, K is the complexity of performing a Minkowski sum, nin bounds
the size of Ω0 and U , and nout bounds the size of ΩN . These parameters depend
obviously on the class of sets chosen for the representation.

Due to the Minkowski sum, the size of the output may actually be very large.
Hence, for an efficient implementation of Algorithm 1, the class of sets used
for the representation of the reachable sets has to satisfy one of the following
properties. Either the representation size of the Minkowski sum of two sets equals
the representation size of the operands, or the computational complexity of the
Minkowski sum is independent of the size of the operands.

General polytopes, for example, do not satisfy any of these requirements.
As far as we know, there is no reasonable representation satisfying the first
property which is closed under Minkowski sum and linear transformations. The
second property is satisfied by the class of zonotopes for which the complexity
of Minkowski sum does not depend on the description complexity of the sets.
In the following section, the implementation of Algorithm 1 using zonotopes is
discussed.

3 Reachability Using Zonotopes

The class of zonotopes has already been suggested for efficient reachability com-
putations in [K98], [K99], [G05]. Indeed, zonotopes have a compact representa-
tion and are closed under linear transformation and Minkowski sum1. A zonotope
is defined as the Minkowski sum of a finite set of segments. Equivalently it can
be seen as the image of a cube by an affine transformation.

Definition 1 (Zonotope). A zonotope is a subset of R
d represented by its

center u ∈ R
d and its generators v1, . . . , vm ∈ R

d:

1 Actually, the class of zonotopes is the smallest class of sets closed under linear
transformation and Minkowski sum and which contains a connected set with a non-
empty interior.
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(u, 〈v1, . . . , vm〉) =

⎧
⎨

⎩
u +

m∑

j=1

αjvj | αj ∈ [−1, 1], j = 1, . . . , m

⎫
⎬

⎭
.

A zonotope with m generators is said to have order m
d .

Each zonotope is a centrally-symmetric convex polytope. Parallelepipeds are
zonotopes of order one. A planar zonotope with three generators is depicted
in Figure 1. Zonotopes admit a very compact representations relative to their
number of vertices or faces. A generic zonotope of order p, though it is encoded
by only pd2 + d numbers, has more than (2p)d−1/

√
d vertices [Z75]. Hence,

zonotopes are perfectly suited for the representation of high dimensional sets.

v3
v2

v1

Fig. 1. A planar zonotope with three generators

The image of a zonotope Z = (u, 〈v1, . . . , vm〉) under a linear transformation
Φ is given by:

ΦZ = (Φu, 〈Φv1, . . . , Φvm〉).
Then, the computational complexity of a linear transformation applied to a zono-
tope is O(pM(d)), where M(d) is the complexity of the multiplication of two
d × d matrices. Using standard matrix multiplication the computational com-
plexity of the linear transformation is2 O(pd3). In comparison, if the zonotope
Z was to be represented by its vertices, the linear transformation would require
at least (2p)d−1d3/2 operations.

The property which really makes zonotopes interesting for the implementa-
tion of Algorithm 1 is that their Minkowski sum can be computed in O(d),
independently of the order of the operands. Indeed, the sum of two zonotopes
Z1 = (u1, 〈v1, . . . , vm〉) and Z2 = (u2, 〈w1, . . . , wn〉) is

Z1 ⊕ Z2 = (u1 + u2, 〈v1, . . . , vm, w1, . . . , wn〉).

Hence, the computation of the Minkowski sum consists of summing two vectors
and concatenating two lists. Therefore, zonotopes satisfy the requirements for
an efficient implementation of Algorithm 1. Assuming Ω0 and U are zonotopes
of orders p and q, respectively, the time complexity of Algorithm 1 becomes
O(N(p + q)d3). Moreover, since the Minkowski sum essentially consists of a
2 Note that, theoretically, the complexity can be further reduced down to O(pd2.376)

by using a more sophisticate matrix multiplication algorithm [CW90].
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concatenation of lists, it is not necessary to store the sequence Si since it can be
computed very easily from the sequence Vi. Therefore, the space complexity of
a zonotope implementation of Algorithm 1 is O(N(p + q)d2).

4 Tight Over-Approximations of the Reachable Sets

The implementation of Algorithm 1 using zonotopes provides for an efficient (in
time and in space) computation of the sets Ω1, . . . , ΩN defined by (1). Neverthe-
less, the result of this algorithm, which is typically a set of high-order zonotopes,
does not lend itself easily to operations other than linear transformations and
Minkowski sum. For example, intersecting a zonotpe with another set, a cru-
cial operation for hybrid reachability computation, is very costly as it involves
the transformation of the zonotope into a polytopic representation. In this sec-
tion, we propose an algorithm for computing over-approximations of the sets
Ω1, . . . , ΩN which are both tight and of low order.

4.1 Interval Hull Approximations

We first consider interval hull over-approximations of the reachable sets. Let Box
be a function that maps a set E ⊆ R

d to its interval hull, that is, to the smallest
Cartesian product of intervals containing E. Note that for every E1, E2 ⊆ R

d

we have
Box(E1 ⊕ E2) = Box(E1) ⊕ Box(E2). (3)

Algorithm 2 computes the interval hulls of the reachable sets Ω1, . . . , ΩN .

Algorithm 2. Interval hull approximation of the reachable sets
Input: The matrix Φ, the sets Ω0 and U , and an integer N .
Output: The interval hulls of the N first terms of the sequence defined in (1).
1: X0 ← Ω0

2: V0 ← U
3: S0 ← {0}
4: for i from 0 to N − 1 do
5: Xi+1 ← ΦXi � Xi+1 = Φi+1Ω0

6: Si+1 ← Si⊕Box(Vi) � Si+1 =Box(ΦiU ⊕ · · · ⊕ U)
7: Vi+1 ← ΦVi � Vi+1 = Φi+1U
8: Ωi+1 ← Box(Xi+1) ⊕ Si+1 � Ωi+1 =Box(Ωi+1)
9: end for

10: return {Ω1, . . . , ΩN}

The sequences X0, . . . , XN and V0, . . . , VN are represented as zonotopes which
allow to benefit from the low computational complexity of the linear transfor-
mations. The sequences S0, . . . , SN and Ω1, . . . , ΩN are represented as interval
products (2d numbers). The computation of the interval hull of a zonotope is
particularly easy since the projection of a zonotope on a coordinate axis can



Efficient Computation of Reachable Sets of LTI Systems with Inputs 263

be computed by projecting each of its generators on that axis. Then, the time
complexity of Algorithm 2 is equivalent to that of Algorithm 1, but its space
complexity drops to O(Nd + (p + q)d2).

Let us remark that in Algorithm 2, approximations occur only when the func-
tion Box is invoked. Note that Box is always applied to exact sets and that other
operations are computed exactly. Thus, approximation errors do not propagate
further through the computations and Algorithm 2 does not suffer from the
wrapping effect. Particularly, we have the following result:

Proposition 1. For all i ∈ {1, . . . , N}, Ωi is the interval hull of the set Ωi.

Proof. From equation (3), we have that

Ωi = Box(ΦiΩ0) ⊕ Box(Φi−1U) ⊕ . . . ⊕ Box(U)
= Box

(
ΦiΩ0 ⊕ Φi−1U ⊕ . . . ⊕ U

)
= Box(Ωi). �

Thus, each face of Ωi has at least one common point with the set Ωi and the
over-approximations Ω1, . . . , ΩN computed by Algorithm 2 are tight in the sense
of [KV00].

Remark 1. Algorithm 2 is not specific to zonotopes and interval products. It
can be implemented using any pair of classes of sets, the first of which closed
under linear transformation and the second closed under the Minkowski sum
and admitting a constant size representation. Then, the function Box has to
be replaced by a function that approximates an object from the first class by
an object from the second. For accurate over-approximations, this function has
to satisfy a property similar to that of equation (3). For instance, we can re-
place zonotopes by ellipsoids or general polytopes. The choice of the second
class is more restricted. In the following, we show that a class of polytopes de-
fined as intersections of bands can be used advantageously in the hybrid systems
context.

4.2 Guards-Oriented Over-Approximations for Hybrid Systems

Let us consider the class of hybrid systems where the continuous dynamics is
linear and time-invariant, and where transition guards are specified by hyper-
planes:

Ge =
{
x ∈ R

d| ne · x = fe

}
where ne ∈ R

d, fe ∈ R.

In this section we present a variant of Algorithm 2 whose output can be in-
tersected efficiently with such transition guards. The algorithm computes tight
over-approximations of the sets Ω1, . . . , ΩN in a class of polytopes defined as
intersections of bands.

Definition 2. Let S = {s1, . . . , s�} be a set of vectors. An S-band intersection,
represented by two vectors m, M ∈ R

�, is the set defined by:

[m, M ]S =
{
x ∈ R

d| mi ≤ si · x ≤ Mi, i = 1, . . . , �
}

.
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Let us remark that interval products constitute a subclass of S-band intersections
where S is the set of coordinate vectors, and that parallelepipeds are obtained
when S is a set of d linearly independent vectors. For a given set of vectors
S, it is easy to show that the class of S-band intersections is closed under the
Minkowski sum:

[m1, M1]S ⊕ [m2, M2]S = [m1 + m2, M1 + M2]S .

To use S-band intersections in Algorithm 2, we need an over-approximation
function which maps a zonotope to its smallest enclosing S-band intersection.

Proposition 2. Let Z = (u, 〈v1, . . . , vm〉) be a zonotope, then the S-band inter-
section BoxS(Z) = [m, M ]S given by

mi = si · u −
m∑

j=1

|si · vj |, Mi = si · u +
m∑

j=1

|si · vj |, i = 1, . . . , �

is an over-approximation of Z. Moreover, each face of BoxS(Z) has at least one
common point with Z.

Proof. Let x ∈ Z, then for all i ∈ {1, . . . , �},

si · x = si ·

⎛

⎝u +
m∑

j=1

αjvj

⎞

⎠ = si · u +
m∑

j=1

αjsi · vj .

Since, for all j ∈ {1, . . . , m}, αj ∈ [−1, 1], x ∈ BoxS(Z). Moreover, let xi,1 and
xi,2 be the elements of Z given by

xi,1 = u −
m∑

j=1

sign(si · vj)vj , xi,2 = u +
m∑

j=1

sign(si · vj)vj .

Then, si · xi,1 = mi and si · xi,2 = Mi. �

Thus, the function BoxS maps a zonotope Z to a tight over-approximation in
the class of S-band intersections (see Figure 2). Moreover, it is straightforward
to show that BoxS satisfies the following property:

BoxS(Z1 ⊕ Z2) = BoxS(Z1) ⊕ BoxS(Z2).

Hence, S-band intersections can replace interval hulls in Algorithm 2. The time
complexity of the algorithm becomes O(k(p + q)(d3 + �d2)) and the space com-
plexity O(k� + (p + q)d2 + �d). Similar to Proposition 1, we can show that the
sets computed by Algorithm 2 indeed satisfy Ωi = BoxS(Ωi), i = 1, . . . , N .

The following result demonstrates some advantage in using band intersections
in Algorithm 2 in the context of hybrid systems verification:



Efficient Computation of Reachable Sets of LTI Systems with Inputs 265

Z

s1

s2

Z

Z
Z

s1

s2

Fig. 2. A zonotope Z, a set of directions S = {s1, s2}, an over-approximation Z ⊃ Z
by an S-band intersection and an under-approximation Z ⊂ Z by the convex-hull of
points in Z which are extremal with respect to projections on S

Proposition 3. Let Ωi denote the over-approximation of Ωi computed by
Algorithm 2 using S-band intersections, i.e. Ωi = BoxS(Ωi). If the normal vector
ne to the guard Ge is an element of S then:

Ωi intersects Ge ⇐⇒ Ωi intersects Ge.

Proof. Let sj ∈ S, such that sj = ne. Let us assume that Ωi intersects Ge. This
is equivalent to saying that mj ≤ fe ≤ Mj . From Proposition 2, we have that
there exist points xj,1, xj,2 ∈ Ωi such that mj = sj · xj,1 and Mj = sj · xj,2.
Hence, there exists x ∈ Ωi such that sj · x = fe and Ωi intersects Ge. The other
direction of the equivalence is trivial since Ωi ⊆ Ωi. �

Remark 2. Although Proposition 3 implies that a set computed by a step of
Algorithm 2 will intersect a guard exactly when a set computed by Algorithm 1
would (when started from the same set), the corresponding intersections will
differ and after the transition, Algorithm 2 will start from a larger set and will
generate more behaviors. In other words, the wrapping effect manifests itself
during discrete transitions.

5 Tight Under-Approximations and Control Synthesis

When the input U is interpreted as control rather than disturbance, reachability
computation can be used to solve controller synthesis problems: find a sequence
of input values that drives the system to a desired state while avoiding undesired
ones. In this section we show how such control sequences can be extracted from
tight under-approximations of the reachable sets. Previous work on applying
reachability computation to controller synthesis was restricted to synthesizing
mode switching conditions for hybrid systems [ABD+00].

5.1 Under-Approximation of the Reachable Sets

Let S = {s1, . . . , s�} be a set of vectors. A zonotope Z = (u, 〈v1, . . . , vm〉) can
be under-approximated by a polytope defined as the convex hull of the finite set
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of points corresponding to the extremal points of Z in the directions of S (see
Figure 2). From the proof of Proposition 2, we know that the extremal points of
Z in the direction si are xi,1 = u − gi and xi,2 = u + gi where:

gi =
m∑

j=1

sign(si · vj)vj .

The under-approximation of Z will be denoted by:

Z = (u, [g1, . . . , g�]S) = ConvexHull ({u ± gi, i ∈ {1, . . . , �} })

=

{

u +
�∑

i=1

αigi :
�∑

i=1

|αi| ≤ 1

}

.

Let us remark that the indices have their importance since u±gi are the extremal
points in the direction given by si. In order to use this under-approximation in
a reachability algorithm, we need to express the under-approximation of the
Minkowski sum of two zonotopes as a function of the under-approximations of
each zonotope.

Lemma 1. Let us define the following operation

(u, [g1, . . . , g�]S) � (u′, [g′1, . . . , g
′
�]S) = (u + u′, [g1 + g′1, . . . , g� + g′�]S).

Then, for two zonotopes Z and Z ′, we have Z ⊕ Z ′ = Z � Z ′.

Proof. The extremal points of Z ⊕ Z ′ in the direction si are u + u′ − hi and
u + u′ + hi where

hi =
m∑

j=1

sign(si · vj)vj +
m′
∑

j=1

sign(si · v′j)v′j = gi + g′i. �

Thus, we can adapt Algorithm 2 to compute under-approximations of the sets
Ω1, . . . , ΩN . This is done by replacing Box by the under-approximation function
defined above. Then, from Lemma 1, the output of the algorithm is exactly the
sequence Ω1, . . . , ΩN . These under-approximations are tight since the extremal
points of Ωi in each direction si ∈ S are vertices of Ωi. Furthermore, it is easy
to see that they have the same S-band over-approximation. Then, the following
result is straightforward.

Theorem 1. Let Ωi denote the S-band over-approximation of Ωi and let Ωi

denote its under-approximation. If the normal vector ne to the guard Ge is an
element of S then:

Ωi intersects Ge ⇐⇒ Ωi intersects Ge ⇐⇒ Ωi intersects Ge.
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5.2 Application to Control Synthesis

The under-approximation of Ωi can be used for control synthesis when U is
interpreted as control rather than disturbance. Let y be a point of ΩN and
therefore of ΩN , we want to determine an initial state x0 ∈ Ω0 and a sequence of
inputs v0, . . . , vN−1 in U , such that the discrete-time system defined by equation
(1) reaches y in N steps. Since y ∈ ΩN = (u, [g1, . . . , g�]S), it can be written
under the form:

y = u +
�∑

j=1

αjgj, with
�∑

j=1

|αj | ≤ 1.

If � = d and Ωk is full dimensional, this is equivalent to a change of variable. The
under-approximations ΦNΩ0 = (uN , [gN

1 , . . . , gN
� ]S) and ΦiU = (ui, [gi

1, . . . , g
i
�]S)

(i ∈ {0, . . . , N − 1}) are computed by Algorithm 2 while computing ΩN . Let us
remark that from Lemma 1, we have u = uN + uN−1 + . . . + u0 and gj =
gN

j + gN−1
j + . . . + g0

j . Then, if Φ is invertible (which is the case if the discrete-
time system is achieved by discretization of a continuous-time system), we can
choose

x0 = Φ−N (uN +
�∑

j=1

αjg
N
j ),

vi = Φi+1−N (uN−1−i +
�∑

j=1

αjg
N−1−i
j ), i = 0, . . . , N − 1.

It is clear that x0 ∈ Ω0, v0, . . . , vN−1 ∈ U and, moreover, the sequence xi+1
= Φxi + vi satisfies xN = y.

6 Experimental Results

Algorithms 1 and 2 have been implemented in OCaml [C05]. For the sake
of comparison, we have also implemented the zonotope-based reachability al-
gorithm presented in [G05]. This algorithm, which obtained the best accu-
racy/performance tradeoffs reported so far, computes an over-approximation of
the reachable sets using the recurrence relation (1). At each step, in order to
avoid computational explosion, it reduces the complexity of the reachable set by
over-approximating it by a zonotope of fixed order p. In the following, we refer
to this algorithm by Zono-p. Zonotopes and linear algebra operations were im-
plemented in separate modules so that all algorithms use the same subroutines.
All computations were performed on a Pentium III 800MHz with 256MB RAM.

6.1 A Five-Dimensional Linear System

As a first benchmark consider the five-dimensional example borrowed from [G05].
Over-approximations of the reachable sets of this system have been computed
using Algorithms 1, 2 and Zono-20.
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The approximation obtained by Algorithm 1 is always the most accurate
because it consists of the exact sequence Ω1, . . . , ΩN defined by the recur-
rence relation (1). For short time horizons, the over-approximations computed
by Zono-20 are more accurate than the ones computed by Algorithm 2. How-
ever, as we consider longer time horizons, the errors introduced at each step of
Zono-20 start propagating through the computations and the wrapping effect
becomes too significant to actually say anything interesting about the reach-
able states of the system. In comparison, the over-approximations obtained by
Algorithm 2 are tight and remain accurate even for long time horizons. More-
over, since Algorithm 2 uses interval hull over-approximations, the output of
this algorithm is much easier to manipulate than the output of Zono-20 which
consists of a sequence of zonotopes of order 20.

Fig. 3. Reachable states of a five-dimensional linear system after 1000 iterations: pro-
jections on coordinates x1 and x2 (left), x4 and x5 (right). In light gray: set computed
by Zono-20 (maximum order allowed for the zonotopes is 20). In dark gray: set com-
puted by Algorithm 2. In black: set computed by Algorithm 1.

Figure 3 shows the over-approximations of the reachable sets obtained by the
three algorithms for a long time horizon (N = 1000). It is clear that Algorithms 1
and 2 have a much better precision than Algorithm Zono-20, an obvious victim
of the wrapping effect. Computation time and memory consumption of the three
algorithms for different time horizons N are reported in Table 1. We can see that
Algorithms 1 and 2 are fast and require much less memory. Algorithm 2, which
computes interval-hulls approximation, is about 100 times faster, and needs 25
times less memory than Algorithm Zono-20, while producing approximations of
higher quality.

6.2 High-Dimensional Linear Systems

The three algorithms were also tested on continuous linear time-invariant sys-
tems which were randomly generated according to the following procedure: the
matrix A was chosen at random and then normalized for the infinity norm and
the inputs were chosen bounded for the infinity norm. In [G05], it is explained
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Table 1. Time and memory consumptions of reachability computations for a five-
dimensional linear system, for different time horizons

N = 200 400 600 800 1000
Algorithm 1 0.01s 0.02s 0.04s 0.05s 0.07s
Algorithm 1 0.s 0.s 0.01s 0.01s 0.02s
Zono-20 0.34s 0.74s 1.14s 1.46s 2.16s

N = 200 400 600 800 1000
Algorithm 1 492KB 737KB 983KB 1.23MB 1.47MB
Algorithm 1 246KB 246KB 246KB 246KB 246KB
Zono-20 1.47MB 2.95MB 4.18MB 5.65MB 6.88MB

Table 2. Time and memory consumption for N = 100 for several linear time-invariant
systems of different dimensions

d = 5 10 20 50 100 150 200
Algorithm 1 0.0s 0.02s 0.11s 1.11s 8.43s 35.9s 136s
Algorithm 2 0.0s 0.01s 0.07s 0.91s 8.08s 28.8s 131s
Zono-20 0.16s 0.61s 3.32s 22.6s 152s

d = 5 10 20 50 100 150 200
Algorithm 1 246KB 492KB 1.72MB 8.85MB 33.7MB 75.2MB 133MB
Algorithm 2 246KB 246KB 246KB 492KB 983KB 2.21MB 3.69MB
Zono-20 737KB 2.46MB 8.36MB 44.5MB 177MB

how the recurrence relation given by equation (1) can be obtained. The dis-
cretization time step was r = 0.01 and the number of iterations is N = 100.
Computation times and memory consumptions of the three algorithms for linear
systems of several dimensions d are reported in Table 2.

Algorithms 1 and 2 appear to be extremely scalable in terms of both time and
space, which confirms the theoretical complexity estimations. Let us remark that
using Algorithm 2, we can compute a tight over-approximation of the reachable
set of a 100-dimensional system after 100 time steps in less than 10 seconds
using less than 1MB memory. To the best of our knowledge, there is no report in
the literature of algorithms with similar performances for such high-dimensional
systems.

6.3 Varying the Time Step

When the recurrence relation (1) is obtained by discretization of a continuous-
time system, we expect that the smaller is the time step, the more accurate
will be the over-approximation we compute. However, is not always the case for
algorithms suffering from the wrapping effects because reducing the time steps
increases the number of iterations of the reachability algorithm in order to cover
the same time interval. As we can see in Figure 4, reducing the time step improves
the quality of the over-approximations obtained by Algorithm 2 whereas the
over-approximations obtained by Algorithm Zono-5 blows up beyond usefulness.
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∆t = 0.1, k = 10 ∆t = 0.001, k = 1000

∆t ← ∆t
100−→

∆t ← ∆t
100−→

Fig. 4. Reducing the timestep in a 20-dimensional example improves the quality of the
over-approximation obtained by Algorithm 2 (top) but increase the wrapping effect on
the algorithm Zono-5 (bottom)

7 Conclusions

We have presented an extremely-efficient and exact algorithm for computing
reachable states of a discrete-time LTI systems, as well as several variants of
this algorithm for computing tight over- and under-approximation of these sets,
which do not suffer from the wrapping effect. We showed that we can com-
pute over-approximations that facilitate guard intersections, and that our under-
approximations can be used to solve control synthesis problems. The prototype
implementation of our algorithms has outperfromed previously reported algo-
rithms in terms of execution time, memory consumption and approximation
tightness. The implementation will be improved by using efficient linear algebra
libraries. Future work will focus on the application to hybrid systems and, in
particular, on computing intersections with guards.
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