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Abstract

Scientific computing is marked by applications with
very high performance demands. As technology has im-
proved, reconfigurable hardware has become a viable
platform to provide application acceleration, even for
floating-point-intensive scientific applications. Now, re-
configurable computers—computers with general pur-
pose microprocessors, reconfigurable hardware, mem-
ory, and high performance interconnect—are emerging
as platforms that allow complete applications to be par-
titioned into parts that execute in software and parts that
are accelerated in hardware. In this paper, we study
molecular dynamics simulation. Specifically, we study
the use of the smooth particle mesh Ewald technique
in a molecular dynamics simulation program that takes
advantage of the hardware acceleration capabilities of a
reconfigurable computer. We demonstrate a 2.7–2.9×
speed-up over the corresponding software-only simula-
tion program. Along the way, we note design issues and
techniques related to the use of reconfigurable comput-
ers for scientific computing in general.

Keywords: Reconfigurable, FPGA, molecular dynam-
ics, electrostatics

1 Introduction

Reconfigurable computers—computers with general
purpose microprocessors (GPPs), reconfigurable hard-
ware accelerators, memory, and high performance
interconnect—have emerged as a platform for accelerat-
ing scientific computing applications. The state-of-the-
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art reconfigurable hardware for reconfigurable comput-
ers is field-programmable gate arrays (FPGAs). These
devices can be programmed and reprogrammed with
application-specific hardware designs. Until recently,
FPGAs did not contain enough logic resources to im-
plement floating-point arithmetic and were, therefore,
not amenable to many scientific computing applications.
Instead, they were employed with great effectiveness in
fields such as signal processing, cryptography, and em-
bedded computing. Now, large FPGAs that also possess
hardware features such as dedicated multipliers and on-
chip memories have become attractive platforms for ac-
celerating kernels in scientific applications.

Scientific computing applications, however, are usually
composed of a multitude of kernels. Some of these
kernels may be very well-suited for execution in soft-
ware. This is where reconfigurable computers can be
employed: the tasks well-suited for software execution
can execute on the GPPs and the tasks that are amenable
to hardware acceleration can execute on the FPGAs. So
far, much of the research has focused on accelerating in-
dividual scientific kernels [Underwood 2004; Hemmert
and Underwood 2005; Smith et al. 2005b]. However, as
will be discussed later in the paper, a careful partitioning
of kernels between software and hardware is necessary
to achieve performance [Gokhale et al. 2006]. That is,
the focus must be on the complete application.

One particularly interesting scientific computing appli-
cation to study is molecular dynamics (MD) simulation,
which is a useful technique for simulating the move-
ments of atoms in a system over time. It is applied in
a wide range fields, including materials science, phar-
maceuticals, and nanotechnology [Nakano et al. 2001;
Tang and Xu 2002; Mao et al. 1999]. Because of
its computational demands, MD simulation is most of-
ten performed on large supercomputers and clusters of
commodity general purpose processors (GPPs). Recent
studies into the reconfigurable-hardware acceleration of
the complete MD simulation application, as opposed
to its individual kernels, have mainly focused on fairly
simple simulations that employ cutoff approximations



for electrostatics calculations, if they perform them at
all [Azizi et al. 2004; Gu et al. 2005; Scrofano et al.
2006]. In this paper, we investigate the use of a more ad-
vanced electrostatics calculation technique—the smooth
particle mesh Ewald (SPME) technique—on a reconfig-
urable computer implementation of MD simulation.

In the next two subsections, we provide further intro-
duction to FPGAs and reconfigurable computers and to
MD simulations. In Section 2, we describe some related
efforts in acceleration of MD simulations, including our
prior work. Section 3 focuses on implementing a com-
plete MD simulation that utilizes the SPME technique
for electrostatics calculations. It presents implementa-
tion details and performance results. Section 4 presents
a discussion of the results. Section 5 concludes the work
and notes some areas for future work.

1.1 FPGAs and Reconfigurable Com-

puters

Reconfigurable hardware is used to bridge the gap
between flexible but performance-constrained GPPs
and very high-performance but inflexible application-
specific integrated circuits (ASICs). Reconfigurable
hardware is programmed and reprogrammed after fab-
rication. Thus, using reconfigurable hardware is much
less expensive and much more flexible than using ASICs
is. Because reconfigurable hardware is programmed
for the problem to be solved rather than to be able to
solve all problems, it can achieve higher performance
and greater efficiency than GPPs, especially in appli-
cations with a regular structure and/or a great deal of
parallelism. The state-of-the-art devices used as re-
configurable hardware are FPGAs [Gokhale and Gra-
ham 2005]. These devices are implemented as a matrix
of programmable logic cells and programmable inter-
connect between the cells. Modern FPGAs often have
special-purpose logic such as memories (we refer to
these as “on-chip memories” throughout the paper) and
multipliers, embedded into the logic fabric. Increased
logic density as well as improved programming envi-
ronments have made FPGAs a promising technology to
be exploited by the computer science and computer en-
gineering communities.

The drawback to using FPGAs is that they have low
clock frequencies—typically in the 100 MHz to 200
MHz range—when compared to GPPs. To over-
come this clock frequency disadvantage, parallelism and
pipelining are employed. Parallelism comes in two
forms: fine-grained and coarse grained. Fine-grained
parallelism involves independent operations that are in-
volved in producing the same result and is analogous

to instruction-level parallelism in computing with GPPs.
Coarse-grained parallelism involves units operating in-
dependently and producing independent results. Paral-
lelism in a design is limited by the amount of logic on
the FPGA and the amount of bandwidth into the FPGA.

Pipelining is particularly important in designs employ-
ing floating-point arithmetic. Floating-point cores, es-
pecially those that conform to IEEE standard 754, are
very complex and require a great deal of logic re-
sources to implement. In order to achieve high clock
frequencies, floating-point cores for FPGAs must be
deeply pipelined: for example, double-precision adders
and multipliers have about 10 to 20 pipeline stages
while dividers and square rooters have about 40 to 60
stages [Govindu et al. 2005]. The main difficulty with
deeply pipelined units—for floating-point arithmetic or
otherwise—is that their use can lead to data hazards,
which may cause the pipeline to stall.

1.1.1 Reconfigurable Computers

Reconfigurable computers, such as the SRC 6 MAPsta-
tion [SRC 2004], the Cray XD1 [Cra 2005], and the
SGI RASC [Sil 2006] bring together GPPs and FPGAs,
connecting them with a high-performance interconnect
network (see Figure 1). Typically, the reconfigurable
hardware has local memory banks that are on-board but
off-chip. These on-board memories are typically much
smaller than the RAM used by GPPs, but also have a
lower access latency, in terms of cycles. Additionally,
this local memory is usually divided into equally-sized
banks, where the banks can be accessed in parallel.

The target architecture in this paper is the SRC 6 MAP-
station. This reconfigurable computer has two 2.8 GHZ
Intel Xeon microprocessors and one MAP processor.
The MAP processor contains two Xilinx XC2V6000
FPGAs and eight banks of on-board memory. Each of
these banks is 64 bits wide and can be accessed indepen-
dently of the others. Six of the banks hold 4 MB of data
and the other two hold 2 MB of data. Data is transferred
between the GPPs and the on-board memories by DMA
at a rate of 1.4 GB/s in each direction. The designs de-
scribed in this paper will only make use of one of the
GPPs and one of the FPGAs in the MAPstation.

The programming model employed is that which we
term the accelerated single-program, multiple data
(ASPMD) model. A high-performance reconfigurable
computer or a cluster of reconfigurable computers
would contain many nodes, each with processor and
FPGA. Each node in the system executes the same pro-
gram on different data and communicates with other
nodes when data needs to be exchanged. At the node
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Figure 1: Model of the System Architecture

level, the application mainly runs on the GPP resource.
The GPP resource uses the RH resource as an acceler-
ator for intensive parts of the code. In this paper, we
focus only on a single node.

1.2 Molecular Dynamics Background

MD is a widely used technique to simulate the trajectory
of an atomic system over time. For this introduction,
we mainly reference [Allen and Tildesley 1987]. A sys-
tem of atoms is placed inside a simulation box. In most
simulations, the system is considered to be periodic: it
is assumed that the central simulation box is replicated
in each direction out to infinity. Given the initial con-
ditions of the system at time t = 0, the motion of the
atoms in the system until time t = t f is simulated by ad-
vancing the simulation by small discrete time steps ∆t.
The amount of time simulated is usually on the order of
nanoseconds or microseconds and the time step is usu-
ally on the order of femtoseconds. The new positions
of the atoms are calculated by integrating the classical
equations of motion. One popular integrator is the ve-
locity Verlet algorithm, shown below, where~ri(t),~vi(t),
and ~ai(t) are the position, velocity, and acceleration of
atom i at time t, respectively.

1. calculate~vi
(

t + ∆t
2
)

based on~vi(t) and acceleration
~ai(t);

2. calculate~ri (t +∆t) based on~vi
(

t + ∆t
2
)

;

3. calculate ~ai (t +∆t) based on ~ri (t +∆t) and
~r j (t +∆t) for all atoms j 6= i;

4. calculate~vi (t +∆t) based on ~ai (t +∆t).

It is well known that finding the acceleration on each
atom (step 3) is the most time-consuming step of the
simulation. Finding the acceleration requires finding the
forces acting upon each atom.

1.2.1 Force Calculation

The forces calculated in MD simulations can be broken
into two types: bonded and nonbonded. Bonded forces
only act between atoms that are in bond groups. This
is thus an O(n) calculation, where n is the number of
atoms in the simulation, and not usually a bottleneck.

Nonbonded forces, on the other hand, are pairwise
forces that can act between any atoms in the system that
are not in the same bond group. Nonbonded force cal-
culation can further be divided into short-range and long
range forces. Short range forces drop off quickly as the
distance between atoms rises. For these forces, a cut-
off distance is employed: if the distance between two
atoms is greater than some distance rc (often about 10 Å
in practice), the atoms are assumed not to interact. Find-
ing pairs of atoms that interact is naively an O(n2) op-
eration. However, many techniques exist to reduce this
complexity. In our work, we employ the neighbor list
technique, in which every s steps, where s is user de-
fined, a list of atoms is created and a given atom may
only interact with those atoms on its list.

The force due to the Lennard-Jones potential (hereafter
referred to as the Lennard-Jones force) is a common
short range force. Equations 1 and 2 show the equations
for the Lennard-Jones potential and force, respectively,
where~ri j is the distance vector between atoms i and j,
ri j is the distance between atoms i and j, and A, B, C,
and D are constants. Constants C and D are necessary
to compensate for the use of the cutoff distance. This
approach is called the shifted-force technique. Note that
whenever we refer to “force calculation,” in the context
of the simulation, the potential energy is also calculated
at that step.

ULJ
i j =

Ai j
r12

i j
− Bi j

r6
i j

+Ci j−Di jri j (1)

~f LJ
i j =

(

6
r2

i j

(

2Ai j
r12

i j
− Bi j

r6
i j

)

+
Di j
ri j

)

~ri j (2)

Long range forces present more of a problem. They do
not drop off quickly at long distances. Not only can
atoms interact with any other atoms in the system, they
can also interact with their images in other boxes. One
solution is to use a cutoff scheme, just like for the short
range forces. The long-range force used most often in
MD simulations is the electrostatic or Coulomb force.
A shifted-force approach can be used for the Coulomb
force and potential. Equations 3 and 4 show the shifted-
force Coulomb potential and force, respectively, where
qi is the charge of atom i.
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ri jrC
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qiq j
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(

1
r2

i j
− 1

r2
c

)

~ri j (4)

While simple, this technique unfortunately can lead to
artifacts in the results of the simulation [Patra et al.
2003]. A more accurate technique is the Ewald summa-
tion, which breaks the potential energy calculation into a
real-space (or direct-space) part, a reciprocal-space part,
and a correction term. The real-space and reciprocal-
space parts are given in Equations 5 and 6, where β is a
convergence parameter that determines how much work
is done in the real- and reciprocal-space parts, the~n are
vectors representing images of the central simulation
box, and the ~m are reciprocal lattice vectors (see [Es-
smann et al. 1995]). The asterisk in the summation
means to omit the case where ~n = 0 and i = j. For the
correction term, which is not computationally intensive,
see [Essmann et al. 1995]. The expression for S is given
in Equation 7. Forces are found by taking the negative
gradient of these terms. In practice, β is often set so that
the real-space part of the calculation can be done out to
the same cutoff distance as the short range forces and,
thus, the only value of~n that matters is~n =~0.

UE
real =

1
2

∗
∑
~n

~n
∑

i, j=1

qiq jerfc(β
∣

∣~ri−~r j +~n
∣

∣)
∣

∣~ri−~r j +~n
∣

∣

(5)

UE
recip =

1
2πV ∑

~m6=0

exp(−π2~m2/β 2)

~m2 S(~m)S(−~m) (6)

S(~m) =
n
∑
i=1

qi exp(2π~m~ri
√
−1) (7)

At best, the Ewald summation is an O(n3/2) calculation.
The particle mesh Ewald technique and its smooth vari-
ant (SPME) reduce the complexity to O(n logn) by facil-
itating the use of the 3D FFT in the Ewald summation.
For an in-depth description, see [Essmann et al. 1995]
or [Lee 2005]. The basic idea is to approximate the S
term in Equation 6. Instead of considering point charges
in space, each charge contributes a certain amount to
regularly spaced grid points. The amount of charge con-
tributed is computed through interpolation. SPME uses
cardinal B-splines for interpolation. The real-space part
and the correction are calculated without any changes.
The main steps for calculating the reciprocal-space part
are

1. Find B-spline coefficients and their derivatives for
each atom

2. Assign charges to grid points

3. 3D FFT the grid

4. Calculate the energy using the transformed grid
and other arrays

5. Inverse FFT the product of the grid with other ar-
rays

6. Use the result of the step 5 and the derivatives of
the B-spline coefficients to find the forces

1.2.2 Benchmark Simulations

We use two real-word simulations to benchmark the per-
formance of our implementations. One simulation is
of palmitic acid in water. The simulation consists of
52558 atoms of 8 different types. The cutoff length
is 10 Å, the time step is 2 fs, and the neighbor list
is rebuilt once every 10 steps. The simulation box is
104× 84.8× 256 Å3 and the grid used in the SPME
method is 128× 96× 256. Fourth order interpolation
is performed to assign charges to grid points.

The other simulation is of the CheY protein in water.
This simulation consists of 32932 atoms of 17 different
types. The cutoff length is 10 Å, the time step is 2 fs, and
the neighbor list is rebuilt once every 10 steps. The sim-
ulation box is 73.8× 71.8× 76.8 Å3 and the grid used
in the SPME method is 64×64×64. Fourth order inter-
polation is performed to assign charges to grid points.

2 Related Work

In this section, we look at some other efforts to accel-
erate MD with hardware. One of the most success-
ful of these efforts is the Molecular Dynamics Machine
(MDM) [Narumi et al. 2001]. MDM uses two types of
hardware accelerators: MD-GRAPE 2 is used to accel-
erate short-range force calculations and WINE-2 is used
to accelerate the reciprocal-space part of the long range
force calculations. By using large numbers of these
hardware accelerators, MDM can achieve TFLOPS per-
formance. The drawback to using these accelerators is
the fact that they are ASICs. ASICs, while providing
high performance, have high development costs and, if
they are not produced in large quantities, high produc-
tion costs.

[Lee 2005] is, to our knowledge, the only work im-
plementing the reciprocal-space part of SPME on an



FPGA. The implementation is limited to fixed-point
arithmetic and the author studies various fixed-point pre-
cisions to provide acceptable results. All tasks of the
reciprocal-space part are executed in hardware.

Besides our own work, described in the next subsec-
tion, we are aware of three other works studying the
acceleration of the complete MD application with FP-
GAs. In two of them, the entire velocity Verlet algo-
rithm is moved into hardware [Azizi et al. 2004; Gu
et al. 2005]. In each of these two works, fixed-point
arithmetic and table lookup and interpolation are used
to calculate the forces nonbonded forces. Bonded forces
are not calculated. Both works achieve an impressive
speed-up, but are limited to small simulations that can
fit in the on-chip memory of the FPGA and both uti-
lize the O(n2) technique that does not scale well to find
interacting pairs of atoms. The speed-ups reported also
come when compared to a slow MD software implemen-
tation [Bargiel et al. 1991].

The third work that accelerates MD simulations on
a reconfigurable computer accelerates a modified ver-
sion of the NAMD simulation package [Kindratenko
and Pointer 2006]. The authors study various architec-
tural choices and report on their performance. Notably,
single-precision floating-point arithmetic and 32-bit in-
teger arithmetic are employed and bonded force calcu-
lation is omitted. While NAMD is certainly capable of
using SPME in simulations, it is unclear whether or not
SPME is actually utilized in the simulations in [Kin-
dratenko and Pointer 2006] and in any case, SPME’s
impact on performance is not addressed.

2.1 Our Prior Work

In our prior work, we developed an MD simulation pro-
gram for the SRC 6 MAPstation [Scrofano et al. 2006].
We summarize the results here because the present MD
simulation program builds upon this previously devel-
oped basic simulation program.

For our study into the acceleration of MD simulations
with reconfigurable computers, we wanted to begin with
a basic, yet still scientifically useful, simulation pro-
gram, rather than trying to accelerate existing large-
scale simulation packages such as NAMD [Kalé et al.
1999] or GROMACS [van der Spoel et al. 2005]. These
large-scale simulation packages are highly optimized
and parallelized and contain many features; they present
rather extreme cases for studies into the appropriateness
of reconfigurable hardware acceleration. At the same
time, if the simulation program studied were too sim-
plistic, no useful information would be gained from it.

The MD simulation program we developed thus sup-
ports constant energy and volume (constant-NVE) sim-
ulation with an orthogonal periodic box. The velocity
Verlet integrator is employed. For bonded force calcula-
tion, bond stretch, angle bend, and dihedral torsion are
supported. For nonbonded force calculation, the shifted
force Lennard-Jones and shifted force Coulomb tech-
niques are used. The Verlet neighbor list technique is
used to identify the interacting pairs of atoms. The pro-
gram also now implements the RATTLE algorithm for
bond constraints [Allen and Tildesley 1987].

Inputs to the program are provided at run-time, and they
include the cutoff distance and list cutoff distance, pe-
riodic box dimensions, number of steps in the simula-
tion, and the length of the simulation time step. The
structure of the system can be specified in an AMBER-
format topology file, which is preprocessed into files in
the program’s internal format [AMB 2004]. Initial po-
sitions and velocities can be specified in a coordinate
file in PDB format [PDB 1996], which also gets prepro-
cessed.

We developed both a software version of the program
and a hardware accelerated version. In the hardware
accelerated version, the nonbonded force calculation is
moved to the reconfigurable hardware while the remain-
der of the simulation runs in software. There is one
pipeline that calculates the force and potential. It ex-
ploits the fine-grain parallelism within the operations in
the force calculation. Due to area and memory band-
width limitations, only one pipeline fits on the FPGA,
so the design cannot take advantage of coarse-grained
parallelism. Nonetheless, for each simulation, we ob-
tained about a 2× speed-up for the entire application by
doing the hardware acceleration.

There are two main drawbacks to this implementation.
The first is that it uses single-precision, rather double-
precision, floating-point arithmetic. This limitation is
due to limited area in the target FPGA, the limited num-
ber of on-board memory banks, and the limited band-
width between those on-board memory banks and the
FPGA. The SPME design described in the next section
also has this limitation. This limitation may be over-
come with the introduction of new reconfigurable com-
puters, such as the proposed SRC 7 MAPstation, which
have larger, more modern FPGAs, more on-board mem-
ory, and higher memory bandwidth [SRC 2004].

The other drawback to this basic implementation is the
use of the shifted-force approximation for the Coulomb
force calculation. In the next section, we describe the
introduction of the more accurate SPME technique into
the MD simulation program to overcome this problem.
We then discuss several issues that present themselves in



any implementation of SPME on a reconfigurable com-
puter and draw some conclusions about what these is-
sues mean for the use of reconfigurable computers in
scientific computing in general.

3 Smooth Particle Mesh Ewald

on a Reconfigurable Computer

Using SPME does not change the basic structure of the
simulation. The velocity Verlet algorithm, the bonded
force calculation, and the Lennard-Jones portion of the
nonbonded force calculation remain the same. The ma-
jor changes are in the electrostatic nonbonded force cal-
culation, as described in Section 1.2.1. Comparing the
shifted force approximation to the SPME technique, we
see that several changes will be required to the pro-
gram. The real-space part of the potential is similar to
the standard Coulomb potential (without the changes for
force shifting), except a term with an erfc(x) operation
is introduced (see Equation 5). The correction term is
not of major concern as it includes only O(n) calcu-
lations. The reciprocal-space calculation, however, is
wholly new and requires 3D FFTs, interpolations, and
the multiplication of 3D arrays. The introduction of
these kernels has the potential to significantly affect the
application profile, so we begin by examining the pro-
file of a software-only implementation of MD simula-
tion with SPME.

Following [Essmann et al. 1995] and referencing the
relevant functions in NAMD and GROMACS, we de-
veloped an implementation of the SPME technique that
was integrated into the simulation program described in
the last section. The size of the grid and the order of
the interpolation is specified by the user at run time.
The computation of erfc(x) and its derivative are imple-
mented with table lookup and interpolation. The FFTs
are done using the appropriate functions from the Intel
Math Kernel Library, version 8.1.14 [Int 2006].

3.1 Partitioning

The application profile for the two benchmark simula-
tions, obtained using Oprofile 0.9.1 [opr ], is shown
in Table 1. Clearly, the real-space part of the force
calculation, which includes the shifted-force Lennard-
Jones force calculation, is taking the most time. In the
palmitic acid simulation, the next-most time is taken
by the reciprocal-space part of the SPME calculation,
which includes the interpolation and both FFTs. Build-
ing the neighbor list takes roughly half as much time,

and the rest of the tasks even less. So, based on the
palmitic acid simulation, it seems that we should fo-
cus our efforts on the real- and reciprocal-space parts
of force calculation to obtain the highest speed-up.

In the CheY simulation, the construction of the neigh-
bor list takes the second-most time in the simulation,
while the reciprocal-space part of the force calculation
takes the third-most time. Note that in the CheY simu-
lation, the FFTs take hardly any time. This occurs be-
cause the 64×64×64 grid used by the CheY simulation
causes very few cache misses in the GPP’s 1 MB cache,
leading to very high FFT performance. In general this
will not be the case and the FFTs and, consequently,
the reciprocal-space part of force calculation, will take
a higher percentage of the time. Thus, we focus our ac-
celeration study on the real- and reciprocal space parts
of the force calculation and leave the remaining tasks,
including construction of the neighbor list, in software.

As mentioned above, the real-space part of the calcula-
tion is very similar to the calculation in the shifted-force
approach, with the introduction of an erfc(x) compu-
tation and an e−x2 computation as part of the deriva-
tive of erfc(x). These two terms present a challenge
for hardware implementation because there are no ex-
isting floating-point cores to calculate them. However,
they can be calculated through table lookup and inter-
polation and we describe such an implementation in
Section 3.2.1. Thus, without too much change, we
can accelerate the real-space part in a similar fashion
to the way the shifted force approach is accelerated
in [Scrofano et al. 2006]. We will obtain similar per-
formance as well, which will be a significant speed-up
over the software-only implementation of the real-space
part. For example, the real-space part in the palmitic
acid simulation should take only about 0.34 s/step, a
4.6× speed-up over the software-only version [Scrofano
et al. 2006]. Similarly, the real-space part of the CheY
simulation should take only about 0.19 s/step, a 4.8×
speed-up over the software-only version. Clearly, this
task should be executed in hardware.

For the reciprocal-space part of force calculation, one
option is to not accelerate it and leave it in software with
the rest of the simulation. Because they are not depen-
dent upon one another, the two parts can execute in par-
allel, one on the GPP and the other on the FPGA. In this
case, the length of time for the two tasks to complete is
equal to the maximum of the time the reciprocal-space
part takes to execute in software and the real-space part
takes to execute in hardware. For the palmitic acid sim-
ulation, we estimate that the two parts of the simulation
will take about the same time. For the CheY simulation,
the real-space part of the simulation will still be longer



Table 1: Profile of the Software Implementation for Two Benchmark Simulations
Palmitic Acid CheY Protein

Task Time (s/step) % Computation Time Time (s/step) % Computation Time
Real-space 1.56 70.25 0.93 74.42

Reciprocal-space (total) 0.34 15.40 0.10 7.80
FFTs 0.16 7.03 0.01 0.93
Assign charges 0.08 3.76 0.04 3.51
Find forces 0.06 2.61 0.03 2.09
Find B-spine coeffs. 0.02 1.07 0.01 1.18
Other 0.02 0.92 < 0.01 0.10

Building Neighbor List 0.19 8.55 0.13 10.80
Other 0.13 5.79 0.09 6.96

than the reciprocal-space part, but not as much longer.

The other option is to accelerate the reciprocal-space
part in hardware as well. The reciprocal-space part of
the calculation consists of several subtasks: finding in-
terpolation coefficients, assigning charges to the grid,
forward and backward FFTs, and so forth. None of these
kernels individually is responsible for much of the sim-
ulation’s overall computation time. To effectively accel-
erate the entire application, then, the whole reciprocal-
space part must be accelerated. The pipeline to do the
real-space part of the calculation and the pipeline to do
the reciprocal-space part of the calculation cannot both
fit in the FPGA at the same time because of area limita-
tions. So, only one will be able to execute on the FPGA
at a time and the FPGA will have to be reconfigured
each time either of the functions is called. Reconfigura-
tion takes about 0.05 seconds, so about 0.1 seconds of
overhead would be added at each call [SRC 2004]. For
the CheY protein simulation, this is not a solution since
the reciprocal-space part only takes 0.1 s/step. Even for
the palmitic acid simulation, considering the added re-
configuration cost, the reciprocal-space part of the com-
putation may not be significantly accelerated with a cus-
tom hardware design.

For this study, we have chosen the first partitioning
scheme, that is, the real-space part executes in hardware
in parallel with the reciprocal-space part executing in
software. To estimate the speed-up of a hardware im-
plementation before actually doing the implementation,
we take into account the time that the application will
spend in software, in hardware, and communicating data
between software and hardware. We can use the profil-
ing data to determine the amount of time that the tasks
left in software will take. We know the amount of data
the will be transferred between hardware and software
at each step because it is based on the number of atoms
in the simulation. We also know the bandwidth between
the hardware and software, so we can calculate the com-

munication cost. Finally, we need to find the hardware
cost, which is determined by the hardware implementa-
tion, which we will describe in the following subsection.

Take the palmitic acid simulation as an example. The
tasks left in software are estimated to take 0.66 s/step.
For a 52558-atom simulation, the communication time
is estimated to be only 1.2 ms, given the position data
and force data being transferred and the transfer rate of
the MAPstation. The hardware implementation of the
real-space part is estimated to take only 0.34 s, based on
our prior work, so its computation will be overlapped by
the reciprocal-space part in software. Thus, it does not
contribute to the overall time. The total time is, there-
fore, estimated to be 0.66 s/step, leading to an estimated
speed-up of 3.36×.

3.2 Hardware Design for the Real-

Space Part

In [Scrofano et al. 2006], we determined that the best
hardware design for the nonbonded force calculation
in the shifted-force technique is a write-back design.
Since the calculations in the real-space part are very
similar to those in the shifted-force technique, we em-
ploy the same basic design in this work. The algorithm
for this design in shown in Figure 2. In the algorithm,
positionOBM and forceOBM represent on-board mem-
ories, forceRAM represents an on-chip memory, and
CALC REAL represents applying the real-space force
and potential calculation equations, as well as other nec-
essary techniques, such as the minimum image conven-
tion [Allen and Tildesley 1987].

The two inner loops in the algorithm are pipelined while
the outer loop is not pipelined. The inner loop begin-
ning on line 5 is the main force calculation loop. Each
atom i’s neighbor list is traversed. The updated force on
atom i is accumulated. The updated force on each neigh-



foreach atom i do1
~ri← positionOBM[i]2
~fi← forceOBM[i]3
n← 04
foreach neighbor j of i do5

if
∣

∣~ri−~r j
∣

∣< rc then6
~r j← positionOBM[ j]7
~fi j ← CALC REAL(~ri,~r j)8
~fi← ~fi +~fi j9
~f j← forceOBM[ j]10

forceRAM[n]← ~f j−~fi j11
n← n+112

end13
end14

forceOBM[i]← ~fi15

foreach ~f j in forceRAM do16
forceOBM[ j]← ~f j17

end18
end19

Figure 2: Algorithm for Write-Back Design

bor atom j is stored in on-chip memory. When all the
neighbors for atom i have been processed, the pipeline
for the inner loop is drained. The forces stored in on-
chip memory are then written back to on-board memory
in a pipelined fashion (the loop beginning on line16).

The main benefit of this design is that it avoids data
hazards. For example, it does not require any on-board
memories to be read and written in the same clock cycle.
This is important because the on-board memories in our
target reconfigurable computer are single ported; trying
to access the same memory from two different places
within a pipeline causes the pipeline to stall, which
hurts performance. Because the pipeline is drained be-
tween iterations of the outer loop, no data hazards due
to the lengthy pipelines in the floating-point cores arise.
Another benefit of the design is that it minimizes the
number of times that the on-board memories switch be-
tween read and write modes. Such a switch often car-
ries a penalty of multiple cycles, which slows down the
pipeline.

The main drawback to this write-back design is the need
to flush the inner pipelines between successive itera-
tions of the outer loop. Pipelines made up of pipelined
floating-point cores are very long, so such pipeline
flushing reduces the effectiveness of the pipeline.

3.2.1 erfc(x) and e−x2

There are currently no libraries available for perform-
ing transcendental functions, such as erfc(x) and e−x2 in
floating-point on FPGAs. Thus, we had to develop our
own. We use table lookup and linear interpolation to
calculate these two functions to five digits of precision.
This method works particularly well on FPGAs because
the table can be stored in on-chip memory.

In MD, we are also able to bound the inputs to the
two functions. That is, we know ahead of time what
range of values the x in erfc(x) and e−x2 can take on.
In the case of MD, x = β

∣

∣~ri−~r j +n
∣

∣. In our simula-
tions, we utilize the common technique of setting β such
that the real-space energy is 0 at the cutoff distance, rc.
Thus, it is guaranteed that for any pair of atoms i and
j, 0≤ x≤ β rc. For a cutoff distance of rc =10 Å, as is
used in our simulations, it turns out that this limits the
range of inputs 0≤ x≤ 3.6. Both erfc(x) and e−x2 are
well-behaved functions in this region.

The table lookup and interpolation steps are accom-
plished using fixed point arithmetic and shifting, which
is much more area efficient than floating-point arith-
metic. Any values that are larger than β rc return
erfc(β rc)≈ e−(β rc)2 ≈ 0 and any values that are smaller
than a threshold return erfc(0) = e−(0)2

= 1.

3.3 Reconfigurable Computer Imple-

mentation Details and Results

For implementation on the MAPstation, we made a few
modifications to the traditional techniques. The neigh-
bor list is usually implemented as a long list of atoms
and a separate array that points to the start of a particu-
lar atom’s set of neighbors. In our implementation, we
instead insert the atom indices into the list right before
their neighbors. We use the most significant bit of the in-
dex as a flag to denote which atoms start new sets. Also,
we pack atom types and atom indices into 64-bit words
in the neighbor list instead of having a separate type ar-
ray. We do this to save on-board memory banks. Keep-
ing this added information in the neighbor list does not
increase data transfer costs because the transfer word on
the MAPstation is 64 bits wide anyway. Similarly, rather
than having a separate charge array, we pack the charge
in the same array as the positions. Positions have three
components that are each 32 bits but the amount of data
transferred must be in multiples of 64 bits, so we have
to transfer an extra 32 bits every time the positions are
transferred anyway.
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Figure 3: Data Layout in On-Board Memory

When the program runs, it executes the velocity Ver-
let algorithm. During the force calculation step, two
threads are created using pthreads [POS 2006]. One
thread calls the reciprocal-space part software function
and the other calls the hardware implementation of the
real-space part. The first time the real-space part is
called, all the necessary constants are transferred to the
FPGA and stored on-chip, either in registers or in em-
bedded memories. These constants only need to be
transferred once as they remain on-chip throughout the
simulation. Each time the real-space part is called, the
position/charge array is DMAed to the FPGA’s on-board
memory. The neighbor list is effectively streamed to
the FPGA by alternating DMAs between four on-board
memory banks. At the end of the calculation, the forces
are DMAed back to the GPP. The data layout in on-
board memory is shown in Figure 3, where ra and fa
are the a components of the position and force, respec-
tively, solid lines denote borders of memory banks, and
dashed lines show data packed into one word. When
both threads have finished, the force calculation pro-
ceeds with bonded force calculation and the force cor-
rections.

We implemented MD with SPME for the electrostatics,
as described above, on the SRC 6 MAPstation. The soft-
ware code was written in C and compiled with the Intel
C compiler version 8.1.

All of the hardware design, except for the table lookup
and interpolation functions for erfc(x) and e−x2 , was
coded in C for the SRC Carte compiler. This compiler
generates hardware designs from C code that is appro-
priately annotated with SRC-provided macros to per-
form such tasks as data movement between the GPP and
the FPGA’s on-board memory.

The erfc(x) and e−x2 tables each have 2048 17-bit wide
elements. Each table can fit in two embedded memo-
ries in the target FPGA. 17-bit wide values were chosen

Table 2: MAPstation Performance Results
Latency (s/step)

Simulation SW only SW + HW Speed-up
Palmitic Acid 2.22 0.76 2.92×
CheY Protein 1.25 0.46 2.72×

because, in addition to providing the required precision
in the results, they allow each multiply done during the
interpolation to use only one of the 18× 18-bit embed-
ded multipliers in the target FPGA. The values in the
tables were generated by a separate software program.
The thresholds for maximum and minimum values are
set at 4.0 and 2−23, respectively. The maximum is set to
4.0, rather than 3.6, because 4.0 can be checked simply
by looking at the exponent of the floating-point num-
ber. 2−23 is chosen as the minimum because any num-
ber smaller than that will have all its meaningful bits
shifted out when the number is converted to fixed-point.
These circuits are coded in the VHDL hardware descrip-
tion language and synthesized using Synplicity Synplify
Pro, version 8.1.

The complete hardware design is mapped to the FPGA
using Xilinx’s ISE tools, version 7.1.04.

The results of the acceleration on the reconfigurable
computer are shown in Table 2. We achieved a 2.92×
speed-up and a 2.72× speed-up for the palmitic acid and
CheY protein simulations, respectively, by moving the
real-space part into hardware and executing it in par-
allel with the reciprocal-space part. The speed-up for
palmitic acid is less than estimated above. A large part
of this is due to a threading conflict between designs
on the MAPstation and the FFTs from the Intel MKL.
Thus, the FFTs execute more slowly in software when
we introduce hardware acceleration for the real-space
part. Also, in our estimates, we ignored overheads such
as DMA start-up costs and thread creation costs.

4 Discussion

We have presented a preliminary investigation of MD
simulations that include the use of SPME for advanced
electrostatic calculation on reconfigurable computers.
We have shown that it is possible to achieve a significant
speed-up without accelerating everything in the applica-
tion. The design process served to emphasize the need
for profiling and performance estimation before actual
implementation. By targeting our acceleration efforts
to the most computationally intensive task, we are able
to obtain at least a 2.7× speed-up over a software-only
implementation. Had we instead tried to accelerate an-
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Figure 4: Speed-Ups of Palmitic Acid Simulation with
Various Parameters

other part of the application, such as the FFTs within the
reciprocal-space part, we could not have achieved nearly
as high of a speed-up.

4.1 Partition Space

The introduction of the SPME technique to the simula-
tion program has added tradeoffs to the design space for
partitioning the MD application between hardware and
software. So far, we have discussed the profile for two
simulations that use fourth order interpolation and have
particular FFT sizes. However, the interpolation order
and the size of the FFTs used in the simulation can sig-
nificantly impact the application profile.

As an example, we consider what would happen if the
palmitic acid simulation used sixth-order interpolation
and had a grid size of 256× 192× 512, instead of its
current configuration. In that case, the speed-up from
moving the real-space part to hardware drops to 1.30×.
The reason is that the real-space part now only accounts
for 33.79% of the overall simulation time while the
reciprocal-space part accounts for 58.44% of the overall
simulation time. There is thus a tradeoff between inter-
polation order, FFT size, and speed-up. Figure 4 shows
the speed-ups for various configurations of the palmitic
acid simulation, where i is the interpolation order and f
is the FFT size.

Another way to look at this is that changing the param-
eters changes the decision about which part or parts of
the simulation should be moved into hardware. In the
case described above in which the reciprocal-space part
takes more time than the real-space part, it would be
advantageous to accelerate the reciprocal-space part in

hardware instead of the real-space part. Or, it may in
fact be better to accelerate both parts of the force calcu-
lation in hardware.

The profile would also change if, through further op-
timization, the real-space part took less time to ex-
ecute. For instance, GROMACS uses optimizations
based upon the types of molecules interacting to reduce
the number of operations in the real-space part of the
force calculation. On x86 platforms, they use assembly-
coded routines to increase the performance even fur-
ther [van der Spoel et al. 2005]. Increasing the perfor-
mance of the real-space part of the force calculation re-
duces its contribution to the overall computation time
which in turn may make accelerating other parts of the
simulation more attractive.

One more case in which we may change our decisions
about what should and should not be moved to hardware
is the case of a highly parallel simulation implementa-
tion. In this case, the number of atoms per node may
be small because the atoms are distributed among many
processors. However, it can be difficult to effectively
parallelize the 3D FFT. FPGAs have demonstrated high
performance in 1D FFT computations, especially large
FFTs [Hemmert and Underwood 2005]. There may be
a partitioning in which a small number of FPGAs per-
form the FFTs needed in the reciprocal-space part while
the rest of the calculations are distributed among a large
number of GPPs. Whether or not such a partitioning is
practical will depend upon the performance of FPGAs
in executing floating-point 3D FFTs, which is not well-
studied at this time.

4.2 Libraries for Reconfigurable Com-

puters

The fact that, in this application, solely accelerating the
FFTs would not have greatly benefited the application as
a whole serves to make a point about libraries for recon-
figurable computers: they must be much more flexible
than libraries for GPPs. For GPPs, the fastest library
implementation for a particular kernel (FFT, for exam-
ple) is best because the tasks in the application must run
sequentially. For reconfigurable computers, on the other
hand, there is an inherent parallelism between hardware
and software. Running a kernel task more slowly in
software may be beneficial if it allows another, more
computationally intensive task, to run in hardware. In
the embedded computing community, this idea is known
as software deceleration [James-Roxby et al. 2004].

Thus, libraries for reconfigurable computers must do
more than provide a common interface and highly op-



timized implementations for various platforms and they
must be more than just wrappers around hardware im-
plementations that always execute the hardware version
if it is available. At the very least, the user should be
able to give the library “hints” as to whether the soft-
ware or hardware version of the library kernel should
be employed. A more advanced system would allow
the library to choose, at run-time, which implementa-
tion should be employed, based on parameters such as
problem size (number of points in the FFT, for exam-
ple). The system would provide an interface between the
library’s performance models and the application’s per-
formance model. An additional idea, proposed in [Smith
et al. 2005a], is to fuse functions to make the library
functions encompass more computation than is typically
done in libraries for GPPs.

5 Conclusion

We have developed a preliminary reconfigurable-
computer implementation of an MD simulation applica-
tion that includes the SPME method for accurate elec-
trostatic calculations. We were able to obtain speed-
ups of almost 3× by moving only the real-space part
of the calculation into hardware. We have then dis-
cussed some other possible partitions and the ways in
which the partitioning scheme depends upon the param-
eters of the simulation. Overall, our experience demon-
strates that in order to achieve a speed-up for a scientific
application such as MD simulation, careful partitioning
between hardware and software is necessary.

There are many areas for future work. One is to de-
velop a better understanding of the application pro-
file when the simulation is parallelized over multi-
ple GPPs. Insight into the behavior of the applica-
tion when parallelized among many nodes will help fo-
cus our evaluation of the various partitioning schemes.
Along those lines, it will also be imperative to under-
stand the hardware performance of the various kernels
in the reciprocal-space part when they are implemented
in hardware with floating-point arithmetic. Another
area is to investigate the possibilities for acceleration of
other electrostatic techniques, such as the fast multipole
method [Greengard and Rokhlin 1987].
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