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S U M M A R Y
Quantitative determination of crustal stress states remains problematic; here we provide a
synopsis of work that is leading towards the development of an optical interferometric method
that may be applied in boreholes. The major obstacle to the continued development of this
technique has been the problem of determining the state of stress within a stressed continuum;
we demonstrate the solution of both the technical and analytical issues in this contribution.
Specifically, dual beam digital electronic speckle interferometry is used to record the stress-
relief displacements induced by the drilling of blind holes into blocks subject to uniaxial
compressive stresses. Speckle interferograms are produced at rates near 4 Hz using a local
Pearson’s correlation method and are stored for analysis. This time-lapse capability is useful
when transient effects, such as thermal expansion displacements produced by the heat of drilling
or ongoing time-dependent deformation, are active. Four acrylic blocks subject to uniaxial
compressions from 3.8 to 5.5 MPa with the compressions oriented at different angles with
respect to the axes of the interferometry system were studied. Relative fringe phase information
was extracted from appropriate interferograms and inverted to provide a quantitative measure
of the 2-D stress field within the block. In general, the largest value of the stress obtained in
the inversion agreed with the known stress to better than 70 per cent. These measurements
suggest the levels of uncertainty that might be expected by use of such optical interferometric
techniques. This technique may show promise for quantitative stress determination in the earth
to complement existing techniques. As well, while the interferometric principles are not exactly
the same as for the popular satellite-based INSAR techniques, the optical method here has the
potential to be useful in analogue physical model laboratory studies of deformation in complex
structures.

Key words: downhole logging, instrumentation, residual stress, rheology, stress distribution,
thermal conductivity.

I N T RO D U C T I O N

The stress environment in rock controls the tectonic faulting regime,

the initiation of seismic and aseismic displacement, and the prop-

agation of fractures. Stress also influences the in situ values and

anisotropies of seismic velocities, permeability, and electrical con-

ductivity (e.g. Adams & Williamson 1923; Boness & Zoback 2004;

Kaselow & Shapiro 2004). Knowledge of stress states is also nec-

essary for safe and economic underground construction, resource

extraction, and waste isolation using bore holes. Taken together

there is a need for quantitative stress measurement in rock; how-

ever, the history of stress measurement in the earth is still relatively
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new (Fairhust 2003) and the quantitative determination of the stress

tensor remains challenging. Numerous complementary techniques

(Amadei & Stephannson 1997; Ljunggren et al. 2003) including hy-

draulic fracturing, overcoring, microseismic monitoring, borehole

breakout and core-disk analysis and finite element modelling, are

employed. Few of these provide the complete stress tensor; and there

remains a need for ongoing innovation. Here we summarize progress

towards the development of an optical interferometric stress-relief

method that has the potential to provide the complete state of rock

stress in the earth. This work builds on much earlier contributions

(Bass et al. 1986) but with substantially improved recording tech-

nology and with much more mature understanding of the underlying

problems.

Interferometric methods are finding increasing use in the geo-

sciences. Satellite-based radar ‘interferometry’ (e.g. Massonnet &

Feigl 1998) is able to provide measures of centimetre-scale displace-

ments that occurred between two or more passes of a satellite. In
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1426 D. R. Schmitt, M. S. Diallo and F. Weichman

Figure 1. Example of a double exposure stress-relief hologram displaying

a fringe pattern produced by stress-relief displacements induced by drilling

a small (∼1 cm diameter) hole perpendicularly into the borehole wall rock.

From Schmitt (1987).

this method, fringe patterns are calculated essentially on the basis

of the shifts in traveltimes of radar pulses scattered back from the

same point on the Earth’s surface to the satellite. The data may be

displayed in terms of the phase variations as fringe patterns. This has

numerous applications in monitoring earthquake motions, volcano

inflation, petroleum or water reservoir depletion, slope stability, lake

levels, and even localized building subsidence.

The applications of sensitive optical interferometric tools with

micron-magnitude sensitivity in the earth sciences, however, re-

main limited. A short listing (Cloud 1995) of such image-based

optical interferometric techniques includes double-exposure holo-

graphic interferometry, Moiré interferometry, and electronic or dig-

ital speckle interferometry (ESPI; DSPI). The details of these meth-

ods differ, but in general the final raw result is a 2-D fringe pat-

tern superimposed on the surface of the object of study. For pur-

poses of illustration only, an example of a film-based, double ex-

posure hologram recording the stress-relief field acquired at one

azimuth along a borehole drilled in a mine pillar is given in Fig. 1

(Schmitt 1987). The lobes of the fringes in this image results from

micron-magnitude stress-relief displacements induced by drilling

a small hole into the stressed wellbore wall rock; that such im-

ages may be obtained in the earth in these early studies continues

to motivate the current ongoing research. For comparison, some

more modern examples of raw fringe patterns obtained electroni-

cally during the course of the present laboratory tests are shown in

Fig. 2.

There are few but notable contributions in which optical inter-

ferometry has contributed to problems in geophysics. Spetzler and

coworkers (Spetzler et al. 1974, 1981) used holographic interfer-

ometry to monitor deformation on rock samples subject to uniax-

ial and polyaxial states of stress to failure. At low stress levels,

the rocks displayed highly complex but uniform surface strain pat-

terns. More significantly, prior to macroscopic fracture propaga-

tion, the eventual failure location displayed large and discontinuous

deformation—perhaps the first observations of such localized phe-

Figure 2. Examples of raw electronic speckle interferometry (ESPI) fringe

patterns produced by stress-relief drilling calibration tests for different geo-

metrical configuration and stress levels and illustrating time-dependent ef-

fects. Images have not been corrected for distortion due to the optical imaging

geometry. The centre of the stress-relieving hole is at the intersection of the

black lines. The sequence of interferograms in the left panel [a(1–3)] were

obtained in the case where a uniaxial stress of approximately 4 MPa is ap-

plied along the X direction. The sequence in the right panels [b(1–3)] were

acquired in the case where the applied stress of 5.4 MPa is along the Y direc-

tion. The file writing time from the computer clock in hours:minutes format

is shown in each panel. Fig. 2a-1 was taken 30 min after drilling. Fig. 2b-1

was taken 1 min after drilling.

nomena in shear fractures. Takemoto (1989) has pioneered the use

of interferometric methods as sensitive tunnel detectors of long pe-

riod earth strains (Takemoto 1986; Takemoto et al. 2004) and tidal

deformations (Takemoto 1990), and to determine stress-(Mizutani

& Takemoto 1989; Takemoto 1996). Other applications in the earth

sciences have focused on the study of fracture processes (Maji &

Wang 1992; Biolzi et al. 2001; Wang et al. 1990), determination

of elastic properties (Schmitt et al. 1989; Park & Jung 1988) and,

as already mentioned, stress determination from a borehole (Bass

et al. 1986).

In contrast, the mechanical engineering, applied optics, metrol-

ogy, and medical literature describe numerous optical inteferomet-

ric techniques for measuring displacements, strains, stresses, frac-

ture growth, and inelastic deformations of a wide variety of ma-

terials and structures. Some advantages of optical techniques over

more conventional methods, such those employing strain gages, are

that deformation over a large area is observed, that the object of

study is not disturbed by the measurement system, and that min-

imal sample preparation is necessary. Further, analysis of strain

gage results are complicated because they do not provide a point
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measurements and the integration of the deformation within the

bounds of their finite surface area must be accounted for. Early

work was primarily restricted to qualitative mapping of deforma-

tions via discontinuities in the raw observed fringe patterns useful

in detecting defects. Currently, ready access to inexpensive lasers,

digital image acquisition hardware, and image processing software

allows such techniques to be employed for an ever wider variety of

applications.

As noted, this issue of determining the state of stress in the Earth’s

crust is an essential consideration in many geotechnical and geo-

physical problems (e.g. Amadei & Stephannson 1997). In mechan-

ical engineering fields too, processes very often involve localized

heating, differential thermal expansion, or deformation that create

an internal (residual) stress which may be retained in the finished

component. Determining these residual stresses is essential for the

safety assessment and lifetime of the machined component. In short,

there are numerous needs for accurate quantitative measurements of

the stress tensor, both applied and residual, and while a number of

complementary techniques exist, achieving this goal remains chal-

lenging (Whiters & Badheshia 2001; Engeldger 1993) particularly if

quantitative information on in situ stress magnitudes and directions

are required.

In mechanical engineering, literature revolves around the blind-

hole drilling technique that is widely used to measure potentially

destructive residual stresses induced in a piece during its fabrication,

and there has been some tests of the blind-hole drilling concept for

stress measurement within the earth. (Smither et al. 1989). In this

technique, a small hole is drilled in the sample creating a stress-

free boundary that induces local stress-relief displacement of the

sample’s surface (Fig. 3). These displacements depend on numerous

factors such as the magnitudes of the applied stresses, the hole radius

a and depth h, and the elastic properties of the medium in which the

hole is drilled. The displacement field can further be complicated by

3-D stress gradients within the material. The state of stress may be

determined from these displacements or strains using an appropriate

model of the stress-relief displacements based on linear elasticity

theory or empirical analyses. The development of appropriate stress-

relief displacement models in three dimensions now allows better

use of the interferometric techniques.

In this study, ESPI is used to record stress-relief displacements

induced by the drilling of blind holes into pre-stressed materials.

σ σ

After Drilling

Before Drilling

P

P’

Figure 3. Exaggerated view of drilling-induced stress relief displacements

into a half-space. Point P on the surface is displaced to P′ after drilling;

grey-fill area represents the blind hole. In reality, the hole diameters and

depths will be in the millimetre to centimetre range while the stress-relief

displacements are on the order of a few micrometres.

The experiment is conducted for different stress levels and for dif-

ferent geometrical configurations of the optical system with respect

to the uniaxial stress direction acting on the specimen. Observed

fringe patterns are inverted using an iterative least squares mini-

mization approach that uses the positions of fringes minima and

maxima to determine the magnitude of the applied stress. The re-

sults in this paper are achieved because a number of technical and

analytical problems were solved. These problems, synoptically re-

viewed here, retarded the use of optical methods for quantitative

stress determinations. Although the current work was carried out

in a polymer, this step is necessary in order to validate the tech-

nique itself even though the final goal is to achieve a method that

may be applied to stress measurement from boreholes. The paper

concludes with a discussion of where this method might best be

applied in the context of stress and deformation measurement in the

geosciences.

B A C KG RO U N D

Relief-based stress determinations, of which overcoring is perhaps

the best known example in the geosciences, require:

(1) knowledge of the relationship between the stress-relief in-

duced deformations and the in situ stress field,

(2) a method to adequately record such a deformation and

(3) the ability to invert observed deformations to obtain values

of the stress field.

Recent developments in each of these three components of the

stress-determination problem are reviewed here briefly in order to

prepare the reader for a presentation of the final experiments.

Stress-relief displacement field

This section focuses solely on the isolated problem of determining a

biaxial state of stress within a plate. The connected problem which

uses the concepts developed here in obtaining the complete state of

stress from a borehole is reviewed later.

The essential concept behind stress-relief stress measurement

techniques are that changing the geometry of an object by, for exam-

ple, drilling a small hole into its surface necessitates a redistribution

of the stresses within the object. This redistribution is manifest in

small changes to the shape of the object that will be dependent on the

magnitude of the stresses in question (Fig. 3). Hence, the induced

deformations can in principle directly provide information on the

stresses.

By the 2-D symmetry of the hole in the plane of the surface of

the object, workers initially developed straightforward plane strain

expressions for use in the analysis of strain gage readings. These

formulae were based on the plane strains expected in the vicinity

of a through-going hole in a thin plate (Fig. 4a) subject to a state

of 2-D plane stress with principal stresses σ max and σ min of the

form:

ε(r, χ ) = A(σmax + σmin) + B(σmax − σmin) cos(2χ ), (1)

where ε can be either the radial or the azimuthal strain and χ is the

azimuthal angle as measured from the direction of σ max. A and B are

factors that depend on the stress-relieving hole radius a, the distance

from the hole axis r, and any two of the independent elastic properties

such as Young’s modulus E and Poisson’s ratio ν. Examination of

eq. (1) highlights the cos(2χ ) behaviour of the strains around the

hole. This is most simply illustrated in the formulae for the factors

C© 2006 The Authors, GJI, 167, 1425–1438
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1428 D. R. Schmitt, M. S. Diallo and F. Weichman

Figure 4. (a) Plan view of plate or block surface with coordinate systems

employed. (b) Geometry of the stress-relief hole in an object subjected to a

state of plane stress relative to Cartesian coordinates (x, y, z) and cylindrical

(r, z, θ ) coordinate system. Hole axis coincides with the z-axis. The object is

assumed to be subject to a 2-D state of plane stress with normal components

σ xx, σ yy and shear component τ xy.

for the case of plane stress within a thin sheet with a through-going

hole with:

A = −1 + ν

2E

(
a

r

)2

,

B = −1 + ν

2E

[
4

1 + ν

(
a

r

)2

− 3

(
a

r

)4
]

(2)

Similar cos (2χ )-based formulae can be written for the particle

displacements instead of the strains; the optical method employed

here is directly sensitive to the actual stress-relief displacements of

the surface.

In trying to measure stress in the earth, however, the case actually

encountered is not that of a thin plate but of a stressed half-space

in which a blind (i.e. finite depth) stress-relieving hole is drilled

(Fig. 4b). In this situation, all three components of the surface stress-

relief displacement fieldU (x , y) = u x (x , y) i x + u y(x , y) i y + u z(x ,

y)i z (Fig. 4b) induced for all points P(x,y) over the surface of the

object (Fig. 5a) may need to be considered. Unfortunately, obtaining

a representative relationship between the stresses and the induced

displacements is not straightforward (see Schmitt & Li 1996, for a

review), and this causes difficulties even in the commonly applied

strain gage measurements that record only the two strains in the

plane of the surface. The 3-D asymmetry of the blind hole makes

construction of a purely analytic solution from first principles awk-

(a)

(b)

Figure 5. (a) Experimental geometry with the laser beam split at B, and S1

and S2 the source points with unit wavenumber direction vectors n1(x , y)

and n2(x , y), respectively. P(x, y) is one point on the surface of the object,

and K (x, y) =n1(x , y) −n2(x , y) is the sensitivity vector for P. (b) Photo-

graph of experimental set-up with beam paths to a point P(x, y) shown.

ward. Early engineering practice navigated around this problem with

carefully controlled calibration testing for determination of appro-

priate values for the factors A and B (Rendler & Vigness 1966) that

depend on the ratio of the hole depth h to its radius a.

A drawback of this approach is that its utility is limited to the par-

ticular geometry studied; and to overcome this limitation numerical

finite element calculations have provided supplementary informa-

tion upon which current engineering standards are based (Schajer

1981). Numerical methods have also been used in studying stress-

relief problems in engineering (Nelson & McCrickerd 1986; Beghini

& Bertini 2000; Furgiuele et al. 1991), but for the most part these

C© 2006 The Authors, GJI, 167, 1425–1438
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Figure 6. Calculated elastic stress-relief displacement components produced by drilling a blind hole (a = 3.426 mm, h = 1.36 cm, E = 3. GPa, ν = 0.4) (a)

u x (x , y), (b) u y (x , y), and (c) u z(x , y) (colourbar axes correspond to μm) that will produce (d) a phase map (colourbar axis correspond to phase angle φ in

radians) using the same geometry of Test 1 in Table 1. Grid spacing in terms of cm centred at O. Note that x and y axes are not to the same scale in order to

better compare to real distorted fringe patterns.

calculations were still carried out on a case-by-case basis dependent

on the particular problem.

To overcome these difficulties, Ponslet & Steinzig (2003) more

recently developed sets of look-up interpolation tables that may be

used to describe the stress-relief displacements for holes with 0.2 ≤
h/a ≤ 1.4 that are drilled into materials with ν = 0.3 (i.e. typi-

cal of many aluminium and steel alloys of interest in mechanical

engineering). By curve fitting the results from an extensive series

of finite element cases, Rumzan & Schmitt (2003) independently

constructed a series of parametric equations that describe the 3-D

stress-relief displacement field. These formulae are generally valid

for hole depth/diameter ratios from 0.5 to 4.0, for Poisson’s ratios

from 0.05 ≤ ν ≤ 0.45, and over radial distances from the hole axis

from 2 to 20 times the hole radius, although these validity ranges

can vary with hole depth. These parametric formulae are too lengthy

to be reproduced here, but typical maps of the stress-relief displace-

ment fields are found in Fig. 6. The greater range of Poisson’s ratios

allows application of the methods to ceramics, rocks, and polymers

that do not necessarily have ν ∼ 0.3. It is important to note that

the ‘shape’ of the displacement field is controlled primarily by ν

and the ratio h/a of the hole depth to its radius. The ratio between

the stresses and Young’s modulus E control only the magnitudes

of the displacements; and consequently, the use of E and ν in de-

scribing the material’s elastic properties is advantageous over other

combinations of the elastic moduli.

It is useful to point out that in machined or welded metallic ob-

jects, the gradients in the residual stress near the surface can be

large (on the order 100 MPa mm−1), which can lead to failure of

the material. This problem is not as severe in earth science contexts

and the present work assumes that a uniform biaxial state of plane

stress exists in the object prior to drilling the stress-relieving hole.

For a single uniaxial stress, this parametrization allows one to

describe a stress-relief displacement field as a series of vector basis

functions u(x , y, ν, h/a) containing the field shape such that the

expected true stress-relief deformations can be found viaU (x , y) =
(σ yy/E)u. This uniaxial basis is readily rotated to provide solutions

for the two remaining stress components σ xx and τ xy using well-

known 2-D stress-rotation formulae. At a given point (x, y) on the

surface, these basis functions may be combined in a displacement

field shape matrix S(x, y):

S(x, y) =

⎡⎢⎣uxx
x uyy

x uxy
x

uxx
y uyy

y uxy
y

uxx
z uyy

z uxy
z

⎤⎥⎦ , (3)

where uxy
x for example is the x-component basis displacement in-

duced by the shear stress τ xy. If the simple case of biaxial stress

(Fig. 4) is allowed to be represented as a column vector σ =
[σ xx, σ yy, τ xy], then the displacement at a given point in compact

matrix form is U (x , y) = S(x , y) σ . An example of the u x , u y , and

u z displacements for a representative case of a block subject to an

uniaxial σ xx stress illustrates the complex 3-D pattern described by

S(x, y) (Fig. 6).

Electronic speckle interferometry

As noted earlier, the stress-relief displacements induced by the

drilling of a small, blind hole into manufactured objects have long

C© 2006 The Authors, GJI, 167, 1425–1438
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been studied as a means of estimating possibly deleterious residual

stresses in machined objects. Standardized strain gage techniques

(see ASTM 2001) to do this have long predominated. Some disad-

vantages of strain gages, however, are that they must carefully be

glued to a specially prepared surface with a high degree of precision

in positioning, that their calibration carries a degree of uncertainty,

and that they provide only a measure of the average strain over

their areal extent. This last point is particularly important given the

rather large strain gradients near the stress-relieving hole. Strain

gages have been directly applied to rock for stress determination

also, but issues of access down long wellbores, surface roughness,

and moisture complicate such procedures. This provides an oppor-

tunity for optical methods, which often do not require any direct

contact between the recording system and the rock mass and which

can provide full field measurements over the surface of the object

as shown in Fig. 2.

Traditionally, the stress-relief strains in the vicinity of the drilled

the hole are measured using specialized strain gage rosettes (see

ASTM 2001). However, optical techniques such as Moiré interfer-

ometry (McDonach et al. 1983; Schwarz et al. 2000) holographic

interferometry (Makino et al. 1996; Bass et al. 1986) and DSPI or

ESPI, respectively, (Jones & Wykes 1989; Vikram et al. 1995; Zhang

1998; Schmitt & Hunt 1999; Diaz et al. 2001) have been used in

various fields to provide quantitative information about the displace-

ment field generated by the drilling operation. The data analysis is

based on comparing the interference field before and after drilling

operation.

Speckle interferometry is employed in this study. The roughness

of the surface scatters the coherent laser light such that it interferes

Figure 7. Raw speckle patterns recorded (a) before and (b) after stress-relief drilling. These are used to calculate (c) ρ (x, y) fringe pattern, which is the

observed data. This fringe pattern correlates to an unwrapped phase φ (x, y) map of Fig. 6 that may be used to calculate (d) the corresponding modelled fringe

patterns.

to form small dark and bright areas that can be seen over its sur-

face, this granular appearance of objects seen under laser light is

called speckle. The granular speckle pattern may then be captured

using readily available CCD (charge-coupled device) cameras and

stored as a bit-mapped grey-scale image (Figs 7a and b). By itself,

this speckle pattern contains little useful information. However, an

interesting aspect of these speckles is that when illuminated under

crossed coherent beams, each speckle essentially acts as an indepen-

dent interferometer. If the beams remain stationary but the surface of

the object is displaced, the speckle’s intensity will harmonically cy-

cle from dark to bright. Speckle interferometry requires the speckle

patterns of the object surface be obtained both before and after the

deformations occur.

In practice, a laser beam is divided by a splitter into two secondary

beams that are redirected to illuminate and interfere on the surface

of the specimen (Fig. 5). When used with blind-hole drilling, images

stored before (Fig. 7a) and after (Fig. 7b) the drilling operation are

compared either by intensity subtraction or local cross-correlation.

The resulting image (Fig. 7c) exhibits a fringe pattern that is a map

of the changes in the phase of the light due to displacements of the

surface. The shape and spacing of successive fringes depend on the

magnitude and direction of surface displacement due to external

or residual stresses and on the geometry of the optical set-up. The

fringe pattern is really an (x, y) map of the changes in the phase of

the light due to displacements of the surface according to:

φ(x, y) = K (x, y) ·U (x, y)

= 2π

λ
(n1(x, y) − n2(x, y)) ·U (x, y) (4)

C© 2006 The Authors, GJI, 167, 1425–1438
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where U (x, y) is the previously described vector describing the 3-D

displacement of the surface at point P(x, y), λ is the wavelength of the

coherent light employed and, n1 and n2 are unit directional vectors

that describe the light rays connecting P(x, y) to the illumination

source points S1 and S2, respectively (Fig. 5a). The vector K (x ,

y) = (n1 −n2) is called the sensitivity vector and it is a useful

concept in that the final fringe pattern will be sensitive only to the

components of U (x, y) projected along the direction of K(x, y).

These fringe patterns serve as the raw data that is then analysed to

provide measures of stress or particle displacement. For purposes

of illustration, the set example set of displacements (Figs 6a–c) are

mapped to φ(x, y) (Fig. 6d).

If φ(x, y) is an even integral multiple of π , the speckle will

have the same intensity before and after a small displacement.

In contrast, if φ (x, y) changes by an odd integral multiple of

π , the intensity of the speckle will be different. The intensity of

the speckle (or a small set of neighbouring speckles) experiencing

odd or even multiple shifts of π will then correlate highly or not at

all, respectively, before and after the deformation. A measure of the

degree of correlation ρ(x, y) is given by:

ρ(x, y) = (1 + cos(φ(x, y)))/2, (5)

which varies between 0 ≤ ρ (x , y) ≤ 1. A value of 1 means

perfect correlation while values near zero indicate no correlation.

Fig. 7(d) shows a theoretical fringe pattern obtained from the phase

map of Fig. 6 and corresponds to the observed fringe pattern of

Fig. 7(c). A variety of methods are employed to calculate the fringes

(Vikram et al. 1995) controlled phase shifting. We use an alter-

nate technique (Schmitt & Hunt 1997) that employs calculation

of the Pearson’s correlation coefficient between a number of lo-

cal speckle intensities (Fig. 7c). This local correlation technique

has the advantage that the calculated correlation coefficient can be

directly compared to ρ (x, y) in eq. (2) as well being applicable un-

der conditions of non-uniform illumination over the surface of the

object.

Inversion of fringe patterns for stress state

For convenience, it is useful to define the fringe order N(x, y):

N (x, y) = φ(x, y)

2π
. (6)

An integer value of N will correspond to perfect correlation and a

‘bright’ fringe in the final fringe pattern, while a value of an integer

plus 1
2

is the peak of a ‘dark’ fringe. N can take any real value,

both negative and positive. This leads to one further aspect of the

fringe patterns that is important. The fringe patterns themselves via

eq. (2) can at best yield a wrapped phase map modulo π . That is,

neither the true magnitude of φ (x, y) nor of N(x, y) can be directly

known from the calculated fringe pattern; obtaining this informa-

tion requires that the true phase be found via phase unwrapping.

Reviews of phase unwrapping techniques may be found in (Ghiglia

& Pritt 1998) and are beyond the scope of this article. A complete

phase unwrapping was not used here; rather a simpler method that

requires picking the fringes was employed as a part of the inversion

procedure.

The inversion procedure assumes that the stress-relief displace-

ments are correctly described by the parametric model relating dis-

placements to stress for the blind hole as are reviewed above. Com-

bining eqs (1), (2) and (4) gives

N (x, y) = [K (x, y) · S(x, y)]σ = g(x, y)σ, (7)

where the row matrix g(x , y) = [gxxgyygxy] is a condensation of the

presumed ‘knowns’ of the experimental geometry (i.e. the position-

ing of S1 and S2 relative to P(x, y)) and the predetermined stress

shape basis functions). A fringe pattern may easily be forward mod-

elled using eqs (5) and (3) for a known stress state σ explicitly

via:⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

N (x1, y1)

N (x2, y2)

.

N (xi , yi )

N (xi+1, yi+1)

N (xi+2, yi+2)

.

.N (xm, ym)

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

=

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

gxx (x1, y1) gyy(x1, y1) gxy(x1, y1)

gxx (x2, y2) gyy(x2, y2) gxy(x2, y2)

...
...

...

gxx (xi , yi ) gyy(xi , yi ) gxy(xi , yi )

gxx (xi+1, yi+1) gyy(xi+1, yi+1) gxy(xi+1, yi+1)

gxx (xi+2, yi+2) gyy(xi+2, yi+2) gxy(xi+2, yi+2)

.
...

... .
...

gxx (xm, ym) gyy(xm, ym) gxy(xm, ym)

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎡⎢⎣σxx

σyy

τxy

⎤⎥⎦ (8)

where m is the total number of points calculated. Eq. (6) may be

condensed as N = Gσ .

This forms the basis of the inversion algorithm for σ using ob-

served values of N from numerous points in the fringe pattern over

the surface of the object using the least squares formulation:

σ = (GT G)−1GT N . (9)

It is worthwhile noting that eq. (6) can be further adapted if necessary

to include additional motions, such as a rigid body translation of the

object itself, that superpose with the stress-relief displacements.

Although eq. (7) is straightforward to employ, it is more difficult

to implement in practice because the fringe patterns are a wrapped

phase representation and do not yield directly the value of N(x, y)

or, equivalently, φ(x, y). The problem is overcome here following

an iterative procedure, (Schmitt & Hunt 2000) in which:

(1) Loci of constant fringe order, such as a continuous bright

peak or dark trough, are picked manually from the image of the

fringe pattern. Information on which points share the same fringe

order and which other points are along an adjacent phase loci are

noted (Fig. 8).

(2) A value of the fringe order is arbitrarily assigned to one of

the loci and the neighbouring loci will be appropriately incremented

or decremented. For example, a bright fringe must be assigned an

integer value, say let N = 1. With this assignation, the adjacent dark

fringe troughs must have respective fringe orders of N = 1
2

and 1 1
2
.

Continuing this procedure values of N = 0 and N = 2 must then

be assigned to the next adjacent sets of bright peaks on either side

of the initial N = 1 fringe. This procedure is continued until all the

picked fringes have fringe orders applied.

(3) The relative differences in the fringe order will be correct

but the initial value of N = 1 may only be a guess, so the initial

fringe order values are likely incorrect. Despite this, an inversion

using these fringe orders in eq. (7) may be calculated to provide an

estimate of σ that will have an associated error ε

ε = |N − Gσ |2. (10)
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Figure 8. Illustration of the inversion procedure on the calculated fringe

pattern. (a) Calculated fringe pattern for a uniaxial stress of σ xx = 5 MPa

applied to a block of material with E = 3.1 and ν = 0.3 with a hole diameter

of 4.50 < a < 5.71 mm and 2.4 < h/a < 3.7. Picked fringe points and initial

fringe order assignations shown. (b) Evolution of the error ε versus fringe

order assigned to the true N = 0 fringe.

(4) The fringe orders can then be updated by shifting the values

by ±1 and applying step 3 again to calculate a new value of the

error.

(5) Step 4 is repeated until a satisfactory minimum value of the

error ε is detected whereupon the best estimate of σ in the least

squares sense will have been found. (Fig. 8b).

The example of Fig. 8 is purely hypothetical and it is instructive

to see how well the inversion procedure involving the manual fringe

picking works on noise-free synthetic fringe patterns. A number of

such numerical tests were carried out. Fig. 8 showsσ= [5 0 0] MPa.

Direct inversion of the forward modelled results yields insignificant

numerical error. Manual picking of the fringe peaks and trough and

inversion according to the above protocol, however, yielded values

ofσ1 = [5.006 MPa, 90 kPa, 0.6 kPa]. A second case with a different

uniaxial applied stress aligned in the y direction (σ = [0 10 0] MPa)

yielded σ2 = [0.24 9.3 0.02] MPa upon inversion. A discussion of

the source of these errors may be found in Shareef & Schmitt (2004).

Determination of the complete stress tensor

from a borehole

Although the focus of this contribution is on obtaining the 2-D

biaxial stress state in a plate, the ultimate goal is to find the 3-D rock

stress in the earth from measurements in a borehole. This problem

has been discussed earlier (Bass et al. 1986), but it is important to

provide a brief review in order to place the current study in context.

It is first necessary to consider the concentration of stress by the

borehole. Hiramatsu & Oka (1962) developed the equations for

stress concentration by a wellbore drilled at an arbitrary angle rel-

ative to the three principal stresses existing in the linearly elastic

continuum. One of their essential results is that a state of biaxial

stress exists within the rock at the borehole wall, and this stress

state consists of the azimuthal σ θ and axial σ z normal stresses and

their associated shear stress τ θ z . This stress state is a consequence

of the concentration of the 3-D stress state that existed prior to

drilling the borehole; and at a given depth will vary with azimuth.

As noted, the method described here is only able to obtain the 2-D

biaxial stresses at a given point. Consequently, determination of the

pre-existing complete state of stress requires the 2-D biaxial stresses

at a minimum of three azimuths in order to adequately solve for the

six unknown components of the full 3-D tensor.

E X P E R I M E N TA L C O N F I G U R AT I O N

The experiments here consisted of carrying out the hole drilling

measurements on blocks subject to a uniaxial compressive stress.

The experimental configuration (Fig. 5b) follows the ESPI geometry

(Fig. 5a) closely. Interferometric techniques are particularly suscep-

tible to contamination by vibration. To maintain stability as much as

possible, the entire experiment is conducted on an air isolated opti-

cal bench. In our earlier studies (e.g. Schmitt 1987) we found that

measurements within a borehole are also highly stable with regards

to vibrations despite the fact that the measurements were carried out

in an active mine. The beam from a 36 mW (Micro Laser Systems

Model L4 830S) stabilized infrared diode laser (λ = 830 nm) is split

by a 50:50 partially transparent beam splitter.

The two arms of the split beam strike and are scattered from the

source points S1 and S2 (Table 1). Most workers employ systems

of lenses to both collimate and expand their beams to illuminate

the surface of the object. The present experiment uses a more novel

approach in which the beams are expanded by scattering from an

optically-rough, ground ceramic surface at S1and S2. While this

procedure may lead to some loss of light, it has a number of ad-

vantages in that the true coordinate positions of S1 and S2 within

the chosen coordinate frame are easily measured, and that a nearly

spherical expansion is effected producing a wide range of directions

for the sensitivity vector K(x, y) allowing for better use of the fringe

pattern data. On a more practical note, the entire system takes up

less space and there is no requirement to keep lenses dust-free.

An infrared sensitive CCD camera (TI Multicam CCD) with a

8 mm f1.4 lens acquired the raw speckle patterns. It is worthwhile

noting that a further advantage of the ESPI system is that, in prin-

cipal, the placement of the camera is not important because K(x,

y) depends only the positions of S1 and S2. The 24 bit grey-scale
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Table 1. Experimental geometry and results.

Test 1 Test 2 Test 3 Test 4

Sample Ctest3 Csp14 b2f B3f

S1 Coordinates (cm)

Ox −9.102 −9.004 6.256 6.256

Oy −3.792 −3.713 1.411 1.411

Oz 4.261 3.886 2.500 2.500

S2 Coordinates (cm)
Ox 5.930 7.996 −8.793 −8.793

Oy 4.325 −4.620 −9.250 −9.250

Oz 4.606 4.405 2.700 2.700

Known applied stress (MPa)
σ xx 5.5 4.06 0 0

σ yy 0 0 3.8 5.4

τ xy 0 0 0 0

Inverted stress MPa

σ xx 5.30 (3.6 per cent) 4.67 (+15 per cent) 0.76 2.40

σ yy 2.61 1.16 2.41(37 per cent) 5.20 (3.7 per cent)

τ xy 1.48 0.85 0.12 0.97

image (640 × 480 pixel) is downloaded to a personal computer (ca.
2002) that employs a specialized interactive software (Engler 2002)

that allows the fringe patterns to be calculated using the algorithm

of Schmitt & Hunt (1997), and viewed in near real time (at four

fringe patterns per second). Both the calculated fringe patterns and

the raw speckle images are stored for later use; as suggested by the

frames in Fig. 2, the ability to store many images is useful as it aids

in the detection of potentially deleterious time-dependent effects.

The images of the block and fringe patterns in Fig. 2 are distorted

due to the oblique placement of the recording camera relative to the

stressing frame. In order to be able to correctly analyse the fringe

patterns, the (x, y) location of each image pixel must be known.

The mapping registration function was determined by taking an

image of the object overlain with a fine grid paper aligned with

known positions on the block.

The fringe patterns retain a degree of high spatial frequency

speckle noise inherent in the method (Engler 2002). This noise

makes delineation of the lower spatial frequency fringes difficult

and adds error to the picking the bright and dark fringe loci for later

analysis (Fig. 9). Many standard image processing smoothing func-

tions (e.g. Fourier transform or median filtering) do not adequately

remove the speckle noise and, indeed, can make the problem worse.

Instead, we employed an alternative technique referred to as mean
curvature diffusion. The details of this method (Diallo & Schmitt

2004) are beyond the scope of this paper but essentially the method

uses an iterative procedure analogous to diffusion to remove the

high-frequency noise, leaving the useful information of the fringes

(Fig. 9). To illustrate the procedure, speckle is added to a hypo-

thetical noise-free fringe pattern (Fig. 9a). Repeated application of

the algorithm to the noisy fringes (Fig. 9b) better highlights the

desired fringes (Figs 9c–e). A line plot of the image grey-scale val-

ues through the centre of the image (Fig. 9f) more quantitatively

illustrates the improvement to the image with successive iterations

although one disadvantage is the loss of some relative amplitude for

the higher density fringes near the edge of the image.

The samples for these tests are acrylic (PMMA) blocks machined

to dimensions of 12 × 12 × 5 cm. Acrylic was selected for these cal-

ibration tests because it is homogeneous and isotropic and has a low

Young’s modulus of E = 3.0 ± 0.1 GPa that allows sufficient stress-

relief displacements under modest applied stresses below 6 MPa.

Both E and ν = 0.38 ± 0.01 were determined from samples taken

from the blocks using standard strain gage methods on a universal

testing machine, and this was further confirmed by a complemen-

tary interferometric method at similar induced displacement levels

(Shareef & Schmitt 2004). After the initial machining the blocks are

annealed at low temperature to eliminate the possibility of residual

stresses in the material that would complicate the stress-relief pat-

tern. This was checked by examining the samples for photoelastic

birefringent fringes none of which were seen. The front surface of

the block was then lightly ‘pebbled’ with white paint to ensure the

light would be scattered from its surface. These blocks were then

placed into a stressing frame whose applied force was measured us-

ing strategically placed strain gages in an unbalanced Wheatstone

bridge arrangement that was frequently calibrated with a load cell.

The block was subject to a known uniaxial stress that was carefully

monitored for changes for a period of at least one day before mak-

ing the actual stress-relief measurements. Four different stress states

were tested (Table 1).

After being satisfied that the stress conditions on the sample were

stable, a reference speckle image was taken prior to drilling. A 4.5

or a 4.71 mm diameter hole was drilled to 15 mm in depth, depend-

ing upon the bit employed. To control the depth of the hole, the

drill rod was marked with the length of the desired depth. Drilling

continued until the bit moved into the sample up to the marked

position. Recording of the interferograms commenced immediately

after the drilling was completed (as in Fig. 2) to document the influ-

ence of thermal diffusion on the shape of the interferograms. From

the numerical model we know the shape of the final stress-relief in-

terferograms to be expected from each experimental configuration.

The shapes of the fringe patterns were monitored until an expected

fringe pattern stabilized, at which point we took the stress measure-

ment. This was typically about 30 min after drilling had ceased.

While the experiment progressed, the stress on the sample was also

continually monitored and maintained at a constant level according

to the response of a calibrated load cell.

In the different tests, experimental conditions were varied by

changing the stress level or by changing the direction of the uni-

axial stress axis with respect to the S1 and S2. In the present study,

two geometries were tested, one for the situations where the line

joining the sources and uniaxial stress axe are parallel (i.e. S1 and
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Figure 9. Comparison of noisy calculated fringes before and after application of the mean curvature diffusion smoothing technique. The model consists of a

7 μm translation (a) Clean fringes, (b) Noisy fringes. Filtered fringes after (c) 20 iterations, (d) 50 iterations, (e) 150 iterations. (f) Line plot comparisons of

the clean, noisy, and filtered profile passing through the centre of the original image.

S2 are collinear with the direction of σ xx) and the other where the

plane containing the sources is perpendicular to the stress axis (i.e.

S1 and S2 are perpendicular with the direction of σ yy). Again, Fig. 2

shows two illustrative examples of raw interferograms. Those in the

left column [Figs 2a(1–3)] were obtained with a uniaxial stress of

approximately 4.0 MPa applied along the X direction, and those

in the right column [Figs 2b(1–3)] were obtained with a uniaxial

stress of 5.4 MPa along the Y direction. In each experiment, speckle

patterns were acquired for many hours after drilling to make sure

that elastic relaxation part of the stress-relief process was captured

(Schmitt & Hunt 1999). The first interferogram of the left column

(Fig. 2a-1) was obtained approximately 30 min after drilling. Most

of the heat of drilling had dissipated by this time and the subse-

quent fringe patterns Fig. 2(a-2) and Fig. 2(a-3) taken 196 min and

394 min, respectively, after drilling show little further change. In

contrast, the first interferogram the second sequence of the right

column (Fig. 2b-1) was acquired immediately (within 1 min) after

the drilling operation and shows a complex fringe pattern related to

the thermal expansion of heat generated at the wall of the stress-

relief hole by friction with the drill bit. The latter fringe patterns

[Fig. 2b(2–3)] are largely stable with only small variations seen

between these two frames taken 161 min apart from each other.

The fringe picking is carried as follows. First we select a point

around the region where we expect to find the fringe extrema. Then
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Figure 10. Picked real fringe patterns from the four analysed samples (Table 1) subject to uniaxial stress states of. (a) Test 1: σ xx = 5.5 MPa, (b) Test 2:

σ xx = 4.06 MPa, (c) Test 3: σ yy = 3.8 MPa, and (d) Test 4: σ yy = 5.4 MPa.

we search for an extremum in this region delimited by a square patch

around the initial guess. The size of this square in pixels determines

the extent of the region to be used for this extremum search. In

Fig. 10 we show the real interferograms from the four samples after

MCD smoothing, superimposed with the initial (open circle) and

the finally determined (open square) fringe extrema.

Although only uniaxial stresses were applied to the blocks, a full

biaxial inversion was done in order to assess the level of errors that

might be introduced in an actual analysis of the data.

R E S U LT S A N D D I S C U S S I O N

The four fringe patterns analysed are shown in Fig. 10 with the corre-

sponding experimental conditions and the final results of the fringe

pattern inversions provided in Table 1. Some important observations

from these images are:

(i) Although the uniaxial stresses applied have similar mag-

nitudes, the fringe patterns observed have completely differently

shapes. For example, the bow-tie pattern of Fig. 2a-3 differs from

the butterfly pattern of Fig. 2b-3. This is entirely due to the geometry

of the optical configuration relative to the applied stresses.

(ii) These real fringe patterns of Figs 2 and 7(c) lack the reso-

lution apparent in the synthetic fringe pattern of Fig. 7(d). This is

due to pixel resolution of the camera and made worse by the local

correlation technique used in calculating the fringe pattern.

(iii) Time-dependent effects are important in such drilling tests.

In both cases, a considerable amount of time is required (at least

30 min) for thermal expansion due to drill heating to decay in or-

der to observe the stress-relief displacements. This complicates the

interpretation of the fringe patterns for two reasons. First, it may

be difficult to know how long is required for the transient ther-

mal effects to satisfactorily dissipate in order that the fringe pattern

contains primarily stress-relief information. Second, the longer the

waiting period before the stress-relief pattern is taken the greater

the potential that the final fringe pattern may be contaminated by

translational displacements of the optical system itself or by time-

dependent inelastic deformation of the rock mass. This is evident

in the changes to the inverted stress values (Fig. 11) particularly at

long times.

The fringe analysis and inversion procedures described above

yielded inverted stress values shown in Table 1. The inverted uni-

axial stress values differ from those actually applied from 3.7 to

37 per cent with a mean value of 19 per cent for the four measure-

ments. The full inversion procedure also yields values of the two

other biaxial stress components that are not applied to the real sam-

ple. Some of these errors are greater than, but comparable to, those

recently found in a series of tests on alloys. (Steinzig & Takahashi

2003).

These observed errors are significant, particularly when com-

pared to the results of an extensive series of synthetic tests on forward
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Figure 11. Inverted stresses versus measurement time for Test 2 with σ =
[4.07 0 0] of σ xx (open circles), σ yy (open squares), and τ xy (open triangles)

to highlight the effects of time-dependent deformation.

modelled fringe patterns with a variety of different kinds of noise

added that suggested an uncertainty of 3 per cent was achievable,

(Diaz et al. 2001). Low levels of experimental error (∼4 per cent)

were also found in a similar inversion procedure applied to a elastic

moduli determination on this same acrylic (Shareef & Schmitt

2004). This low level of error was not obtained in the current test.

There are a number of reasons for these errors (Schmitt & Hunt

1999) including uncertainties in the relative positioning of the var-

ious optical components and the sample, uncertainty in the values

of the elastic moduli used, the loss of imaging resolution due to

the speckle and fringe calculation, the existence of thermal, trans-

lational, and inelastic deformations, and the possibility of decorre-

lation effects near the stress-relieving hole.

The inversion method here appears to work well although the

manual picking of fringe loci and semi-manual interpretation of

fringe order is awkward. These restrictions would make the method

impractical under field conditions where a rapid solution is required.

Future work must examine alternative methods of extracting this in-

formation and here some of the recent developments associated with

the analysis of INSAR data may be informative. Fukushima et al.
(2005) developed a Monte Carlo inversion based on Sambridge’s

neighbourhood search algorithm (1999a, 1999b) and a novel mixed

boundary element method to tie geometry, stress, and elastic moduli

to surface displacements (Cayol & Cornet 1997). Such a technique,

or similar genetic or simulated annealing methods, may allow direct

analysis of the entire fringe pattern, not just the limited number of

points that were manually picked.

The capability of imaging the time-dependent displacement field

is highly useful as it is doubtful that the thermal effects would be as

readily detected using standard strain gage techniques. While hav-

ing this data is certainly advantageous, one must be careful in using

this extra information. In particular, it is difficult to know exactly the

point at which one should make the measurement. Depending on the

material, one may have to balance decay of the overwhelming early

thermal signal against more time-dependent plastic or viscoelastic

motions if a proper stress measurement is to be made. Indeed, it

is useful to track how the inverted stresses may change with time

in a sample that is subject to inelastic deformations. In a material

subject to time-dependent deformation, one will expect the inelastic

Table 2. Comparison of thermal properties of differing materials.

Material Aluminium alloy PMMA Rock

Thermal 238 0.21 1–4

conductivity (W m−1 K)

Mass density 2700 1190 2000–3000

(kg m−3)

Heat capacity 917 1470 700–1000

(J kg−1 K)

Thermal diffusivity 960 1.2 3.3–28.6

(m2 s−1) X 107

Relative thermal time 1 28 17–5.8

(reference to Aluminium)

deformations to continue and to be superimposed on the instanta-

neous elastic motions. It is useful to see how this might influence the

measured stresses; the variation in the apparent stress with time is

due to such motions in the PMMA (Fig. 11) and, as a result, it is im-

portant that all thermal disturbances have decayed prior to making

the final measurement. We note that other stress-relief techniques

in rock will be subject to similar limitations but we are not aware of

such factors being accounted for in earlier works.

Nearly all blind hole drilling tests previously described in the

literature have been made on aluminium alloys or steel; and most of

the analytic techniques focus on a narrow range of problems devoted

to such materials. Aside from the strength and elastic modulus, the

acrylic differs significantly in terms of its ability to conduct heat.

The thermal diffusivity:

κ = k

ρCP
, (11)

where k is the thermal conductivity, ρ is the mass density, and C P is

the heat capacity, is a useful measure of how long it will take heat to

move within a material. A crude estimate of the relative time it would

take to obtain the same degree of cooling in different materials this

is given by
√

κ 1/κ 2. The times relative to that for aluminium are

also given in Table 2 and indicate that the transient thermal response

of the low-diffusivity acrylic requires nearly 30 times longer for heat

to decay than in aluminium. It is interesting to compare these results

to rock where a broad range of different properties show that most

rocks will also require a substantial cooling time. Thus, the use of

the acrylic is a useful analogue to rock with regards to the dissipation

of heat.

C O N C L U S I O N

The results of the calibration tests described above indicate that

the ESPI stress-relief technique shows promise but that more work

is required to bring the technique to the level required for accu-

rate quantitative measurements. Some technical improvements to

the current technique will require more reliable methods for posi-

tioning of the optical system relative to the object of study and in

extracting the relevant low-frequency fringe information. The cur-

rent inversion procedure of picking the bright and dark fringes uses

only a small fraction of all the information contained in the fringe

pattern; inclusion of the grey-scale values via a phase unwrapping

or other inversion technique would provide a much better statisti-

cal answer. Future work will include refinement of these techniques

as well as application to rock samples. Towards this end, a more

compact and rugged ESPI camera has been constructed and tested.

Although the current tests focused on acrylic, the ultimate goal of

the research will be to use the method to measure rock stress from a
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wellbore. Ideally, the potential advantage of such optical techniques

are that the in situ stress at a given depth along the wellbore could

be obtained rapidly and with minimal disturbance as first tested

by Bass et al. (1986). The static elastic moduli are also necessary

and a complementary optical method allows them to be measured

over similar dimensions and displacement magnitudes (Shareef &

Schmitt 2004). One may be able to obtain the entire stress tensor:

both directions and magnitudes.

However, all stress determination methods currently employed

are in some way limited in the situations to which they may be

applied. All the techniques, including this optical method, rely on

numerous assumptions about the rock mass. A particular limitation

of the interferometric method at this current stage of development is

that it assumes the rock to be linearly elastic and isotropic. Thus, the

method will have limited success in wellbores in which the rock is

close to failure such that the concentrations of the far-field stresses

by the wellbore cavity will already have been relieved. It is now

well understood that most rocks are anisotropic due to their intrin-

sic structure and to anisotropic stresses. This problem may be par-

ticularly frustrating in borehole measurements where azimuthally

varying stress concentrations produced azimuthally varying elas-

tic properties (Schmitt 1987; Winkler 1996). As a result, it will

be important to include more appropriate constitutive relations in

future work possibly requiring non-linear elasticity and even time-

dependent viscoelastic responses. It must be noted that use of such

relations is still at an immature stage with regards to the field of

rock mechanics as a whole. The grain sizes will also be a limita-

tion as in many rocks the stress state is likely non-uniform on the

granular scale due to various stress concentrations between miner-

als and pores. The stress-relief technique will be sensitive to these

heterogeneities. The role of residual stresses within the rock are

poorly understood (Engeldger 1993); stress-relief techniques can-

not separate applied from residual stresses, which could be a source

of error in measurements. However, with continued development,

the method may allow us to better understand these often ignored

residual stresses.

On a final note, although this contribution has focused on de-

velopments towards a quantitative stress-measurement technique,

recent technical developments in inexpensive diode lasers, and im-

age processing, acquisition hardware, and software has made such

techniques readily accessible to the geoscience community. One

can envisage extensions of this method to shorter timescales in the

study of complex wave (e.g. van Wijk et al. 2005) and fracture

propagation (Xia et al. 2005) problems and may provide meth-

ods to complement geological analogue studies that use recently

developed particle imaging velocimetry (e.g. Adam et al. 2005).

The direct comparison of this method to satellite borne radar in-

terferometry is obvious, and use of the method to temporally track

surface motions in laboratory physical modelling experiments can

likely add insight into the deformations resulting from tectonic

straining of complex geological structures: deformations that still

remain difficult to compute using the most advanced numerical

methods.
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