Simulating Biped Behaviors from Human Motion Data

Kwang Won Sok

Manmyung Kim

Jehee Lee

Seoul National University *

Abstract

Physically based simulation of human motions is an important issue
in the context of computer animation, robotics and biomechanics.
We present a new technique for allowing our physically-simulated
planar biped characters to imitate human behaviors. Our contribu-
tion is twofold. We developed an optimization method that trans-
forms any (either motion-captured or kinematically synthesized)
biped motion into a physically-feasible, balance-maintaining sim-
ulated motion. Our optimization method allows us to collect a rich
set of training data that contains stylistic, personality-rich human
behaviors. Our controller learning algorithm facilitates the creation
and composition of robust dynamic controllers that are learned from
training data. We demonstrate a planar articulated character that
is dynamically simulated in real time, equipped with an integrated
repertoire of motor skills, and controlled interactively to perform
desired motions.

CR Categories: 1.3.7 [Three-Dimensional Graphics and Realism]:
Animation— Virtual reality

Keywords: Human Motion, Physically Based Simulation, Biped
Walk and Balance, Motion Capture, Controller Learning

1 Introduction

Animating biped characters in a physically-simulated virtual world
has been an important issue in the context of computer animation,
robotics and biomechanics. A number of techniques from con-
trol theory and machine learning have been adopted for designing
physically-simulated controllers for each individual human behav-
ior such as walking and balancing. One appealing approach to con-
troller design is learning the control strategies from human perform-
ers. A rich set of motion data can be acquired from a live actor per-

*email: {sinnagie,mmkim,jehee } @mrl.snu.ac.kr

forming a specific behavior in a variety of situations. The data set
can then be used to inform how animated characters should respond
for any given situation. This imitation-based learning approach has
demonstrated its potential capability of transferring stylistic human
motion to simulated characters and humanoid robots.

Despite much research progress, learning a biped behavior from
motion capture data is still challenging when the behavior requires
subtle control for maintaining its balance, which is difficult to cap-
ture from recorded motion data. Another difficulty is the physical
imprecision of the captured motion data. Since the dynamic char-
acter model is drastically simplified from the live actor, any biped
character that exactly follows the captured joint angle trajectories
would lose its balance and fall over in a few steps.

We present a new technique for allowing our physically-simulated
planar biped characters to imitate human behaviors. We start with a
set of motions that were recorded from a live actor performing ac-
tions repeatedly. The motion set is rectified via optimization in such
a way that the simplified dynamic model can approximately repro-
duce the recorded motion trajectories by actuating its joints while
maintaining its balance. The control policy of the character’s be-
havior is learned from the rectified motion set. This control policy
allows our characters to imitate biped behaviors robustly.

We also propose a method of composing learned dynamic con-
trollers into an integrated framework that allows the character to
transition between different behaviors. Robust transitioning from
one motor controller to the other is achieved by learning a desig-
nated transition controller. The training data for the transition con-
troller are either motion-captured or synthesized by blending ex-
isting data kinematically. Once all the controllers are learned, our
character can be dynamically simulated in real time and controlled
interactively to perform desired motions.

2 Related Work

The realistic biped motion of human characters in computer graph-
ics applications such as feature animation films and video games is
manually keyframed, procedurally defined, live captured or phys-
ically simulated. A specific form of biped human behavior such
as walking and running has successfully been defined as a simple
generative procedure [Bruderlin and Calvert 1989].

Recently, data-driven animation techniques using motion capture
data have been extensively studied in computer graphics. A num-
ber of researchers have explored the method of representing a large
amount of motion data as a directed graph and using it to animate

PD gains Body Length Mass Inertia

Joints kg kq segments (m) (Kg) (Kg m?)
(N/rad) (Ns/rad) head 0.210 3 0.011

neck 3000 60 upper arm 0.360 2 0.022
shoulder 4000 80 lower arm 0.320 1 0.009
elbow 3000 60 torso 0.460 10 0.176
hip 4000 80 thigh 0.455 7 0.121
knee 4000 80 shin 0.431 5 0.077
ankle 4000 80 foot 0.240 4 0.019

Figure 1: The planar biped dynamic model has 12 body links con-
nected by 11 revolute joints. The lower-body of the model with six
joints is used in some examples. The ground reaction is modelled
as a damped spring. The ground spring and damping coefficients
are ks = 27000N /m and k; = 675Ns/m, respectively.

and control human characters interactively [Arikan et al. 2003; Lee
et al. 2002; Kovar et al. 2002]. These data-driven techniques have
been successfully applied to the animation of biped human behav-
iors such as locomotion [Sun and Metaxas 2001], jumping [Liu and
Popovié¢ 2002] and balancing [Arikan et al. 2005; Yin et al. 2005],
to name just a few. Zordan et al. [2005] suggested a character an-
imation technique for allowing transition between motion capture
data playback and physically based simulation.

In order to generate the physically correct motion of simulated char-
acters and humanoid robots, dynamic control systems can be hand-
designed. Hodgins and her colleagues [1995; 1997] designed dy-
namic controllers for a variety of human athletic behaviors and ex-
plored optimization techniques for automatically adapting a con-
troller designed for one character to work on another character. van
de Panne and his colleagues have explored various controller design
methods. Laszlo et al. [1996] employed limit cycle control to sta-
bilize open-loop trajectories for biped locomotion. They later pro-
posed an interactive technique that allows the user to control planar
biped figures capable of walking, running, and performing various
gymnastic behaviors [Laszlo et al. 2000]. Faloutsos et al. [2001]
explored a method of creating a composite controller that allows
a human character to transition from one motor skill to another.
Sharon and van de Panne [2005] synthesized planar bipedal walk-
ing controllers that mimic the style of a kinematic target trajectory.
Yin et al. [2007] have further elaborated biped controllers to gener-
ate a variety of gaits that are resilient to unexpected pushes, steps,
and slopes. Many proposed methods use the zero moment point
(ZMP) to define a physically plausible motion trajectory and adapt
the motion to pushes [Dasgupta and Nakamura 1999; Kajita et al.
2003; Komura et al. 2004; Oshita and Makinouchi 2001; Tak et al.
2000].

Dynamic motion synthesis has often been formulated as a varia-
tional optimization problem. Popovi¢ and Witkin [1999] adopted
spacetime constraints and variational optimization techniques for
transforming an existing character motion in such a way that it
achieves new constraints while preserving its essential physical
properties. Liu et al. [2005] estimated “style” parameters of cap-
tured human locomotion data using inverse optimization. Pollard
and her colleagues explored practical techniques that make space-
time optimization attainable by adopting weighted joint accelera-

Motion sets # of clips # of frames Time (second)
WalkNormal 5 1017 339
WalkSneaky 4 1698 56.6
WalkAzuma 6 1040 34.7
WalkSoldier 6 1473 49.1
WalkLean 5 1193 39.8
WalkHandWave 4 647 21.6
‘WalkFast 4 627 20.9
WalkBackward 5 1263 42.1
Run 6 1002 334
PushForward 3 2617 87.2
PushBackward 2 1942 64.7
Jump 4 2886 96.2

Table 1: The motion sets collected for our experiments.

tions as optimization criteria [Fang and Pollard 2003], instead of
joint torques that are more difficult to optimize, or by project-
ing the optimization problem into a low-dimensional space [Sa-
fonova et al. 2004]. Yamane and Nakamura [2000] proposed a dy-
namic filter that transforms a physically inconsistent motion into a
plausible one through an optimization process. Sulejmanpasi¢ and
Popovié [2005] presented an optimization technique for adapting
performed ballistic motion to satisfy new kinematic and dynamic
constraints. Optimal motion synthesis has also been exercised in
biomechanics [Anderson and Pandy 2001]. The approaches using
a spacetime framework commonly optimize the moving trajecto-
ries of the character, but usually do not generate its control poli-
cies. Therefore, the optimized trajectories may not be reproduced
via forward dynamic simulation. We are interested in a different
problem of creating dynamic controllers that control self-actuating
articulated figures in a simulated environment.

A variety of machine learning techniques have been adopted for
controlling dynamic motions of synthetic characters [Hertzmann
2004]. Among those techniques, imitation-based learning is a
promising method that allows physically simulated virtual charac-
ters and humanoid robots to imitate skillful human motion [Schaal
etal. 2003]. A straightforward approach of imitation-based learning
is to record motion data from a live actor using motion capture and
then allow simulated characters to track the recorded joint trajec-
tories using Proportional Derivative (PD) control [Safonova et al.
2003]. This simple PD control-based approach works well with
stably balanced target motions, but would fail to track biped mo-
tions that require subtle control for maintaining balance. Once the
simulated character loses its balance while tracking, simple PD ser-
vos cannot recover the character’s balance. To avoid this problem,
PD control is sometimes combined with a hand-designed, desig-
nated feedback balance controller that governs the lower extremi-
ties [Nakaoka et al. 2003; Zordan and Hodgins 2002]. Nakanishi
et al. [2004] modeled 5-link planar biped locomotion as rhythmic
movement primitives and estimated their parameters to imitate hu-
man demonstration. Loken [2006] used locally weighted learning
for 3-link and 5-link planar biped locomotion.

3 Data Collection and Processing

Our system learns the dynamic behavior of a planar biped dynamic
model from a collection of motion data. Our dynamic model has 11
revolute joints (see Figure 1). The dynamic simulation is generated
using Open Dynamics Engine (ODE) [Smith 2006]. The mass of
each body part is determined using statistical data [AIST Human
Body Properties Database 2006]. The foot/ground contact is mod-
eled as a spring-damper model. Our system monitors the heel and
toe points and activates damped springs between the ground and the
points if the points are within a certain threshold from the ground.

Optimization loop

update
displacement
parameters

m(t) displacement __1(t) (o

. evaluation
mapping

1

1

1

1

1

1

1

1

1 ~

1 m(t)
1

T PD control
1

1

1

1

1

1

Figure 2: The overview of our optimization process

All of the motion data used in our experiments were captured from
a Vicon optical system with sixteen cameras at the rate of 120
frames/second and then down-sampled to 30 frames/second. Each
motion data was originally captured for a three-dimensional skele-
ton with 19 ball-and-socket joints (63 degrees of freedom including
the position and orientation of the root segment) and then adapted
for our planar dynamic model using hierarchical displacement map-
ping [Lee and Shin 1999]. In order to adapt the motion of a three-
dimensional skeleton for a planar figure, we need to annotate body-
environment contact information at each frame. A body segment
and the ground surface are considered to be in contact if any joint
adjacent to the segment is sufficiently close to the ground and its ve-
locity is below some threshold. The position and orientation trajec-
tories of the segment in contact establishes variational constraints
to avoid foot sliding. Hierarchical displacement mapping solves the
problem of adapting motion subject to the constraints.

In motion capture sessions, we collected a variety of human mo-
tions that can be easily adapted for a planar character (see Table 2).
To create the motion library, our subject walked in various styles,
walked backward, jogged, and jumped. In order to capture the ways
our subject maintains his balance against external force, we pushed
him on the chest and the back repeatedly and recorded him reacting
to such pushes without falling down. He usually took one or two
steps to recover his balance and then stepped back to an upright
stand position.

4 Motion Rectification

Our system learns the active behavior of our dynamic figure model
from a set of motion data captured from a live actor. A simple track-
ing method such as PD control cannot make the dynamic model to
imitate the recorded motion because the dynamic model is physi-
cally different from the actual human skeleton. The dynamic model
has fewer degrees of freedom and consists of rigid links and ideal
revolute joints, whereas the human body has deformable muscles,
skin and much more complicated joints. Measuring the precise
mass and inertia of body segments of a live human is very difficult.
Therefore, we determined the physical properties of the dynamic
model somewhat arbitrarily based on statistical data. The physical
imprecision of the dynamic model is a major difficulty of learning
dynamic behaviors from motion capture data.

In this section, we propose an optimization method for rectifying
the motion data in order to compensate for the inherent imprecision
of the dynamic model. Given a segment of motion data, the goal
of the optimization is to allow the biped dynamic model to track
the motion while maintaining its balance. This type of variational
optimization problems are notorious for their high-dimensionality
and having highly non-linear objective functions. We observed the
dynamic figure model tracking target motions with simple PD ser-
vos. The dynamic model failed to track target motions mostly when
it loses its balance due to a lack of feedback control, when a swing-

Left Foot stance swing stance ‘ swing

Right Foot swing stance swing stanct J

Joint trajectory

displacement /\(‘r\['\/ /\/\(X/\(}(\

Time

Figure 3: The displacement map is represented as a weighted sum
of sinusoidal basis functions. The basis functions are distributed
along the time axis synchronized with stance and swing phases.

ing foot accidentally touches the ground surface, and when the con-
troller could not produce enough thrusts to keep it moving along
desired trajectories. Such problems can be easily fixed by slightly
modifying the target motions. For example, balance control can be
achieved by a slight tilt of the upper body, accidental ground contact
can be avoided by lifting up the swing foot trajectory, and stronger
thrusts can be produced by stretching out the stance foot further
when it pushes down against the ground. From this observation,
our optimization algorithm refines the target motion kinematically
in such a way that simple PD servos allow the tracking of the mo-
tion (see Figure 2).

4.1 Formulation

Given input motion datam(z) = (0;(¢),---,0,(¢)), the rectified tar-
get motion is represented using a motion displacement map such
that () = m(z) + d(z), where n is the number of joints and
d(r) = (di(z), -+ ,dn(t)) is an array of motion displacements. Each
displacement map is represented in a parametric form with bell-
shaped basis functions:

di(r) =Y, hijBj(t;cj,wj), (1)
=

where m is the number of node points and sinusoidal basis function

B'(I'C' W‘)* %[1+COS(%(I7Cj))]7 iij*Wj<l<Cj+Wj
J\Cj W)= .
0, otherwise
2)

has a peak at node point ¢; and extends from ¢; —w; to ¢; +w;.
The function value is zero outside the interval. A careful selection
of node points can improve the optimization performance signif-
icantly. In our experiments, node points {c1,---,c;;} are spaced
non-uniformly and each node point is coincident either with the
takeoff and kickdown of a stance foot or with the halfway of a swing
phase (see Figure 3). Our optimization algorithm takes m(¢) as in-
put and determines a set of coefficients (A1, ,lipm, w1, ,Wm)
of motion displacements.

Joint PD control. Our optimization algorithm updates the coeffi-
cients of motion displacements iteratively and suggests an interme-
diate target motion M(z) at every step of the iteration. We use PD
servos to track a target motion starting from the first frame of the
original input motion. The control equation for each joint is

T=ks(0q—6) + k(04— 0) 3

where 0 is the angle of the joint, 6, is the desired angle, 0 is the
angular velocity of the joint and 6, is the desired angular velocity.

Objective function

“ 05
0
o

Knee displacement height
Ankle displacement height s 0%

Figure 4: The objective function used to optimize motion data has
many local minima. This plot shows a sampling of the objective
function as two of the displacement parameters are varied. These
two parameters correspond to the heights of displacement maps for
the right ankle and the right knee. The narrow, curvy valleys in the
objective function make the optimization challenging.

ks and k, are the proportional and derivative gains. Tracking the
target motion using PD servos produces a simulated motion m(z)

Objective function. We expect the simulated motion m(z) to imi-
tate the input motion as closely as possible. This goal is achieved
by minimizing the objective function:

T
E= [(7
0 T

which penalizes the discrepancy between the original and the sim-
ulated motions. The pose difference diff (m(z),fi()) at a time in-
stance is measured by comparing mass points on the skeleton in
two poses. We assume that only the end points of body links have
masses for distance computation. Two sets of mass points obtained
from m(#) and () are first normalized in such a way that they
have the same average in x-coordinates, and then their difference
is computed as the squared sum of Euclidean point distances mul-
tiplied by their masses. The weight term ((t/T)? +c) allows the
optimized motion to deviate from the target trajectory in the short
term in order to better follow the target trajectory at the end of the
motion.

+c) diff(m(r),m(r))dt, 4)

4.2 Optimization Method

The objective function has many local minima (see Figure 4). In
order to find the minimum of the objective function, we randomly
choose initial parameter values and run a downhill simplex method
repeatedly with different initial parameter values to find a local ex-
tremum. The minimum among resultant local extreme values is
selected as a solution. The downhill simplex method is very slow,
but also known to be extremely robust in some cases [Press et al.
2002]. We also tested with other well-known optimization methods,
such as Powell’s method and a conjugate gradient method, which
are presumably much faster than the downhill simplex method in
most applications. In an informal evaluation of optimization tech-
niques, the downhill simplex method appeared to converge more
robustly than the other methods on our search space, which has a
lot of narrow, curvy valleys to descend.

We preferred to record motion data in long clips in order to cap-
ture natural transitions between behaviors. The optimization pro-

/ \

= VAN

;lgzz 7 /TN

“WalkeRunning (SuldleaO Nommlstup> @ @HISJ'SWD‘

ﬁ!/“) \ @;ﬂ&;@\\\)

acszdb)

N)Jj Y,
\\@mw\j // =) ;/

e

& BalanceStable /

Figure 5: An example of finite state machines that govern transi-
tioning between motor controllers. The nodes correspond to motor
controllers and the edges show the transition possibilities between
controllers.

cess could be extremely slow and prone to diverge with a long seg-
ment of motion data because the dimensionality of the search space
increases in proportion to the number of nodes sampled in the time
axis. Inspired by spacetime windows [Cohen 1992], we use an in-
cremental technique for rectifying a long clip of motion data effi-
ciently. The basic idea is to separately optimize motion frames in
a window that covers a small portion of the long sequence. This
window shifts along the time axis in order to allow motion frames
to be refined incrementally from the start to the end of the motion.
More specifically, the size of the window is initially determined in
such a way that it covers the support intervals of the first k£ basis
functions (k = 2 or 3 in our experiments). Once the motion frames
in the window are optimized, the window is shifted by dropping the
first k — 1 basis functions and including k — 1 successive basis func-
tions in the window interval. In this way, the shifted window has
an overlap with the previous window in order to maintain temporal
coherence across the window boundaries. The entire optimization
process rectifies the frames in the window and shifts the window
repeatedly until the window arrives at the end of the motion.

Practical implementation. Finding the optimal solution of a vari-
ational optimization problem is extremely demanding in computa-
tion. We use a couple of pragmatic techniques to accelerate the
optimization process. Reducing the dimension of the search space
is a common idea of practical optimization. In our experiments,
the joints in the upper body are controlled by PD servos, but do
not actively adjust the target trajectories to keep balance. This ex-
cludes the degrees of freedom in the upper body from the optimiza-
tion parameters. The displacement maps are computed only for
six joints (hips, knees, and ankles) in the lower body. The other
acceleration technique reduces the total number of iteration steps
by choosing promising initial configurations. The global optimiza-
tion process requires the repeated execution of a local optimization
method on many different initial parameter values sampled on the
search space. A configuration of parameter values is considered to
be promising if PD servos track the corresponding target motion
closely. We do not run a local optimization method with all initial
configurations, but select a few promising configurations to refine
them further by optimization. In this way, we achieved significant
performance gain without noticeable deterioration in the final re-
sult.

5 Behavior Control

The goal of our work is to create dynamically-simulated,
interactively-controllable articulated characters equipped with an
integrated repertoire of motor skills. A collection of motion data
adapted for our character is used to learn such motor controllers as
walking, jumping, and balancing. Motor controllers are integrated
into a finite state machine that allows both voluntary and involun-
tary transitioning between controllers (See Figure 5). The user can
control the character by specifying a transition to the desired ac-
tion or applying external force directly to the body of the charac-
ter. Transitioning to the balance controller is invoked involuntarily
when the character loses its balance due to external force.

We build two types of controllers: stationary and transitioning. The
stationary controller has a finite region of the state space, in which
the actuation of the controller allows the character’s state to change
within the region if no explicit perturbation is introduced delib-
erately. Either stationary (such as balancing upright) or periodic
(such as walking and jogging) behaviors are learned by stationary
controllers. The transitioning controller produces transition mo-
tions from one behavior to the other. For example, start-to-walk
and walk-to-stop controllers make transitions between the upright
standing position and dynamic walking. We will explain how to
learn stationary controllers in Section 5.1 and Section 5.2. Transi-
tion controller learning will be discussed in Section 5.3.

5.1 Controller Learning

The controller learning is the process of inferring a desired action
for any given state from the observation of human motions. The ob-
servation is stored as a collection of state-action trajectories. Each
state-action pair describes the observation how the actor moved
(output pose at time ¢ + Ar) in what situation (input state at time 7).
The controller can be considered as a function that takes the state of
the character as input and produces a target pose of the character at
the next time instance. The output pose is fed into PD servos to ac-
tuate the character. Given any novel state of the character, we use a
simple regression technique that selects nearby samples in the state
space and combines the output poses at those samples to produce
a desired output. In order to measure the distance between motion
frames, we consider four features of the frames:

e Joint angles and velocities: The differences in all of the joint
angles and velocities are considered for distance computation.
Our dynamic model has six joints in the lower body and five
joints in the upper body. The joints in the upper body weighed
less than the lower body, thus, were sometimes ignored be-
cause the upper body makes a smaller contribution to balanc-
ing biped motions than the lower body does.

® Root position, velocity, and direction: The height of the root
node (where the spine link meets two thigh links) from the ref-
erence ground plane and the horizontal and vertical velocities
of the root node are included in the feature vector. However,
the horizontal coordinate of the root node is ignored so that
the distance between frames can be invariant under horizontal
translation. The signed direction of the spine link with respect
to its upright position is also included in the feature vector.

e [Foot position and velocity: The feature vector includes the
position and velocity of both feet with respect to a local, mov-
ing coordinate system. The origin of the coordinate system
is fixed at the root node and the direction of the spine link
defines the coordinate axes. The foot positions are actually
redundant because the root position and joint angles already
reflect the foot positions. We include these features for the

L%ﬁ;
SR

)WKQ‘W’\vaﬁé

)%W'”bkjiﬁ% DY YO AU A

Figure 6: Learning walk controllers. (Top) The original motion
data are kinematically retargetted to the two-dimensional dynamic
model and then fed into PD servos to simulate. The character falls
over in a few steps. (Second row) The motion data are optimized
not to fall over. (Third row) The walk controller is learned from a
set of walking motion data of a duration of 30 seconds by using a
simple regression technique without adaptive refinement. The char-
acter walks stably for an extended period of time, but eventually
falls over. (Bottom) The final walk controller allows walk cycles to
repeat indefinitely over a flat terrain without falling over.

convenience in adjusting their weights with respect to other
features.

e Ground contact: Contact with the environment is an impor-
tant perceptual feature of motion. We use an array of boolean
features to describe the ground contact. For bipedal motions,
the feature vector includes four boolean (zero or one) values
for encoding heel and toe contacts of both feet. The recovery
motion from falling over requires more boolean features.

The above four features are weighted, squared, and summed to
compute the squared distance between motion frames (see Table 2
for weight values used in our experiments).

Given a feature vector F(¢) of the character being simulated, our
controller decides the target pose P(t + Ar) at the next time instance
referring to a regression of training data. The controller searches
the k-nearest neighboring samples {(F;, P;)|i = 1,--- ,k} and com-
bines the associated poses in the samples with weights inversely
proportional to the distances:

Ziwib;
P(t+At) = Ziwi

argmin(d;)»

if d; > ¢ for Vi,
otherwise,

where d; = distance (F (1), F;), w; = d%’ and ¢ is a small constant.
If the distance to any sample is below &, we select the nearest sam-
ple in order to avoid division by zero. In order to locate k-nearest
neighbors efficiently, we store data in a kd-tree and search k-nearest
neighbors approximately within a small error bound using ANN li-
brary [Mount and Arya 2006].

5.2 Adaptive Refinement

The controller thus obtained provides no guarantee that it will pro-
duce stationary cycles without falling over (see Figure 6 (third
row)). The performance of the controller depends significantly on
the diversity and distribution of the training data. It is very difficult
to acquire training data that guarantees the desired quality of the
controller.

We solve this problem by adaptively refining the controller. The

basic strategy is to test the controller by running it on the simulator.
If the character falls over or deviates excessively from the training
data set, we add a new state-action trajectory to the training set so
that the character can avoid the unsuccessful situation. An abnor-
mal (possibly leading to falling over) situation during simulation
can be detected by monitoring the distance to the nearest sample
in the training set. If the distance between the character’s state and
its nearest neighbor in the training data is above a user-specified
threshold for a certain period of time (5 frames in our experiments),
we decide that the character’s state is not recoverable to stable cy-
cles using the current controller.

Once an unsuccessful situation is detected, we roll back the whole
system in time to the moment when the nearest cycle of motion be-
gins. In order to avoid the unsuccessful situation, the controller has
to make a different output at that moment. To do so, we synthesize a
new sample trajectory by warping existing data. From the training
set, we select a cycle of motion that starts with the configuration
nearest to the character’s current state. This motion trajectory is
warped kinematically in such a way that the motion starts with the
character’s current state and blends smoothly back to its original
trajectory using displacement mapping. We run the optimization
method explained in the previous section to make the warped tra-
jectory physically-feasible, and then add this new trajectory back to
the training set. The newly added trajectory will guide the character
back to a stable cycle at the regression process. In this way, we can
refine the controller incrementally until no more failure is observed.

5.3 Transition Control

Given two stationary (or cyclic) controllers, we can build a transi-
tion controller between them in the same way as we build the sta-
tionary controllers if an adequate training data set is available. For
example, we captured our subject starting to walk from an upright
standing position, taking six steps, and stopping to the standing po-
sition, repeatedly. The first and the last two steps of the walk data
were used to learn stand-to-walk and walk-to-stand transition con-
trollers, respectively. The walk cycle controller was learned from
the intermediate two steps of the training set. However, acquiring a
large collection of transitioning motions between every pair of sim-
ulated behaviors is often tedious and laborious. In case of lacking
adequate training data, we can synthesize training data by blend-
ing existing motions kinematically. For example, the walk-to-run
transition sample can be synthesized by blending a cycle of walk-
ing motion and a cycle of runing motion. We blend them simply
by fading one in while fading the other out. Over the fading du-
ration, dynamic time warping is used to find the correspondence
between two motions and a sinusoidal transition function is used to
blend joint angles smoothly. Since joint angle blending may cause
feet to slide, we enforce foot contact constraints using hierarchical
displacement mapping [Lee and Shin 1999].

Transitioning control at run time is straightforward. Assume that
the character is currently controlled by a stationary controller and
intends to change its behavior via a transition controller. While be-
ing simulated, the character monitors the distance between its cur-
rent state and the nearest sample in the transition controller’s train-
ing set. If the distance is below a certain threshold, the transition
controller gains control over the motion of the character. Transi-
tioning from a transition controller to a stationary controller can be
handled similarly. The transition could fail if the training set of the
participating transition controller is not sufficient. Whenever a fail-
ure is detected, the transition controller can be refined adaptively as
explained in Section 5.2.

BAAAN BAMA
bini bl SSRAME

Figure 7: The results of motion optimization. (Left column) Orig-
inal motion capture data. (Center column) Rectified motions are
simulated by PD controllers. (Right column) Original motions are
simulated by PD controllers. Most of the data result in falling
down. (From top to bottom) WalkNormal, WalkLean, WalkSol-
dier, WalkHandWave, WalkFast, WalkAzuma, WalkSneaky, Run,
WalkBackward, PushBackward, PushForward, Jump, HighJump

Controllers #of KNN Feature weights

frames POS TOR ANG ROO

Stand 50 6 15 2 0.1 1
Balance 790 3 15 2 15 1
BalanceStable 200 3 15 2 15 1
BalanceRecover 1200 3 15 2 15 1
NormalStart 164 6 15 2 0.1 1
NormalWalk 410 6 15 2 0.1 1
NormalStop 186 6 15 2 0.1 1
BackWalkStart 129 5 15 2 0.1 1
BackWalk 479 5 15 2 0.1 1
BackWalkStop 143 5 15 2 0.1 1
SoldierStart 182 6 15 2 0.1 1
SoldierWalk 655 6 15 2 0.1 1
SoldierStop 182 6 15 2 0.1 1
Walk2Run 305 6 15 2 0.1 1
Run2Walk 227 6 15 2 0.1 1
RunStart 158 6 15 2 0.1 1
Run 301 6 15 2 0.1 1
RunStop 203 6 15 2 0.1 1
SlowStart 136 6 15 2 0.1 1
SlowWalk 537 6 15 2 0.1 1
SlowStop 173 6 15 2 0.1 1
JumpStart 162 2 15 2 0.1 4
JumpAir 19 2 15 2 0.1 4
JumpStand 173 2 15 2 0.1 4

Table 2: Motor controllers built in our experiments. The size of
the neighborhood was determined empirically. The controllers are
learned from motion capture data except Walk2Run and Run2Walk
transition controllers, whose training data were kinematically syn-
thesized by blending walking and running data. KNN is k-nearest
neighbors. The feature weights from left to right represent (POS)
feet position, (TOR) torso up direction, (ANG) joint angles, (ROO)
The y-position and y-velocity of the root. The weights for the other
features are one.

6 Experimental Results

The timing data provided in this section was measured on a 2.8GHz
Intel Pentium 4 computer with 1Gbyte main memory.

Optimization. The number of initial configurations sampled for
global optimization is important for the convergence and perfor-
mance of our optimization algorithm. Rectifying a single walk cy-
cle required us to sample several hundreds of initial configurations
in order to avoid getting stuck at local minima. Encouragingly, run-
ning the local optimizer for a few promising (filtered by running
on PD controllers) configurations produced almost the same result
as running the local optimizer for all sampled configurations. The
performance can further be improved by using heuristic rules for
sampling initial configurations. For example, the height of a swing
foot from the ground is often important for optimizing walking mo-
tions. In that case, we can sample initial configurations as the height
of the swing foot is varied using an inverse kinematics solver. The
performance of optimizing an extended sequence of motion data
can be significantly improved by using the incremental optimiza-
tion method explained in Section 4.2. For capturing each segment
of walking motion data, our subject started from a standing posi-
tion, walked for five to six steps (as far as allowed in the motion
capture region), and stopped to a standing position. The dimension
of the search space for such data is prohibitively high, and we are
unable to make the optimization converge in such high-dimensional
space without the use of the incremental method. The computation
cost for incremental optimization increases linearly with the dura-
tion of motion data. Our system took about 15 minutes for rectify-
ing a segment of walking data that include start, six steps of walk
and stop motions (see Figure 7 (top row)).

Walk. The “NormalWalk” controller shown in Figure 6 was learned
from walk data that correspond to 20 walk cycles. The adaptive re-

finement of the controller added six walk cycles to the training data
in order to make the controller repeat indefinitely without falling
over. “NormalStart” and “NormalStop” controllers did not require
adaptive refinements. Similarly, walking in various styles were
learned and simulated.

Balance. The balance controllers were learned from training data
that include about 30 pushes and corresponding reactions. The
balance behavior we captured includes a series of actions: being
pushed, stepping out, and recovering. Many character poses while
being pushed are quite similar to its poses while recovering back
to an upright stand position. If these similar poses heading oppo-
site directions are mixed and chosen in the k-nearest neighborhood
at a state, the character could be immobilized at the state. Each
individual controller can accommodate a single, relatively-simple
behavior. In order to avoid such problems, we designed three sub-
controllers that are invoked in succession. When the character loses
its balance, the “Balance” controller is invoked involuntarily in or-
der to regain balance by repositioning feet. The control can also
be switched to the balance mode in immediate response to a push
if its magnitude is above a certain threshold. This implementation
decision was made to imitate the actual behavior of our motion cap-
ture subject. “BalanceStable” gains control if the character’s pose
is stabilized. This controller actually does nothing but notifying the
system that the character is ready to return to a stand position. The
training data of this controller includes statically balanced charac-
ter poses that are sampled between being pushed and recovering
phases. Then, the system invokes ‘“BalanceRecover” that controls
the character to a stand position.

Jump. We capture three types of jump motions, five trials for each
type. Controlling jump motions also required three controllers that
are invoked in succession. “JumpStart” makes the character jump
upwards into the air. “JumpAir” notifies that the character is at the
highest position and passes control to “JumpStand”, which controls
the character to land safely.

Transitioning. Transitioning between controllers at (maybe dy-
namically balanced but) statically unstable states is an important
issue in biped dynamic simulation. In our experiments, changing
styles while walking can be accomplished without much care, prob-
ably because the stable domains of walk controllers have a good
overlap. Transitioning between walking and running required des-
ignated transition controllers. We build the training sets for transi-
tion controllers in a generate-and-test manner. We randomly select
one cycle of walking and one cycle of running from existing data
sets and then blend them to produce a training example. This new
example is added to the training set, which is evaluated on our sim-
ulator. If the performance is good, we just stop there. Otherwise,
we repeat the generate-and-test step. In this way, our “Walk2Run”
controller was learned from 8 sample trajectories and “Run2Walk™
was learned from 6 sample trajectories.

7 Discussion

Our contribution is twofold. We have presented an optimization
method that transforms any (either motion-captured or kinemati-
cally synthesized) biped motion into a physically-feasible, balance-
maintaining simulated motion. Our optimization method allowed
us to collect a rich set of training data that contain stylistic,
personality-rich human behaviors. We have also presented a con-
troller learning algorithm that facilitated the creation and composi-
tion of dynamic controllers. Our controllers have a simple mech-
anism that exploits the essential information in training data. Re-
markably, our controllers learned subtle details of biped balance
control from pure kinematic sample trajectories without feedback
control.

>
Start NormalWalk Walk2Run Run Run2Walk

I UNEORROIOI INRORRON "
Start NormalWalk Stop Jump Start NormalWalk Stop Jump Start NormalWalk

Figure 8: Transitioning between controllers

The robustness of our controllers is largely depending on the size
and diversity of training data. It is certainly very difficult to build
robust controllers if the training data are severely ill-sampled. Even
with well-sampled training data, building a robust controller is chal-
lenging. We evaluate the robustness of our controllers by simply
running the simulator and waiting overnight to see if it falls over.
The adaptive refinement method certainly improves the robustness
of controllers. However, the robustness cannot be guaranteed be-
cause all plausible situations in the state space cannot be examined
comprehensively for adaptive refinement. In practice, each individ-
ual controller can be made quite robust if no external force is ap-
plied. However, our controllers could easily break down if external
force beyond a certain range is applied.

The memory and computation costs of our regression-based learn-
ing algorithm increase with the amount of training data. The mem-
ory cost is not generally a problem, because it increases linearly
with the size of training data. The computation cost is more seri-
ous, because the controller performs a neighborhood search for re-
gression at run time. We circumvented this problem by maintaining
data in a kd-tree, which facilitates efficient spatial query processing.

Each controller was learned from a small set of sample trajectories
with respect to the dimensionality of our dynamic model. In our
experiments, each behavior of a biped model with six joints (nine
degrees of freedom in total including the position and orientation
of the body) was learned from 5 to 20 sample trajectories, which
are exceptionally small training data in most machine learning ap-
plications. It has been possible probably because human motion
is highly coordinated at the joint level. Provided that the intrinsic
dimension of human motion is much lower than its ostensible di-
mension, dimensionality reduction by PCA might be a good idea
for faster optimization and effective learning, as accomplished by
Safonova et al. [2004].

We employed a very simple regression method that performed
well on our controller learning problem. We also tested with
LWLR (Locally Weighted Linear Regression) and LWPR (Locally
Weighted Projection Regression), which presumably provide a bet-
ter, smoother regression than the simple method used in our work.
In our experiments, the simplest method worked better on our learn-
ing problem than more sophisticated methods, probably because

our training sets were too small to cope with that level of sophisti-
cation.

Both dynamic simulation and controller learning are notorious for
their sensitivity to the selection of parameter values. Our method
is no exception. We have an array of parameters that require care-
ful tuning for successful simulation and learning. Such parameters
include ground reaction and friction coefficients for dynamic sim-
ulation, the proportional and derivative gains of PD servos, the rel-
ative weights of features of the character’s motion, and the number
of neighbors (k-nearest neighbors) chosen for regression. Parame-
ter tuning is not extremely difficult, but requires appreciable time
and efforts. A promising aspect was that we were able to create all
the examples in this work using a single configuration of physical
parameters. Once a stable configuration of parameters were found,
we did not have to tune physical parameters any more. Learning
parameters depend on the size and diversity of training data. It
might be possible to search a feasible configuration of physical and
learning parameters automatically using approximate inverse opti-
mization [Liu et al. 2005].

There are exciting avenues for future work. We would like to gener-
alize our methods to control three-dimensional simulated characters
and humanoid robots. Presumably, learning three-dimensional be-
haviors would require a larger collection of training data and more
sophisticated control and learning algorithms. Adapting a dynamic
controller for new characters and new geographical and physical
environments is a fascinating, yet very challenging task [Hodgins
and Pollard 1997]. We anticipate that this task can be done in our
framework by adapting training data for new characters and envi-
ronments kinematically [Lee and Shin 1999] and learning a new
controller from new training data.

Acknowledge

We would like to thank all the members of the SNU Movement
Research Laboratory for their help in collecting motion data. This
research work was supported by the IITA under the ITRC program.
We thank anonymous reviewers for their suggestions.

References

AIST HUMAN BoODY PROPERTIES DATABASE, 2006.
http://www.dh.aist.go.jp/bodydb.

ANDERSON, F., AND PANDY, M. 2001. Dynamic optimization
of human walking. Journal of Biomechanical Engineering 123,
381-390.

ARIKAN, O., FORSYTH, D. A., AND O’BRIEN, J. F. 2003. Mo-
tion synthesis from annotations. ACM Transactions on Graphics
(SIGGRAPH 2003) 22, 3, 402-408.

ARIKAN, O., FORSYTH, D., AND O’BRIEN, J. 2005. Pushing
people around. In SCA ’05: Proceedings of the 2005 ACM SIG-
GRAPH/Eurographics Symposium on Computer Animation, 59—
66.

BRUDERLIN, A., AND CALVERT, T. W. 1989. Goal-directed,
dynamic animation of human walking. In Computer Graphics
(Proceedings of SIGGRAPH 89), vol. 23, 233-242.

COHEN, M. F. 1992. Interactive spacetime control for animation.
In Proceedings of SSIGGRAPH 92, 293-302.

DASGUPTA, A., AND NAKAMURA, Y. 1999. making feasible
walking motion of humanoid robots from human motion capture
data. In Proceedings of IEEE Intl. Conference on Robotics and
Automation (ICRA), 1044—1049.

FALOUTSOS, P., VAN DE PANNE, M., AND TERZOPOULOS, D.
2001. Composable controllers for physics-based character ani-
mation. In Proceedings of SIGGRAPH 2001, 251-260.

FANG, A. C., AND POLLARD, N. S. 2003. Efficient synthesis of
physically valid human motion. ACM Transactions on Graphics
(SIGGRAPH 2003) 22, 3, 417-426.

HERTZMANN, A., 2004. Introduction to bayesian learning, sig-
graph course notes.

HODGINS, J. K., AND POLLARD, N. S. 1997. Adapting simulated
behaviors for new characters. In Proceedings of SSIGGRAPH 97,
153-162.

HoDGINS, J. K., WOOTEN, W. L., BROGAN, D. C., AND
O’BRIEN, J. F. 1995. Animating human athletics. In Pro-
ceedings of SIGGRAPH 95, 71-78.

KAITA, S., KANEHIRO, F., KANEKO, K., FUJIWARA, K.,
HARADA, K., YOKOI, K., AND HIRUKAWA, H. 2003. Biped
walking pattern generation by using preview control of zero-
moment point. In Proceedings of the IEEE International Con-
ference on Robotics and Automation, 1620-1626.

KOMURA, T., LEUNG, H., AND KUFFNER, J. 2004. Animating re-
active motions for biped locomotion. In VRST ’04: Proceedings

of the ACM symposium on Virtual reality software and technol-
ogy, 32-40.

KOVAR, L., GLEICHER, M., AND PIGHIN, F. 2002. Motion
graphs. ACM Transactions on Graphics (SIGGRAPH 2002) 21,
3, 473-482.

LAszLo, J., VAN DE PANNE, M., AND FIUME, E. 1996. Limit
cycle control and its application to the animation of balancing
and walking. In Proceedings of SIGGRAPH 96, 155-162.

LASZLO, J., VAN DE PANNE, M., AND FIUME, E. 2000. Inter-
active control for physically-based animation. In Proceedings of
SIGGRAPH 2000, 201-208.

LEE, J., AND SHIN, S. Y. 1999. A hierarchical approach to inter-
active motion editing for human-like figures. In Proceedings of
SIGGRAPH 99, 39-48.

LEE, J., CHAL J., REITSMA, P. S. A., HODGINS, J. K., AND
POLLARD, N. S. 2002. Interactive control of avatars animated
with human motion data. ACM Transactions on Graphics (SIG-
GRAPH 2002) 21, 3, 491-500.

Liu, C. K., AND PopPoVIC, Z. 2002. Synthesis of complex dy-
namic character motion from simple animations. vol. 21, 408—
416.

Liu, C. K., HERTZMANN, A., AND PopPoVIC, Z. 2005. Learning
physics-based motion style with nonlinear inverse optimization.
ACM Transactions on Graphics (SIGGRAPH 2005) 24, 3, 1071-
1081.

LOKEN, K. 2006. Imitation-based Learning of Bipedal Walking
Using Locally Weighted Learning. Master’s thesis, Computer
Science Department, The University of British Columbia.

MOUNT, D., AND ARYA, S., 2006. Ann: Library for approxi-
mate nearest neighbor searching, http://www.cs.sunysb.edu/ al-
gorith/implement/ann/distrib/index 1.html.

NAKANISHI, J., MorimoTto, J., ENDO, G., CHENG, G.,
SCHAAL, S., AND KAWATO, M. 2004. Learning from demon-
stration and adaptation of biped locomotion. Robotics and Au-
tonomous Systems 47, 79-91.

NAKAOKA, S., NAKAZAWA, A., AND YOKOI, K. 2003. Gener-
ating whole body motions for a biped humanoid robot from cap-
tured human dances. In Proceedings of the IEEE International
Conference on Robotics and Automation, 3905-3910.

OSHITA, M., AND MAKINOUCHI, A. 2001. A dynamic motion
control technique for human-like articulated figures. Computer
Graphics Forum (EUROGRAPHICS 2001) 20, 3, 192-202.

PopPoVviC, Z., AND WITKIN, A. P. 1999. Physically based motion
transformation. In Proceedings of SIGGRAPH 99, 11-20.

PRESS, W. H., TEUKOLSKEY, S. A., VETTERLING, W. T., AND
FLANNERY, B. P. 2002. Numerical Recipes in C++ (2nd Edi-
tion). Cambridge University Press.

SAFONOVA, A., POLLARD, N. S., AND HODGINS, J. K. 2003.
Optimizing human motion for the control of a humanoid robot.
In Proceedings of 2nd International Symposium on Adaptive Mo-
tion of Animals and Machines (AMAM2003).

SAFONOVA, A., HoDGINS, J. K., AND POLLARD, N. S.
2004. Synthesizing physically realistic human motion in low-
dimensional, behavior-specific spaces. ACM Transactions on
Graphics (SIGGRAPH 2004) 23, 3, 514-521.

SCHAAL, S., IISPEERT, A., AND BILLARD, A. 2003. Computa-
tional approaches to motor learning by imitation. Philosophical

Transaction of the Royal Society of London: Series B, Biological
Sciences 358, 537-547.

SHARON, D., AND VAN DE PANNE, M. 2005. Synthesis of con-
trollers for stylized planar bipedal walking. In International
Conference on Robotics and Automation (ICRA 2005), 18-22.

SMITH, R., 2006. Open dynamics engine, http://www.ode.org.

SULEIMANPASIC, A., AND PopovIC, J. 2005. Adaptation of
performed ballistic motion. ACM Transactions on Graphics 24,
1, 165-179.

SUN, H. C., AND METAXAS, D. N. 2001. Automating gait ani-
mation. In Proceedings of SIGGRAPH 2001, 261-270.

TAK, S., SONG, O.-Y., AND Ko, H.-S. 2000. Motion balance
filtering. Computer Graphics Forum (Eurographics 2000) 19, 3,
437-446.

YAMANE, K., AND NAKAMURA, Y. 2000. Dynamics filter - con-
cept and implementation of on-line motion generator for human
figures. In Proceedings of the IEEE International Conference on
Robotics and Automation, 688—695.

YIN, K., PAI, D. K., AND VAN DE PANNE, M. 2005. Data-driven
interactive balancing behaviors. In Pacific Graphics.

YIN, K., LOKEN, K., AND VAN DE PANNE, M. 2007. Simbi-
con: Simple biped locomotion control. ACM Transactions on
Graphics (SIGGRAPH 2007) 26, 3.

ZORDAN, V. B., AND HODGINS, J. K. 2002. Motion capture-
driven simulations that hit and react. In Proceedings of ACM
SIGGRAPH Symposium on Computer Animation, 89-96.

ZORDAN, V. B., MAJKOWSKA, A., CHIU, B., AND FAST, M.
2005. Dynamic response for motion capture animation. ACM
Transactions on Graphics (SIGGRAPH 2005) 24, 3, 697-701.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /CMYK
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments true
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages false
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages false
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages false
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c002000700072006500700072006500730073002d007500640073006b007200690076006e0069006e00670020006100660020006800f8006a0020006b00760061006c0069007400650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f006300680077006500720074006900670065002000500072006500700072006500730073002d0044007200750063006b0065002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f00730020007000610072006100200069006d0070007200650073006900f3006e0020007000720065002d0065006400690074006f007200690061006c00200064006500200061006c00740061002000630061006c0069006400610064002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f900200061006400610074007400690020006100200075006e00610020007000720065007300740061006d0070006100200064006900200061006c007400610020007100750061006c0069007400e0002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f00720020006600f80072007400720079006b006b0073007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200070007200e9002d0069006d0070007200650073007300f50065007300200064006500200061006c007400610020007100750061006c00690064006100640065002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e4002000760061006100740069007600610061006e0020007000610069006e006100740075006b00730065006e002000760061006c006d0069007300740065006c00750074007900f6006800f6006e00200073006f00700069007600690061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f60072002000700072006500700072006500730073002d007500740073006b00720069006600740020006d006500640020006800f600670020006b00760061006c0069007400650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create Adobe PDF documents best suited for high-quality prepress printing. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /ConvertToCMYK
 /DestinationProfileName ()
 /DestinationProfileSelector /DocumentCMYK
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles false
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /DocumentCMYK
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

