
Intel®

Technology
Journal

Toward The Proactive Enterprise

Volume 08 Issue 04 Published, November 17, 2004 ISSN 1535-864X

 Towards an Autonomic Framework:
Self-Configuring Network Services and

Developing Autonomic Applications

A compiled version of all papers from this issue of the Intel Technology Journal can be found at:
http://developer.intel.com/technology/itj/index.htm

http://developer.intel.com/technology/itj/index.htm

Towards an Autonomic Framework: Self-Configuring Network Services
and Developing Autonomic Applications 279

Towards an Autonomic Framework:
Self-Configuring Network Services and

Developing Autonomic Applications

Brian Melcher, Information Services and Technology Group, Intel Corporation
Bradley Mitchell, Intel Communications Group, Intel Corporation

Index words: autonomics, Eclipse, network services, self-configurability, toolkit

ABSTRACT

Autonomic services in the enterprise are becoming more
and more of a requirement in all types of networked
environments. With an ever-increasing number, type, and
complexity of network services available to individual
computing systems comes an increasing complexity in
establishing and maintaining the configurations of these
services. Many network services are already self-
configuring today, but this capability is not yet universally
available for the broad spectrum of network services or
networked environments. Without wide-reaching network
services self-configurability, the benefits of reduced
management complexity will remain unrealized.

We begin by examining existing network services
configuration technologies and identifying incomplete or
inconsistent capabilities for dynamically self-configuring
these network services. We present for consideration the
requirements of an architecture for dynamically self-
configuring network services that drives enhanced yet
simplified capabilities both to end users and to IT
technicians and engineers in a corporate IT environment,
as well as to roaming wireless users and home networks.

We then continue by examining the practical
implementation of autonomic network service
configuration. Purely autonomic systems cannot easily be
built today due to a lack of comprehensive framework
support. However, substantial pieces of autonomic
technology exist in forms suitable for early adoption.
Specifically, we focus on the IBM Autonomic Computing
Toolkit*, an open set of Java*-class libraries, plug-ins, and
tools created for the Eclipse development environment.
The IBM Autonomic Computing Toolkit represents a

* Other brands and names are the property of their
respective owners.

modern framework for enterprise software integration. We
examine the toolkit’s standard interfaces and data formats
to identify its applicability to network services
configuration problems. We conclude with a summary of
findings and recommendations for prospective enterprise
developers and integrators of autonomic toolkits.

INTRODUCTION
Network services discovery is a significant aspect of
today’s network infrastructure. In today’s network
environments, network services configuration information
is dispersed among a variety of information repositories,
and the relationship between the storage and consumption
of that configuration information is often managed
through programs, procedures, or protocols specially
developed for the specific environment at hand. As the
number of end-user systems joining the network grows
and the number and variety of network services grows, the
complexity of and demand for a solution to manage this
relationship between the configuration information and its
consumption likewise grows.

The Need for Self-Configurability
Automating the management of network services
configurations is becoming ever more a requirement
across the entire spectrum of computing networks. The
large networks in a corporate Information Technology
(IT) or Internet Service Provider (ISP) environment are
becoming too complex to manage configurations on an
individual system-by-system basis. The sheer number of
systems requires an increasing number of staff to manage
them; proportional growth of staff-to-systems is
undesirable, if not outright impractical. Additionally,
individual hands-on system management increases the
likelihood of errors being introduced into the
environment. Mobile computing puts an increasing
demand on reconfigurability as the system roams between

Intel Technology Journal, Volume 8, Issue 4, 2004

Towards an Autonomic Framework: Self-Configuring Network Services
and Developing Autonomic Applications 280

connectivity points. Home networks are becoming more
commonplace as the number of computers in the home
increases; yet, those same home networks must be easy to
maintain in order for the typical home computing
consumer to be able to manage them. In each of these
environments, the end-user system has varied degrees of
manageability control–that is, those who manage and
control the network–and network services configurations
may or may not have management control over the end-
user system.

Self-configurability with respect to network services is the
capability of a system to configure its own network-based
services and applications in response to the needs of the
user and the environment the system finds itself in. As the
needs of the user change or the environment the system is
in changes, that end-user system would recognize the
change, understand the impact, and respond by
reconfiguring itself accordingly. Flexibility of location, a
wide range of administrative control, and the need for
varied rates of dispersal of changed configuration
information across the environment, all complicate the
task of autonomic network services configuration
behavior.

Structure of this Paper
In this paper we first review current-day network services
configuration technology, identifying existing capabilities
as well as incomplete or inconsistent capabilities in
autonomic network services configuration behavior. We
present for consideration an architecture that supports
autonomic configuration of network services for a
plethora of computing environments: a corporate IT
environment, a mobile user hopping from one access point
to another, and a home computing network whether or not
it is connected to the Internet.

Second, we demonstrate development of autonomic
applications using the IBM Autonomic Computing
Toolkit in the Eclipse development environment. Created
by the Eclipse Foundation, a consortium backed by Intel,
IBM, and others, Eclipse provides a modern, extensible
environment for software development. This toolkit
specifically supports general-purpose problem
determination, installation, and user access features that
correspond to network service configuration tasks at a
very high level. We examine details of the toolkit to
develop practical recommendations for utilizing it in the
IT, roaming user, and home network environment. Most
recommendations apply generally to various other classes
of autonomic problems.

NETWORK SERVICES CONSUMPTION
PROBLEMS

Autonomic Network Services Solution Goals
We discuss the goals, considerations, and demands of self-
configurability of network services in four types of
network environments:

• A corporate IT environment.

• A wireless network provider with roaming mobiles.

• An Internet-connected home network.

• An isolated home Local Area Network (LAN).

We consider these four environments to span the range of
network environments: these environments would push the
limits of any solution for self-configurability of network
services, and, therefore, any solution that applies to these
networks would apply to network solutions in between.

In IT environments, one goal of self-configuring network
services is to move away from individual system
configuration management to policy management. This
approach brings a higher level of abstraction to
management by introducing a policy from which the
configuration is derived, allowing the automation
components of the infrastructure to apply these derived
configurations to the individual systems across the
environment. Policy management frees IT personnel from
the role of sustain, maintain, and fix. Additionally, with
the system itself deriving the configuration from a set of
policies, this eliminates the human-error factor when
configuring by hand.

More and more users are mobile, jumping from a wireless
connectivity point to another as they travel from airport, to
coffee shop, hotel, on-site at another corporation, or
across a college campus. Eventually network services and
connectivity for mobile computing should become as
seamless as cell-phone usage going from one cell
coverage area to another, or from one provider’s region to
another. In any mobile environment, user systems will
come and go and network services will also come and go.
As such, there can be no preconceptions or expectations
by either party: the network and available services are
foreign to the end-user system, and the end-user system is
likewise foreign to the network and infrastructure.

In the home environment, multiple computers are
becoming more commonplace. Home systems may be
connected to just each other and otherwise isolated, or
connected to the Internet. Either way, in this home
environment usually the set of systems and services does
not rapidly change, but there should be no expectations of
establishing or sustaining a complex solution.

Intel Technology Journal, Volume 8, Issue 4, 2004

Towards an Autonomic Framework: Self-Configuring Network Services
and Developing Autonomic Applications 281

Usage Areas

The IT Environment
A corporate IT environment today consists of a mix of
fixed and mobile, both wired and wireless, systems where
IT personnel have end-to-end management control–that is,
control of the configuration information repositories (the
back-end systems), the system consuming said
information (the front-end or end-user systems), and all
the infrastructure in between. An additional characteristic
is the technical expertise by the IT personnel for the entire
breadth of the environment: the back-end, front-end, and
infrastructure; and the standard images, sometimes
referred to as gold images, deployed across the
environment.

With this end-to-end system management (or, tightly
coupled management) programs, procedures, and
protocols specific to the environment can be put in place
to manage the dispersal and consumption of any network
services self-configuration information. In an IT
environment where central administration of network
services configuration is needed or desired, this manner of
a gold image with pre-configuration or specialty-
developed self-configuration utilities can more readily be
introduced than it could be in other environments to
completely address the problem. As a new service is
established, a companion utility is developed and
deployed in parallel with the service. Even with mobile
users within the IT environment, such environment-
specific utilities can still be employed to achieve network
services self-configurability. Being mobile may require a
more complex solution, but can be achieved.

In an IT environment, uses for network services self-
configurability are varied: they range from day-to-day
usage as mobile systems roam about the corporation (such
as between buildings, sites, or sub-domains), to managing
introduction of new services and retirement of existing
services, to crises event management with distribution of
anything from a security patch or anti-virus signatures
data file, to a Web proxy configuration or mail relay
blacklist across the entire environment.

Any solution applicable for an IT environment can require
control of the end-user and/or back-end systems. It must
also allow for policy management to drive individual end-
user system configuration, and must allow for rapid policy
and configuration changes to be introduced and dispersed
across the environment.

The Roaming User
A roaming wireless user is in contrast to the tightly
coupled end-user system in the IT environment. Here, the
end-user system may not be under any degree of control
by those administrating the infrastructure. Environment-
specific utilities, as in the IT environment, could be

introduced to provide self-configurability for that specific
wireless neighborhood. However, it cannot be expected
that this utility would be installed by a roaming wireless
consumer. There is the initial question of trust and
security of that utility: why would you trust a utility made
available in a wireless hotspot in the middle of some
airport or hotel. One question is whether it is a legitimate
service or someone masquerading as a legitimate service
in order to intercept the network connection. Further, and
more applicable to the autonomic network services
configuration problem here, as the user roams from one
provider to another, the number of environment-specific
utilities required on that mobile system increases,
increasing the likelihood of conflicts or system instability.

With a roaming wireless user, the system being
disconnected from the network must be considered. Any
network discovery and self-configuration methods must
recognize this disconnected state and allow for a stable
and functional (as much as possible) computing system.
Any solution must not require any degree of control on the
end-user system, but can require establishment of back-
end systems. A higher level policy management solution
will greatly facilitate numerous systems coming and
going, but the demand for an event-driven “push” of new
configurations is less than with an IT environment.

Home Networks–Connected and Isolated
In the home network, both Internet-connected and an
isolated LAN, there is not necessarily the IT know-how to
create an environment-specific utility or even to deploy
and configure a well-known solution. With computers now
becoming ubiquitous in the home environment, the
demand for autonomic network services configuration
increases. In addition to the technical know-how, if a
solution requires additional infrastructure it increases the
physical cost of that solution. As such, an optimal solution
would not require any additional infrastructure, services,
or configuration. The solution should be transparent yet
automatic, as if working magically with the existing
collection of end-user class systems.

With the connected home network, there is a connection
to the Internet at large through a service provider. The
solution space for the connected home network is
distinctive from the isolated home network in that it could
be reliant upon the ISP to provide a certain level of
autonomic network services configuration. The
requirements for technical know-how and in-home
infrastructure remain the same.

Solution Space Boundaries and Conditions

From the network usage areas described above we can
create a series of checks by which we can evaluate the
appropriateness of possible solutions:

Intel Technology Journal, Volume 8, Issue 4, 2004

Towards an Autonomic Framework: Self-Configuring Network Services
and Developing Autonomic Applications 282

• No back-end infrastructure. As indicated for the
home network environment.

• No technical know-how required. Also as indicated
for the home network environment.

• No tightly coupled management. For the wireless ISP
and home networks.

• Dynamic addition/removal of end-user systems. For
the IT environment and wireless service provider.

• Dynamic addition/removal/change of services. For
the IT environment.

• Universality. Implemented by many OS and network
equipment vendors.

• Rapid change deployment. For the IT environment.

Figure 1: Network environment solution conditions

A wide range of network services should be considered
for this problem of providing autonomic network services,
for if the broadest scope is considered, a more robust
solution will be forthcoming. These network services
include hostname resolution, proxy (for FTP, Web,
telnet), logging, Network Time Protocol (NTP), mail
storage, mail relay, nearest printer, nearest patch
distribution, and user authentication servers. Typically,
what this configuration entails is a reference to another
system, and then once the end-user system has been
pointed to the service server, the end-user and server
systems can communicate directly between each other.

The additional checks for varieties of network services
should be as follows:

• Nearest proxy server. Can the nearest firewall/proxy
server for FTP, Web and/or telnet be determined?
This may be a list of systems, not just a single system,
with each equally capable of providing service, but
only one utilized for a transaction.

• Nearest printer. Can the nearest printer be
determined? This is different than the nearest proxy
check, as nearest printer is based upon geographic
location whereas nearest proxy is based upon network
location.

• NTP server. This is similar to the nearest proxy
server and mail relay server checks: a list of equally

capable systems is provided. This check differs in that
all list members may be used for each transaction;
however, only one is required. In the previous checks,
only one system is used per transition.

• Mail relay server. Can the nearest mail relay server
be located, a similar check as nearest proxy?

• Mail server. Can the mail server appropriate for this
user be located? This condition is very different than
the mail relay server check. A mail relay server is a
system that receives and forwards e-mail (perhaps
scanning for viruses or checking blacklists in the
process); a mail server is the repository of a users e-
mail inbox. Since a mail server provides a stateful
service it requires locating the specific server with the
appropriate state for the user, in this case, the state
being the mail repository itself. The mail relay check
differs in that it is stateless and readily
interchangeable between peers.

• Logging server. This is much the same as the stateful
mail server check in that a system may need to
consistently report to the same logging server.

• Nearest patch distribution server. An authenticated
patch distribution server must be located to provide
quick and timely updates, particularly important in a
tightly coupled environment.

• Nearest user authentication server. This is also for a
tightly coupled environment, but for a stateful service
in that the same server is employed time and again.

NETWORK SERVICES CONSUMPTION–
STANDARDS, SOLUTIONS, AND
CHALLENGES

Solution Methods
Self-configuration functionality can be implemented in a
variety of methods. Functionality can be implemented
locally, employing locally maintained policies, protocols,
or programs wholly on the end-user system. Or, service
configurations can be learned from the environment itself.
These are the policies and protocols established in the
infrastructure to facilitate the end-user system in learning,
that is, updating itself, about the environment, both upon
initial introduction to the environment as well as when the
environment changes. Also, learning from the
environment could come from peer systems already in the
environment and successfully configured to operate within
it. Learning from the environment can also stem from a
global application of network resource configurations,
specifications, policies, programs, procedures and/or
protocols.

Intel Technology Journal, Volume 8, Issue 4, 2004

Towards an Autonomic Framework: Self-Configuring Network Services
and Developing Autonomic Applications 283

Intentional Hostname Naming Conventions
A long-standing approach to providing connectivity to
network services, a pseudo-autoconfiguration method if
you will, is the use of an intentional hostname naming
convention. Services are provided by a system with a
well-known hostname; for example, a mail relay is
“mailhost” and a name service server is “ns.”

This convention requires initial configuration on the end-
user system to use this well-known hostname, but once
configured, the act of reconfiguring network services
occurs silently. And in actuality, on the end-user system
there is no reconfiguration: the name resolution process
provides the reconfiguration of the network service. Such
a solution can be directly employed in IT and ISP
environments with a managed back-end infrastructure.

With this convention the “short” hostname is used, not the
Fully Qualified Domain Name (FQDN). For an IT
environment using a gold image method of system
installation, when that image is deployed across multiple
domains, the service server name is resolved to the server
within the local domain just like any other short hostname.
A roaming mobile user would see the same effect when
going from one service provider to another, providing
there is consistency in the naming convention between
service providers.

There are several shortcomings to this method. First, this
convention is optional and therefore consistency between
wireless ISPs cannot be guaranteed. Second, this does not
provide an automated solution for a home network: it can
facilitate a solution for an Internet-connected home
network given the ISP’s participation, but to the LAN
internal to the home, this provides no solution.

Due to these shortcomings, this method would work best
only in a tightly coupled environment such as an IT
environment. But even here there are further
shortcomings: this method doesn’t meet several of our
checks. Geographic information isn’t available to address
nearest printer. Further, mail server is not addressed due
to how name resolution typically occurs: if there are
multiple physical systems with the same hostname, name
resolution may load-balance requests in a manner that
returns the address of a different physical system for each
name lookup query, rendering it useless for any stateful
service that is distributed across a server farm.

DNS and DHCP
Some institution of autonomic network services comes
from Domain Name System (DNS) and Dynamic Host
Configuration Protocol (DHCP), both long-standing
network name-service protocols. DNS provides hostname
resolution through a distributed hierarchy of DNS servers.
DHCP enables systems to dynamically configure their

own IP address under the conditions and policies allowed
by a DHCP server.

DNS
Use of DNS aliases is an instantiation of an intentional
hostname naming convention and facilitates service
portability. On the back-end the service proper can be
relocated from one machine to another and, with the use
of a DNS CNAME, end users are directed to the new
service location as DNS is updated. This has commonly
been done with hostnames such as “mail” and “www.”
Proposals recommend additional records to the DNS
tables–beyond MX (mail exchange) to WKS (well-known
services, which include FTP and www). However, this is
still not seen as a long-term solution by even the Request
for Comments (RFC) authors [3]. For the purposes of
autonomic network services, we only need to
communicate to the end-user systems within the
immediate network. Additional DNS records would
express this information externally as well, which may be
an unacceptable information leakage; however, this can be
remedied with a separate DNS zone available only
internally. This internal zone increases the technical
complexity and infrastructure required for the solution,
but this separation of DNS zones is usually a requirement
for IT and ISP environments segmented with firewalls
from the Internet at large and should not limit its
consideration as a solution for autonomic network
services.

DHCP
DHCP provides dynamic network services through a
software agent on the client and an infrastructure to
service requests. DHCP is a well-established protocol and
both client and server services are available on most
operating systems today. Given this wide availability,
DHCP could be well positioned to become the foundation
for an autonomic network services configuration solution.
Extensions to DHCP provide for additional network
services, providing the DHCP client with DNS resolvers
and a DNS search path [7]. Moreover, DHCP itself is an
extensible protocol that could be utilized to provide
pointers to additional network services configuration
information.

While DHCP is an extensible protocol, these extensions
only define packet content; Application Programming
Interfaces (APIs) that utilize the additional DHCP-
provided information are left undefined. This is a key
reason DHCP is not a solution to the problem of
autonomic network services. While this lack of APIs
could be accommodated if the application itself
implemented (at least partial) DHCP capability, this only
transfers the problem and doesn’t really resolve it. This
method of introducing DHCP capability directly into the
applications that utilize this DHCP-provided information

Intel Technology Journal, Volume 8, Issue 4, 2004

Towards an Autonomic Framework: Self-Configuring Network Services
and Developing Autonomic Applications 284

is a part of the environment-specific utilities discussed
earlier, suitable only for tightly coupled environments.

Many of our solution space boundary checks can be met
through careful policy construction, but this itself doesn’t
meet the no technical know-how check. With regard to no
back-end infrastructure with the connected home network,
DHCP is available in firewall/gateway appliances
designed specifically for connecting up home networks,
meaning this is not much of a limitation. However, the
dynamic addition and removal of services check is not
met with DHCP: an administrator must change the DHCP
configuration policy when a service is added or removed.

Network Information Service (NIS/NIS+)
Network Information Service (NIS), and its security-
enhanced follow-up NIS+, provide for database-like
queries about information services. An NIS domain
consists of a set of tables, and within those tables is a
keyword-to-answer mapping. The NIS tables and
mappings must be preconfigured, thus failing the no
technical know-how check. Also, NIS does not lend itself
to a dynamic environment of services coming and going,
failing another check. Due to its one-to-one mapping
nature, it also fails the nearest printer check, and it suffers
the mail server problem in the same way as DNS. Further
limiting NIS is that it is principally a UNIX∗- and Linux*-
only solution, failing the universality check.

NIS does have a unique characteristic. In DHCP, APIs do
not exist to access new information types, but the APIs in
NIS are generic enough to handle new information
services: only the new table needs to be created.

Directory Service (LDAP)
Lightweight Directory Access Protocol (LDAP) [5] is a
protocol for locating resources on a network through a
hierarchical directory repository. Commonly used for
authentication and as a replacement for NIS, LDAP and
its information model are extensible, and as such can be
considered for autonomic network services. As the
information model is extensible, the type of information
which can be included in the directory service can be used
to meet practically all of the network services checks:
network locality-based services of nearest proxy server
and mail relay server; stateful services like mail server
and logging server; and even geographical locality-based
services of nearest printer, if the directory service
information model contains the right data. LDAP includes
APIs, allowing applications to interface with the
information in the dynamic directory service. However,

∗ Other brands and names are the property of their
respective owners.

like DHCP and NIS, LDAP requires an infrastructure
preconfigured to service requests, failing the no technical
know-how and no infrastructure checks. Unlike NIS,
LDAP can provide for dynamic responses and provides
for service announcements, addressing the mail server and
logging server checks. However, LDAP is still limited in
that it does not provide for dynamic, spontaneous
discovery, and as such does not lend itself as a solution.

Service Location Protocol (SLP)
Service Location Protocol (SLP) is a protocol that
provides a framework for discovery and selection of
network services, eliminating the need for many static
network services configurations for network-based
applications [4]. SLP is intended for an enterprise network
with shared services (as opposed to a global network)
fitting into the IT, ISP, and home environments.

With this protocol, end-user systems attempt to locate a
service. The services themselves, as they come on-line,
advertise their services and can communicate directly with
end users or with a central directory agent. In this fashion
it meets the dynamic addition and removal of services and
dynamic addition and removal of end-user systems
checks. APIs allow access to SLP data, and for non-SLP
capable applications, SLP proxies can be employed. Like
LDAP, SLP can provide dynamic responses and address
many of the network services checks, again provided the
directory agent is established with the right data.

DHCP options [6] and use of DNS Service Location
Resource (SRV) records [10] have been proposed that
would facilitate the discovery of the SLP directory agent,
which would facilitate the use of SLP and increase its
autonomic capabilities by reducing the not tightly coupled
hurdle. SLP is a promising protocol and has been
implemented in products from several vendors [15]. It
does not, however, yet meet the universality check.

Limitations of Today’s Solutions
Intentional hostname naming has existed for many years,
and if it was a solution capable of providing autonomic
network services for the broad spectrum of network
services and networked environments, this would not even
be a topic of continued research. The creation of DNS,
and more specifically the MX and later the SRV records,
facilitated service availability through intentional
hostname naming. DHCP introduced dynamic hostname
naming of end-user systems, but it is quite limited in
facilitating network service discovery. DHCP, NIS, and
LDAP all require an infrastructure and technical know-
how to implement and sustain each services’ own
configuration. SLP also requires an infrastructure, but its
implementation demands on technical know-how are less
than those with LDAP; plus the demand can be reduced if

Intel Technology Journal, Volume 8, Issue 4, 2004

Towards an Autonomic Framework: Self-Configuring Network Services
and Developing Autonomic Applications 285

services register themselves, reducing the burden of
activating the SLP Service Agent. SLP is not widely
available: it is too soon to determine if an SLP-based
solution is viable for autonomic network services
configuration.

All these methods have limitations in one form or another,
meaning that with any one implementation of these
existing technologies and their implementation, a single
universal architecture for autonomic network services has
not yet arrived. However, a combined used of these
protocols can provide a comprehensive solution. For
instance, an end-user system using DHCP could acquire
DNS name server information, and then with the
information from DNS SRV records locate a directory
service to subsequently locate configuration information
for network services. Other combinations of protocols can
also be applied to bridge the gaps that the participant
applications have when standalone. These solutions
certainly work, and, considerations of availability and
reliability aside, they are complex architectures and,
accordingly, do not meet the no technical know-how and
no back-end infrastructure checks. Therefore, these
protocol combinations are not beneficial to the
unconnected home network. Further, even in the technical
know-how rich IT and ISP environments, these solutions
can more readily be employed where one protocol is built
upon another, layer upon existing layer over time. To
apply them to a new environment would incur high
installation and maintenance costs.

TOWARDS AUTONOMIC NETWORK
SERVICES

A Solution Architecture
To meet the no back-end infrastructure check suggests a
solution in the direction of a peer-to-peer self-discovery
mechanism. However, an IT environment requires a high-
level policy control and rapid change capability,
suggesting a client/server architecture. These two vectors
seem contradictory, even mutually exclusive.

Consider a peer-to-peer self-discovery mechanism with a
priority schema. By being peer-to-peer, there is no need
for a back-end infrastructure, which satisfies the needs of
a home environment. Then in the tightly coupled IT
environment, we introduce a system we call a services
broker, upon which policies are managed directly by IT
personnel. In this priority schema, the services broker has
a higher priority than the class of end-user systems: the
services broker will “shout” while end-user systems
“whisper.” If so desired, the priority of end-user systems
could be set to nearly zero (with priority defined as the
higher the number, the higher the priority). Or, it could be
set to zero (or “off”), in essence transitioning the original

peer-to-peer architecture into a traditional client/server
architecture–but all within the same solution
implementation.

This is not, however, a traditional client/server
architecture. Due to the priority-schema peer-to-peer
structure this architecture has an ability for dynamics, fault
tolerance, and self-healing built right into it. The outage of
a services broker can be tolerated by end-user systems
being able to utilize a configuration from any one of the
collection of services brokers. In an “end user at zero”
model, the end-user system cannot reference any of its
peers, necessitating that end-user systems seek out other
services brokers in the environment. In an “end user at
near-zero” model, in an outage of all services brokers, any
end-user system can listen to the “whisper” of another
peer and discover what limited services may still be
available.

In either a “zero” or “near-zero” end-user model, we gain
an additional key benefit: the ability to rapidly introduce a
new service or service configuration, a crucial feature to
address crisis and denial-of-service situations. One can
“seed” configuration solutions simply by introducing a
system with a newer configuration (the “fix”) into the
environment. Even in a total services broker outage, an IT
administrator can configure the new service on his or her
own end-user class system and temporarily elevate the
priority of that configuration, spreading the new
configuration by “whispering” louder than other end-user
systems.

Such a priority-based schema could be implemented onto
an LDAP or SLP infrastructure, even maintaining
compatibility with existing infrastructure deployments.
SLP is considered a state-of-the-art directory services
protocol and a strong choice for future management of
network services [16], but not likely to displace existing
LDAP infrastructures.

With these considerations we have presented the
following as requirements for an architecture for
autonomic network services:

• Priority-based peer-to-peer structure, allowing for a
traditional peer-to-peer architecture that can transition
into a client/server architecture.

• Service consumer self-discoverability of service
providers and services brokers.

• Rapid introduction of new services and services
configurations.

Intel Technology Journal, Volume 8, Issue 4, 2004

Towards an Autonomic Framework: Self-Configuring Network Services
and Developing Autonomic Applications 286

SOFTWARE TOOLKITS FOR
AUTONOMIC NETWORK SERVICES
To fully address issues of autonomic network services, an
autonomic framework is necessary. To reach this goal,
“we need to rethink the structure of the system and the
application software (and the tools that help build them)”
[12].

While some features of autonomic services are best
implemented in computer hardware, typical autonomic
solutions for the enterprise also demand software support.
Administration of traditional client/server and n-tier
systems can benefit substantially from having autonomic
services implemented in the operating system or higher-
level software applications. A fully autonomic-aware Web
database system, for example, should be capable of
identifying and repairing certain classes of database
integrity errors to minimize impact to future user sessions.

Unfortunately, to make enterprise systems fully autonomic
requires significant effort. Modern enterprise architectures
tend to feature numerous applications and components
supplied by different vendors. These systems increasingly
distribute the software, hardware, and data storage
functions geographically across networks. Additionally,
individual hardware and software components have grown
exponentially in complexity over the past few years as
processing speeds and development tools have improved.

Software toolkits deliver required autonomic capabilities
utilizing standard APIs, data formats, and network
protocols. A toolkit provides reusable, standards-based
software to reduce these efforts of software development
and integration. Examples of functions ideally supported
in an autonomic software toolkit include the following:

• Event logging APIs and data formats.

• Issue alerting mechanisms.

• Network discovery mechanisms.

• Data migration and conversion utilities.

• Interfaces for extensibility and integration with third-
party software.

In the following sections we explore functionalities of the
IBM Autonomic Computing Toolkit. Though not a
complete enterprise solution, this toolkit provides a
practical framework and reference implementation for
incorporating autonomic capabilities into software
systems.

THE IBM AUTONOMIC COMPUTING
TOOLKIT
The IBM Autonomic Computing Toolkit comprises class
libraries, plug-ins, and tools for the Eclipse development
environment. To support both development and execution,
the toolkit depends on specific versions of the Java
Runtime Environment∗ (JRE). In the following sections
we describe each software component of the toolkit.

General Concepts
The toolkit is based on the dual concepts of Managed
Resources and Autonomic Managers. Managed Resources
can represent end-user computers, other network nodes, or
individual software components running on a device.
Resources monitor their environment and are capable of
detecting and reporting events to an Autonomic Manager.
Managed Resources also take administrative actions in
response to Autonomic Manager requests.

Autonomic Managers oversee the operation of Managed
Resources. Managers implement administrative policy and
business logic to facilitate and coordinate optimal
operation of resources. All direct communication between
managers and resources is handled via Java interfaces.
Although the toolkit is architected to accommodate
distributed managers and resources, the current
implementation of manageability interface APIs supports
only limited forms of communication on the local device.

Common Base Events
The IBM Autonomic Computing Toolkit defines a
standard data format called the Common Base Event.
Common Base Events are Extensible Markup Language
(XML) structures (“blobs”) that define a standard data
format for communicating events. Common Base Events
provide a convenient mechanism to centralize and
correlate events from disparate applications.

Each instance of a Common Base Event may define the
software component that generated the event, a location of
the event (such as short or fully qualified hostnames), the
time of the event, and a description of the situation or
scenario leading up to the event.

Generic Log Adapter
One way to generate Common Base Events is through the
Generic Log Adapter (GLA). Runtime support in
Autonomic Managers utilizes the GLA to convert data
from existing log files of legacy applications to the
Common Base Event format. For each type of log file to

∗ Other brands and names are the property of their
respective owners.

Intel Technology Journal, Volume 8, Issue 4, 2004

Towards an Autonomic Framework: Self-Configuring Network Services
and Developing Autonomic Applications 287

be supported by the GLA, a developer must implement
parsing, formatting, output, and other objects tied together
by a configuration file. The toolkit provides an Eclipse
plug-in called the Adapter Rule Editor to simplify creation
of these configuration files.

Log/Trace Analyzer
The Log/Trace Analyzer is a simple implementation of an
Autonomic Manager. Administrators use this analysis tool
to graphically view and correlate event log files.

Associated with the Log/Trace Analyzer in the toolkit is
support for “symptom databases.” These databases consist
of XML files that encode possible resolution actions for
Common Base Events. A toolkit plug-in allows
administrators to build symptom databases according to
their policies.

Resource Model Builder
The Resource Model Builder generates data models of
monitored resources. Resource models define event types,
polling intervals, thresholds, and actions to take when
thresholds are crossed. These models employ industry-
standard Common Information Model (CIM) classes for
holding resource properties. The Resource Model Builder
also supports CIM and Windows Management
Instrumentation (WMI) standard Managed Object Format
(MOF) files in addition to custom scripts.

Automated Management Engine
The Automated Management Engine (AME) hosts
deployed resource models. This engine executes resource
model scripts within a control loop. It also stores
operational data in an embedded local database. AME
contains a CIM Object Manager (CIMOM) extensible via
Engine APIs.

Integrated Solutions Console
The Integrated Solutions Console (ISC) is a Web-based
console user interface. ISC implements centralized
management of autonomic capabilities using a WebSphere
Application Server as the supporting infrastructure. An
Eclipse plug-in supports development of add-on console
components. The console supports user interaction in
environments where full enterprise management console
integration is not in place.

APPLICATIONS IN NETWORK SERVICE
CONFIGURATION
In the following sections, we describe several approaches
for integrating the IBM Autonomic Computing Toolkit
into existing network service configuration technologies to
address the usage models described earlier.

Toolkit Integration for Client-Server
Environments
At a conceptual level, the IBM Autonomic Computing
Toolkit can be integrated in a straightforward fashion with
IT client/server network architectures. Each network
device can be modeled as a managed resource, and
dedicated server or gateway nodes can be configured as
Autonomic Managers (clustered as necessary). CIM/WMI
support allows easier integration with legacy enterprise
management data stores. Specific versions of Java Virtual
Machines (JVM∗s) can be targeted for enterprise
deployment across multiple platforms as needed.

However, the toolkit’s current implementation prohibits
this design approach, as manager-resource interfaces
enable only local (intra-device) communication. Until
supported extensions for inter-device communication are
available in future versions of the toolkit, workarounds or
extensions for the IT environment must be designed. One
possible workaround involves adding remote monitoring
support to Managed Resources. This approach entails
extending the current toolkit architecture with a new
“Remote Managed Resource” component as shown in
Figure 2.

∗ Other brands and names are the property of their
respective owners.

Intel Technology Journal, Volume 8, Issue 4, 2004

Towards an Autonomic Framework: Self-Configuring Network Services
and Developing Autonomic Applications 288

Figure 2: Extended Eclipse autonomic toolkit architecture

In this proposed architecture, Remote Managed Resources
are lightweight implementations of toolkit managed
resources. These remote resources incorporate the
following functions:

• Monitoring and control capability for software and/or
hardware on the local device.

• Support for discovery of toolkit Managed Resources
and Autonomic Managers.

• Retrieval of control instructions remotely from
managers.

To interact with ordinary toolkit resources, remote
resources initiate all requests to parent nodes, called
toolkit Service Brokers. Toolkit service brokers are
simply Autonomic Managers with extensions to support
remote resources. They represent a single-service
implementation of the general-purpose “services broker”
functionality discussed earlier. To pass event logs or alerts
to a service broker, for example, remote resources push
Common Base Events and other data up to a previously
discovered broker. Likewise, to obtain configurations and
instructions, a remote resource requests and pulls data
from the manager.

These one-way discovery and communication processes
can be implemented in IT environments through XML-
RPC (Remote Procedure Call) or similar HTTP-oriented
protocols. Protocol conventions for decoding
configurations and actions must be established between
managers and resources. This architecture enables
management of remote resources by establishing data-
driven monitoring and configuration procedures.

Toolkit Integration for Peer-to-Peer
Environments
Attempting to fit the IBM Autonomic Computing Toolkit
into a peer-to-peer architecture for network services poses
several new challenges. Peer-to-peer architectures
utilizing the toolkit demand that any device be capable of
taking on Autonomic Manager responsibilities when
needed. It follows that each peer must be granted access to
the resource models, symptom databases, and event logs
deployed in that environment. Besides the increased
configuration burden, this architecture also places
increased computational demands on nodes that may not
be fully equipped to handle the additional overhead.

One method for implementing peer-to-peer toolkit support
entails periodic synchronization of all Autonomic
Managers. This approach requires a method to verify that
each Autonomic Manager configuration is up-to-date as
well as a mechanism to trigger propagation of the
manager’s policy data when needed. The toolkit’s
architecture must be extended to provide such support. As
noted earlier, however, the resource overhead incurred by
running an Autonomic Manager may exceed the capability
of some peer-to-peer devices. Alternatively, these devices
can be configured as lightweight Remote Managed
Resources.

Toolkit Integration with Network Services
As described above, developers can, with effort, integrate
the IBM Autonomic Computing Toolkit into various
client/server and peer-to-peer networks. In IT
environments, Autonomic Manager functionality fits

Intel Technology Journal, Volume 8, Issue 4, 2004

Towards an Autonomic Framework: Self-Configuring Network Services
and Developing Autonomic Applications 289

logically as an add-on to existing DHCP, DNS, LDAP and
other server platforms. Deploying Remote or full
Managed Resource technology to the client-side likewise
can be centrally administered using SLP or another
available discovery protocol to tie the system together.

On home networks, the difficulty of enabling autonomic
services increases. As home “routers” and “entertainment
gateways” continue to expand in popularity, these devices
become the natural host for Autonomic Manager
functions. However, these devices do not generally
support a “push” model for deployment, and many home
administrators will refuse to install toolkit components on
their managed devices manually. Additionally, networked
printers, game consoles, and low-end home computers will
generally not meet minimum system requirements to serve
as toolkit Managed Resources. Given suitable policy setup
on the router, the toolkit offers a promising solution for
the myriad configuration problems that afflict home
networks today. For example, an Autonomic Manager
could detect and heal mis-configured workgroup names,
wireless encryption settings, and other security settings in
addition to basic DHCP setup.

Mobile and roaming wireless users also benefit from
features of the IBM Autonomic Computing Toolkit. By
pre-installing a laptop or other mobile device with Remote
Managed Resource components, the device can discover
Autonomic Managers as needed to update DHCP and
other network service configurations. During times when
the mobile device is not connected to the network, the
system can rely on configuration/policy information
cached in the local Autonomic Manager. Wireless Internet
Service Providers (WISPs) may also leverage the toolkit
to build universal sign-on and automated billing services.

AUTONOMIC COMPUTING AND
ENTERPRISE MANAGEMENT
FRAMEWORKS
Autonomic functions represent the latest step in the
natural evolution of enterprise system, network, and
storage management capabilities. In the 1980s, Simple
Network Management Protocol (SNMP) introduced basic
monitoring and control functions for enterprise IP
networks. SNMP supports basic configuration, logging,
and alerting mechanisms. Unfortunately, SNMP did not
define standard resource models for managed devices,
hindering its adoption in cross-platform networks.

In the 1990s, Intel, as part of the Desktop/Distributed
Management Task Force (DMTF), actively developed and
promoted the Desktop Management Interface (DMI)
standard. DMI offers a more sophisticated monitoring,
configuration, and control framework that enhances
support for end-user usage models. Specifically, DMI

includes predefined objects for modeling PC client
resources and system events.

Subsequently, the DMTF also developed specifications
for CIM, which eases the burden of software development
associated with DMI. WMI in turn incorporates CIM into
standard management software for Windows∗ platforms.
Finally, in the late 1990s, Intel and other companies
jointly developed the Intelligent Platform Management
Interface (IPMI). Whereas SNMP, DMI, and CIM/WMI
function on top of an operating system and a network
protocol stack, IPMI provides management capability at a
lower level, monitoring platform hardware attributes like
voltages, fan speeds, and temperatures, and working
independently from the operating system.

Autonomic technologies complement each of these other
management standards. Specifically, the IBM Autonomic
Computing Toolkit leverages the CIM Object Model and
can work with MOF files as indicated earlier. Through the
Generic Log Adapter, the toolkit also can aggregate data
generated by other software components tied to these
standards. In general, autonomic services operate at the
next higher level of the management solution stack. It
follows that the ability of autonomic solutions to support
self-configuring and self-healing depends on the
availability of these standard management technologies as
well as the extent of instrumentation deployed.

IBM AUTONOMIC COMPUTING
TOOLKIT SUMMARY
The IBM Autonomic Computing Toolkit enables
developers to add self-configuring and other autonomic
capabilities to their software. Capabilities center on the
ability to model and monitor resources, implement
policies for configuring and controlling those resources,
and manage log data using standard cross-application and
cross-platform mechanisms. The toolkit attempts to
leverage and retain compatibility with existing enterprise
management standards. It is a framework best utilized as a
reference implementation by early adopters to assess the
impact of autonomic technology on their environment.

SUMMARY
In this paper we presented existing network services
configuration technologies, identifying current capabilities
and shortcomings for dynamically self-configuring
network services. We proposed requirements for additions
to these existing technologies to address these
shortcomings to provide a fully capable autonomic

∗ Other brands and names are the property of their
respective owners.

Intel Technology Journal, Volume 8, Issue 4, 2004

Towards an Autonomic Framework: Self-Configuring Network Services
and Developing Autonomic Applications 290

network service for several types of networked
environments. We also described the IBM Autonomic
Computing Toolkit, an application development suite that
provides software developers with a technology to
develop autonomic applications, including dynamically
self-configuring network services.

ACKNOWLEDGMENTS
We thank Shu-min Chang, Susan Harris, Marian Lacey,
Ray Mendonsa, and Tim Verrall for their valuable
technical and editorial contributions to this paper.

REFERENCES
[1] Gulbrandsen, A. and Vixie, P., “A DNS RR for

Specifying the Location of Services (DNS SRV),”
IETF RFC 2052*, Oct 1996.

[2] Droms, R., “Dynamic Host Configuration Protocol,”
IETF RFC 2131*, March 1997.

[3] Hamilton, M. and Wright, R., “Use of DNS Aliases for
Network Services,” IETF RFC 2219*, Oct 1997.

[4] Viezades, J., Guttman, E., Perkins, C., and Kaplan, S.,
“Service Location Protocol,” IETF RFC 2165*, June
1997.

[5] Wahl, M., Howes, T., Kille, S., “Lightweight
Directory Access Protocol (v3),” IETF RFC 2251*,
Dec. 1997.

[6] Perkins, C. and Guttman, E., “DHCP Options for
Service Location Protocol,” IETF RFC 2610*, June
1999.

[7] Smith, C., “The Name Service Search Option for
DHCP,” IETF RFC 2937*, Sept. 2000.

[8] T’Joens, Y., Hublet, C., and De Schrijver, P., “DHCP
Reconfigure Extension,” IETF RFC 3203*, Dec. 2001.

[9] Klensin, J., “Role of the Domain Name System
(DNS),” IETF RFC 3467*, Feb. 2003.

[10] Zhao, W., Schulzrinne, H., Guttman, E., Bisdikian,
C., and Jerome, W., “Remote Service Discovery in the
Service Location Protocol (SLP),” IETF RFC 3832*,
July 2004.

[11] Ganek, A.G. and Corbi, T.A., “The dawning of the
autonomic computing era,” IBM Systems Journal, vol.
42, no. 1, 2003, pp. 5-19*.

[12] Bantz, D.F., Bisdikian, C., Challener, D., Karidis,
J.P., Mastrianni, S., Mohindra, A., Shea, D.G., and
Vanover, M., “Autonomic personal computation,”
IBM Systems Journal, vol. 42, no.1, 2003, pp. 165-
176*.

[13] Balakrishnan, H. “Resource Discovery Using an
Intentional Naming System,” Nov. 1999,
http://nms.lcs.mit.edu/talks/stanford-netseminar/*.

[14] Konstantinou, A. V., Florissi, D., and Yemini, Y,
“Towards Self-Configuring Networks,” DARPA Active
Networks Conference and Exposition, May 2002,
http://www1.cs.columbia.edu/dcc/nestor/nestor-dance-
2002.pdf*.

[15] Alex, H., Kumar, M., and Shirazi, B., “Service
Discovery in Wireless and Mobile Networks,”
http://crewman.uta.edu/psi/download/Mohan_Shirazi/
ServiceDiscovery.pdf*.

[16] Perkins, C., “SLP White Paper Topic,” May 1997,
http://playground.sun.com/srvloc/slp_white_paper.htm
l*.

[17] Jacob, B., Lanyon-Hogg, R., Nadgir, D. and Yassin,
A., A Practical Guide to the IBM Autonomic
Computing Toolkit, IBM International Technical
Support Organization,
http://www.redbooks.ibm.com/redbooks/SG246635/*.

AUTHORS’ BIOGRAPHIES
Brian Melcher, GCUX, RHCE, is a senior UNIX/Linux
security engineer in Intel’s Information Services and
Technology Division. His technical interests include
UNIX and Linux security and operating system internals.
Brian received a Master’s degree from the University of
Arizona and a Bachelor’s degree from the University of
Illinois at Urbana-Champaign. His e-mail is
brian.a.melcher at intel.com.

Bradley Mitchell is a validation manager and senior
software engineer in Intel’s Flash Products Group. His
technical interests include automation software, high-
performance computing, and wireless networking. He
holds one patent with two additional patents pending.
Bradley received a Master’s degree from the University of
Illinois at Urbana-Champaign and a Bachelor’s degree
from M.I.T. His e-mail is bradley.mitchell at intel.com.

Copyright © Intel Corporation 2004. This publication was
downloaded from http://developer.intel.com/

Legal notices at
http://www.intel.com/sites/corporate/tradmarx.htm

http://nms.lcs.mit.edu/talks/stanford-netseminar/
http://www1.cs.columbia.edu/dcc/nestor/nestor-dance-2002.pdf
http://www1.cs.columbia.edu/dcc/nestor/nestor-dance-2002.pdf
http://crewman.uta.edu/psi/download/Mohan_Shirazi/ServiceDiscovery.pdf
http://crewman.uta.edu/psi/download/Mohan_Shirazi/ServiceDiscovery.pdf
http://playground.sun.com/srvloc/slp_white_paper.html
http://playground.sun.com/srvloc/slp_white_paper.html
http://www.redbooks.ibm.com/redbooks/SG246635/
http://developer.intel.com/
http://www.intel.com/sites/corporate/tradmarx.htm
http://rfc.net/rfc2052.html
http://rfc.net/rfc2131.html
http://rfc.net/rfc2219.html
http://rfc.net/rfc2165.html
http://rfc.net/rfc2251.html
http://rfc.net/rfc2610.html
http://rfc.net/rfc2937.html
http://rfc.net/rfc3203.html
http://rfc.net/rfc3467.html
http://rfc.net/rfc3832.html
http://www.research.ibm.com/journal/sj/421/ganek.pdf
http://www.research.ibm.com/journal/sj/421/ganek.pdf
http://www.research.ibm.com/journal/sj/421/bantz.pdf
http://www.research.ibm.com/journal/sj/421/bantz.pdf

Copyright © 2004 Intel Corporation. All rights reserved.
Intel is a trademark or registered trademark of Intel Corporation or its subsidiaries in the United States and other countries.
For a complete listing of trademark information visit: www.intel.com/sites/corporate/tradmarx.htm

For further information visit:

developer.intel.com/technology/itj/index.htm

http://developer.intel.com/technology/itj/index.htm
http://www.intel.com/sites/corporate/tradmarx.htm

