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Abstract. In this survey paper we give the basic properties of Grass-
mann algebras, present a generalised theory of area from a Grassmann
algebra perspective, present a version for Grassmann algebras of the
Buchberger algorithm, and give examples of computation and deduction
in Grassmann geometry.

The automatic proof of geometry theorems using the powerful algorithms of Wu
and Buchberger is the most impressive achievement to date in automated theo-
rem proving. It 1s our view, though, that progress in the automation of geometry
requires something more than the invention and refinement of algorithms. What
we have in mind is the creation of algebraic structures that internalize the rich
variety of geometric concepts in ways that are amenable to computation. In this
survey paper we present such a structure, along with its variant of the Buch-
berger algorithm.

Grassmann algebras are appropriate many-sorted algebraic structures for
affine geometry, well-suited to deduction and to computation of quantities such
as areas. The basic geometric objects are points. Vectors and less familiar geo-
metric entities such as bipoints and bivectors are generated as we will describe.
To illustrate the invariant coordinate-free flavour of Grassmann algebra we con-
sider a general notion of ‘area’ enclosed by a closed curve in a space of arbitrary
dimension, which in two-dimensional spaces reduces to a scale-free version of
the familiar concept. The general notion supports the extension of many plane
geometry theorems involving area to higher dimensions.

White [28], Sturmfels and Whitely [27] and others have developed a similar
approach to projective geometry theorem proving, based on the Cayley Algebra,
and using Cayley factorization as the basic algorithmic tool. Hestenes and Ziegler
in [17] present an extensive study of the projective model of affine geometry using
Grassmann-Cayley algebra. Also interesting is the work of Chou, Gao and Zhang
([5], [6] and [7]) in which theorems of two and three dimensional geometry are
proved using a formalism based on areas and volumes which allows higher level
interpretation of the resultant proofs. Our way is in a sense more elementary
and its development has been partly motivated by the desire to transparently
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incorporate elementary geometric reasoning and computation in systems with
wider reasoning capabilities.

1 Grassmann Algebras

A Grassmann algebra 2[K,P] is a ring (associative and with unit element 1)
which is generated by (the union of) disjoint distinguished subsets K and P
such that

GA1 K is a field (under the ring operations);

GA2 P is an affine space over K (under the ring operations);
GA3 aA = Aa for every a € K, A € P;

GA4 BA = —AB for every A,BEP.

GAS5 for Pl,Pz,...,Pk n 7?,

PPy Py, =0= P1, Pa,..., Py dependent (over K).
The meaning of GAZ2 is that P is closed under affine combinations:
A BeP,abeKanda+b=1=aA+bBecP.

For the real case, all geometric interpretations of expressions and equations
between expressions follow from the single fundamental semantic rule:

if A and B are points and a and b positive real numbers with a +6 =1
then aA + 6B may be interpreted as the point P which divides the line
segment from A to B in the ratio b to a.

Elements of K are called numbers, elements of P, points, and elements of the
set ¥V = P — P, vectors. These sets are disjoint, except that 0 is both a number
and a vector. Throughout this papaer we use the letters A, ..., P for points,
and U, ..., Z for vectors.

The implication GADS5 is in fact an equivalence:

PPy P, =0 <= Py, Ps,..., P are dependent.

For if Py, Ps, ..., P, are dependent then one of the P; is expressible as a linear
combination of the others and hence, clearly, the product Py Ps--- Py is zero.
This condition is often easier to handle than the standard definition of (linear)
dependence. The equivalence continues to hold, as one may show, even if some
or all of the P; are replaced by vectors.

Theorem 1 (The Instantiation Theorem). For points Pi,..., Py in a Grass-
mann algebra,

PPy P, =0 < either PLPy-- - P,_1=0
or Py 1s spanned by Py, P, ..., Px_1.

and this remains valid if any or all of the points are replaced by vectors.



Proof. Suppose that Py Py--- P, = 0. According to GADB there exist scalars
p1, P2, .- -, Pk, not all zero, such that

piPr+paPo+ - pr P =0.

If pi 1s non-zero then the second of the stated alternatives holds. Otherwise one of

Py, Py, ..., P;_11s alinear combination of the rest and hence Py Ps---Pr_1 = 0.
The converse implication i1s obvious. a
v
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Fig.1. V=B — A and AM + MB = AB.

Note that AB =0 <= B=A and AV =0 <= V = 0. Also, if we define
midpoint(4, B) = %(A + B) then

AM = MB <= M = midpoint(4, B),

giving a precise interpretation to traditional notation.
For k = 3 the Instantiation Theorem is:

ABP =0 <= either AB=0o0or P = aA+ bB for some a,b.
Hence for non-coincident points A and B we define
collinear(A, B,C) <— ABC =0.
Similarly, for non-collinear points A, B and C
coplanar(A, B,C, D) «<— ABCD =0.

Theorem 2 ( The Boundary Theorem). Let P be a point and Vi, Va, ... Vi vec-
tors in a Grassmann algebra. Then

PVi- V=0 < V1.V =0

Proof. Use the Instantiation Theorem, together with the fact that a point P
cannot be a linear combination of vectors. a

Theorem 3 ( The Exchange Theorem). If
Ar- APy =0forj=1ton+1,

then either Ay ---Ap, =0 0or Py---Pyp1 = 0.



Proof. Suppose that A, ---A,P; = 0for j =1ton+1 and that A;--- A, is
not 0. According to the Instantiation Theorem, each P; is expressible as a linear

combination of 4;,..., A,. Now when the product P; --- P41 is expanded each
term in the resultant sum is a product of n+ 1 elements of the set {A;,..., A,}
and hence vanishes. a

The Exchange Theorem clearly remains valid if some or all of the A; and P;
are replaced by vectors. It is the Grassmann geometry analogue of the “no zero
divisors” property for fields.

2 Existence and Uniqueness

Let £2 be a Grassmann algebra. Either there exists a finite maximal set of inde-
pendent points Og, O, ..., O, in {2 or not.

If there does then we say that 2 is finite-dimensional and that (Og, O, . . .,
0,,) is an affine coordinate system for £2 and that (O, X1, ..., X,,), where

O:OOaXl:OI_OOa"'aXn:On_OOa

is the corresponding Cartesian coordinate system. And then, also, both (Og, Oy,
.., Op) and (O, X1, ..., X,) are bases for the linear space {2y spanned by P,
and (X1,...,X,) is a basis for V.

Theorem 4 (The Dimension Theorem). For a finite-dimensional Grassmann
algebra, all coordinate systems §2 have the same number of elements.

The number of elements in a coordinate system of a finite-dimensional Grass-
mann algebra, less one, is called its dimension.

The next theorem pins down the structure of a finite-dimensional Grassmann
algebra {2. For each natural number &, let {24 be the linear subspace of {2 that is
spanned by PFt1: let £2_; = K. Elements of £2; are called chains of dimension
k (or of degree k+ 1), or, briefly, k-chains. In particular, —1-chains are numbers,
and O-chains are points, multiples of points or vectors.

Theorem 5 (The Structure Theorem). Let §2 be an n-dimensional Grassmann
algebra. As a linear space §2 is the direct sum of the subspaces 2_1,82q, ... ,{2,;

moreover, for each k, £, has dimension (ij) and (hence) £2 has dimension
ontl,

Using the 27t! basis elements 1, Og, Oy, ..., On, 0001, ..., 00y, 0104,
oy 0104, ..., 0,210y, ..., 0g01 - - - Oy, corresponding to an affine coordinate
system O, . .., Oy, one obtains a multiplication table for the n-dimensional alge-
bra 2. Since an algebra is determined by its dimension together with the multi-
plication table for a basis, the uniqueness (up to isomorphism) of the Grassmann
algebra of dimension n is established.

If O, Xy, ..., X, is the cartesian coordinate system associated with (Og,01,
.,0p) (meaning that O = O, X1 = 0, -0, ..., X;, = Oy — O) then it is easy



to see that 1, O, Xl, ey Xn, OXl, SN ,OXn, X1X2, ey Xan, ey Xn_an,
.., OXy--- X, 1s also a basis for §2, with the property that its elements of
dimension k form a basis for §2;.
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Fig. 2. A coordinate system.

To take an important example, in the 3-dimensional Grassmann algebra {2
every element ¢ of is uniquely expressible in the form

p=¢_1+d0+ o1+ o2+ ¢3

where each ¢; is a chain of dimension i. Moreover if (O, X,Y, 7) is a cartesian
coordinate system for {2, these components are themselves uniquely expressible,
respectively, as

¢_1 =k,
oo =004+ zX +yY 4+ 27,
$1=a0X +b0Y +cOZ +uXY +vY 7 +wiX
¢o = eOXY + fOYZ +qgOZX +tXY Z
¢35 = dOXY Z,

the coefficients k, 0, , ..., d being numbers.

Theorem 6 ( The Ezistence Theorem). For each natural number n there exists
a Grassmann algebra of dimension n over K.

Proofs of the above theorems are given in [11].

3 Multipoints and Multivectors

A product AB of two distinct points is called a bipoint, a product ABC' of
three non-collinear points is called a {ripoint and, in general, a non-zero product



Ay -+ Ag of points is called a multipoint (of degree k) — it is the exterior product
of the points.

The following easily proved equivalence shows how a bipoint is to be inter-
preted.

CD = kAB <= collinear(A, B,C),collinear(A, B, D), D — C = k(B — A).

In particular the bipoint from C' to D equals the bipoint from A to B if and
only if all four points are collinear and the vector from C' to D equals the vector
from A to B. Accordingly a bipoint is sometimes called a line vector.

One easily sees that kAB = AP for some point P. Hence the set of all bipoints
is closed under multiplication by non-zero scalars. We say that two bipoints are
projectively equivalent if one is a non-zero scalar multiple of the other. This is
an equivalence relation. Writing

[AB] = {kAB : k non-zero},

we see that there is a one-to-one correspondence between the set of such equiv-
alence classes of bipoints (modulo multiplication by non-zero scalars) and the
set of all lines. Accordingly we may unambiguously view a line as an algebraic
object [AB] rather than as a set of points. In a similar fashion, a plane may
be viewed as an equivalence class of tripoints [ABC]. This is the Grassmann
algebra approach to projective geometry.

A non-zero product of k vectors is called a multivector of degree k; in partic-
ular, a multivector of degree 2 is called a biwector and one of degree 3 is called a
trivector. Thus, if U, V and W are independent vectors then VW is a bivector
and UVW is a trivector.

For independent points A, B, (', D the 1-chain AB+ C'D cannot be a bipoint
or a bivector, since squares of bipoints and bivectors are obviously 0.

Two multivectors are said to be parallel if they are dependent; this just means
that each is a non-zero multiple of the other. By the Structure Theorem, parallel
multivectors must have the same degree. Parallelism is an equivalence relation
on the set of all multivectors.

For vectors V and W we define

parallel(V, W) <— VW =0.

Theorem 7. Bivectors VW and V'W' are parallel if and only if span(V, W) =
span(V', W').

This extends in the obvious way to multivectors of arbitrary degree. Thus
there 1s a one-to-one correspondence between the projective equivalence classes
of multivectors and the linear subspaces of V; these are the points, lines, planes
and hyperplanes at infinity.



4 Linear Maps

Let £2 and A be Grassmann algebras (over the same field K) with point spaces
P and @ and vector spaces V and W respectively.

A ring homomorphism T : 2 — A is called a linear map (or Grassmann
algebra homomorphism), if it leaves numbers fixed and maps points to points. A
linear map T preserves lines and ratios of distances along lines, because for any

a,bin K and A, B in P
T(aA +bB) = aT(A) + bT(B).
Also T preserves vectors, because, for any A, B in P,
T(B — A) =T(B) - T(A),

and T acts linearly on vectors.
One easily shows that

parallelogram(A, B, C, D) = parallelogram(T(A), T(B), T(C), T(D));
that
M = centroid(A, B,C') = T(M) = centroid(T(A4), T(B), T(C));

and that T preserves parallelism of multivectors.
To specify a linear map on a finite-dimensional Grassmann algebra one need
only give its action on points, as the following theorem shows.

Theorem 8. Let T : P — Q be a function such that
T(aA+bB) =aT(A)+bT(B)

forall A/B in P and a,b in K with a+b = 1. Then T extends uniquely to a
linear map T : 2 — A.

Proof. Let (Op, 01, ...,0y) be an affine coordinate system for £2. Every element
of {2 is uniquely expressible as a linear combination of products of the form
0;0; -+ O with 1 < j < --- < k; extend T to £2 by first defining T(1) =1 and

T(0;0; ---Ox) = T(0:)T(0;) - - - T(Ok)

for these basic products and then extending linearly to arbitrary elements. Ob-
viously the extended T preserves points and leaves numbers fixed, and it is
straightforward to check that it is a ring homomorphism. And uniqueness fol-
lows from the fact that any other such extension must agree with T on the basic
products and hence on arbitrary elements. a



The translation T : P — P defined by a vector U is given by
T(P) =P+ U for every P € P.
T preserves affine combinations of points, since for a + b =1 and A, B in P

T(aA +bB) = aA +bB+ U
= a(A+U)+b(B+U)
= aT(A) + bT(B).

Hence T extends to a linear map T : {2 — 2. Note that T leaves all vectors
(and hence all multivectors) fixed:

T(B—A)=T(B)—T(A) = (B+U)— (A+U)=B— A.

A linear map is determined by its action on a single point A, together with
its action on vectors.

If ABC and PQ@R are tripoints in a two-dimensional Grassmann algebra
2 then PQR = kABC for some number k. Hence, applying the linear map
T : £2 — {2 to this equation

T(PQR) = kT(ABC),
and we write
T(PQR) _ PQR
T(ABC) ~ ABC’

or, equivalently,

T(PQR) _ T(ABC)

PQR ~_  ABC

This ratio is a number (since T(ABC) = T(A)T(B)T(C)) is a multiple of ABC)
that depends only on T; it is the determinant of T:

T(ABC)
ABC

From this one may give basis-free proofs of the properties of determinants. In
particular, if T : 2 — 2 and S : 2 — {2 be linear maps then det(TS) =
det(T)det(S). The definition and properties of the determinant function det
extend easily to higher dimensions.

There is a standard construction, not needed for our purposes, by which
any finite-dimensional linear space may be embedded in a Grassmann algebra
as the space spanned by its points. From this it follows, for example, that one
consequence of the Dimenston Theorem is that all bases of a finite-dimensional
linear space have the same number of elements. This may be proved without
using the Grassmann multiplication, but the extra structure makes the proof
simpler.

The new kinds of quantities discussed above are not only of geometric in-
terest. In physics, the invariance properties of angular momentum, for example,

det(T) =



are different from those of momentum (see [14], pp. 52-5) and it is incorrect to
represent both as being vectors, though that is what is usually done — angular
momentum 1s, more correctly, a bivector. Similarly, a force which is constrained
to act along a line is properly represented as what we have called a bipoint or
line vector. Hestenes [16] advocates a Clifford algebra approach to physics in
which such matters are treated correctly.

5 Closed Curves

A polygon has area, a polyhedron has volume. Area and volume have simple
properties by which they may be characterized. Of these the most important,
perhaps, is additivity — if a polygon is made by glueing together two other
polygons then its area is the sum of their areas. In this section, we consider
these matters. But first we must pin down what the entities are that have area
or volume.

We define an (oriented) edge to be an ordered pair of distinct points (A, B);
A is called its initial vertexand B its final vertez. An (oriented) closed curve (or
closed polygonal arc) is a finite (non-empty) set of edges with the property that
each of its points occurs once as the initial vertex of an edge and once as the
final vertex of an edge. A closed curve is called minimal if no proper subset of
it 1s a closed curve.

A closed curve may be viewed as a permutation of a finite set of points which
leaves no point fixed. (All permutations would be obtained if we allowed degener-
ate edges (P, P).) Minimal curves are the cyclic permutations, and corresponding
to the fact that every permutation is a composite of unique cyclic permutations,
every closed curve is the union of a unique family of minimal closed curves called
its components.

We usually denote a minimal closed curve

{(AlaAQ)a (AZaAE})a ceey (Ak‘—laAk)a (AkaAl)}
by (A1, Aa, ..., Ag). We call (Ag, Ag_1, ..., A1) the opposite of (A1, Aa, ..., Ap)

and extend this notion to general closed curves in the obvious way.

A curve is called a segment if it has 2 vertices and an (oriented) triangle if
it has 3 vertices. While there are two oriented triangles associated with a set of
3 points {A, B,C}, namely (A, B, C) and its opposite (C, B, A), a segment and
its opposite are identical.

To motivate what follows, readers will find 1t instructive to compute the
value of the quantity AB + BC' 4+ C'D + DA for a square (A, B,C, D), where
B=A4+XC=B+Y,D=CC-X — it turns out to be 2XY. An equally
simple calculation shows that the value of the quantity AB + BC' 4+ C'A for a
triangle (A, B,C), where A=0,B=0+aX,C =0+ cX +dY is adXY; note
that in a rectangular coordinate system, a is the base length of the triangle, and
d is its height.

With a minimal closed curve (A1, Aa, ..., Ax) we may associate the quantity

m{Ay, Ao,  Agy = AtAs + AsAs + -+ A1 Ap + ArAs,



called its (generalized, oriented) area. We extend m to general closed curves
additively.

Observe that the area of the opposite of a curve is the negative of its area
and that m{A, B) = 0.

One easily shows that for any point P

m(A1, Az, ..., Ap) = (AL — P)(Ay — P) + - -
H(Ap-1 = P)(Ax = P) + (Ax — P)(A1 = P).

Hence the quantity m(A;y, Aa, ..., Ax) is vectorial, meaning that it is expressible
in terms of just vectors. For example,

m(A, B,C,D) = AB+ BC 4+ CD + DA = (A - C)(B — D),

and so the area of the quadrilateral (A, B, C, D) is zero if and only if parallel(A —
C,B - D).

Fig. 3. The area property Al.

Although m is dimension-free it shares the key properties of one-dimensional
oriented area. In particular, a trivial algebraic identity implies that m is additive
and translation-invariant in the following sense.

Theorem 9.

Al m<A0,A1,...,An> =
m<A0,...,Aj,Bk,...,Bl>—|— m<A0,Bl,...,Bk,Aj,...,An>;
A2 m<A0—|—V,A1—|—V,,An—|—V>: m<A0,A1,...,An>.

We also have the characteristic properties of area of triangles:
Theorem 10.

Tl m{A+a(C - B),B,C)= m{A, B,C);
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Fig. 4. The area property T1.
T2 m{A, B,B+¢(C — B)) = em(A4, B,CY;
T3 m{A, B,C) =0 <= collinear(4, B, C);
The area identity

m(A, B,C) + m{(C’, B', A"
+m(A, A’ B',B) + m(B,B",C",C)+ m(C,C’, A", A) = 0;

is what lies behind the following theorem. Note that if any one of the hypotheses
1s swapped with the conclusion, then another valid theorem 1s obtained.

! Fin Al

Fig. 5. The Parallel Pappus Theorem.

Geometry Theorem 1 (The Parallel Pappus Theorem).

hyp, collinear(A, B,C)

hyp, collinear(A’, B',C")
hyps parallel(B — C',C — B')
hyp, parallel(C — A", A — ")
conc parallel(A — B/, B — A")



6 Plane Area

We define an (oriented) polygon (or polygonal curve) to be a minimal curve
whose vertices are coplanar. It is called an (oriented) quadrilateral if it has 4
vertices, a pentagon if it has 5, and so on.

Standard oriented area, as usually defined, has the properties T1, T2 and
T3, and hence, according to the following, must be an oriented area in our
invariant sense, unique up to a scalar multiple.

Theorem 11. Let m and m’' be area functions for triangles in a plane. Then
there erists a nonzero number k such that m’ = km.

Proof. Let (A, B,C) be a fixed non-degenerate triangle in the plane and let

m'(A, B,C)
m(A, B,C)’

Let (A, B', C") be any non-degenerate triangle in the plane. There exist numbers
b and ¢ such that

=A+b(B—-A)+c¢(C—A)=B +¢(C—-A4),

where By = A+ b(B — A). Hence, using properties T1 and T2 of m and m’, we
have

m(A, B, C)  m'(A, B, C) m'(A,Bi,C)

m' (A, B,CY  m/{A B, C) m'(A,B,C)

=b

_ m(A4,B",C) m(A, B,C)
 m{A,B,C) m(A, B, C)
_ m(4,B,C)

- m(4A,B,C)°

Using the analagous equations involving A” and C” instead of B’, we have

m/(A', B/ C"Y  m/{A', B',C") m/{A', B',C) m'(A', B,C)
m(A,B,C)  m/(A,B,C) m(A,B,C) m(A B,C)
m(A’, B',C") m(A’, B',C) m(A", B, C)
m(A", B',C) m(A’, B,C) m(A,B,C)
<A/ B/ />
m(A, B, C)

and so
m'(A", B, C"y = km(A", B',C");

moreover, property T3 ensures that this holds also for degenerate triangles

(A, B, C"). 0



Let (O, 01,03) be an affine coordinate system for our plane and (O, X,Y)
the associated cartesian coordinate system. Note that

m<0, 01, 02> =00;+ 0,05+ 0,0 = XY.

Consider a polygon (A1, Aa, ..., Ag) in the plane. Observing that (4;—O)(A;41—
0), being a product of vectors spanned by X and Y is a multiple of XY, we see
that

m{Ay, Ao, .. Ag) = A1 Ao 4+ -+ Apo1 Ak + A4y
:(Al_O)(A2_0)+...
+(As — O)(Ax — 0) + (A4 — O)(A; — O)
= 2XY,
=2am{0,01,05)

for some number a, the basis-dependent scalar oriented area of the polygon. We
call the absolute value of a the scalar area of the polygon and we call its sign
the orientation of the polygon relative to the basis (X, V). If m(c) = 0 then we
say that ¢ has orientation 0. Here we must assume that the underlying field is
equipped with an absolute value function (like the real numbers or the complex
numbers). Scalar area and orientation are separately translation invariant.

Typically of Grassmann geometry, the following theorem generalizes in an
obvious way from paired triangles to paired closed curves.

Geometry Theorem 2.

hyp, parallel(4 — B, A’ — B)
hyp, parallel(B — C’, B' — ()
hyp; parallel(C — A", C" — A)
conc m(A', B, C"Y = m(A, B,C)

The invariant treatment of area we are advocating renders some affine geometry
theorems transparently provable by algebraic arguments that are easily auto-
mated.

The proof of the following in [8] (p. 55) uses two auxiliary points and two
lemmas. Note too that our formulation contains more information than a tra-
ditional one, since it asserts that two orientations are the same, as well as two
scalar areas.

Geometry Theorem 3.

hyp, collinear(A, D, P)

hyp, collinear(B,C, P)

hyp; M = midpoint(A4, C)

hyp, N = midpoint(B, D)

conc m(A,B,C,D)=4m(M,N, P)
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Fig. 6. Geometry Theorem 3.

Proof. We have:

4(PM + MN + NP)
=2P(A+C)+ (A+C)(B+ D)+ 2(B+D)P
=2(AD+ DP 4 PA) = 2(BC + CP + PB) + (AB + BC + CD + DA)
= AB + BC + CD + DA.

Suppose that the vertices of a polygon (A1,..., Ap) are given by
A,=0+ l‘(tz)X + y(ti)Y,

where z and y are functions from the field K to itself. Then it is straightforward
to show that the scalar oriented area of the polygon relative to (X, V) is

5 D)0 4 = 902" (1)) tegs — ),

where #'(t;)) = #(ti41) — «(t;)/(tiy1 — t;) (and >~ is a cyclic sum over ¢ = 1 to
n). In the limit this becomes the line integral formula for area.
Consider a triangle (A, B, C') in a plane having scalar oriented area a relative
to (X,Y). From
AB 4+ BC + CA = 2aXY,

we see, using the fact that AXY = OXY (because A lies in the plane of
(0,X,Y)), that
ABC = 2a0XY,

and hence (unambiguously)

ABC
A B = .
mA B.C) = ooy

Thus we have an alternative representation of area for triangles in a plane as a
ratio of tripoints, and

m(A', B, C")y  A'B'C

m(A,B,C)  ABC’




Grassmann geometry gives new meaning to traditional Euclidean geometry no-
tations. For example, the following propositions have obvious interpretions in
terms of absolute area and orientation.

Geometry Theorem 4.

hyp parallelogram(A, B, C, D)
conc ACD = ABC

Geometry Theorem 5.

hyp parallel(B—A,C - D)
conc ABC = ABD

Since

T(A)T(B)T(C)
ABC

m(T(A), T(B), T(C))
m(A, B, C)

det(T) =

the determinant of a linear transformation T of the plane is the (constant) ratio
by which T transforms areas.

7 The Boundary Operator

Let (O, X1,...,X,) be a cartesian coordinate system for a Grassmann algebra
2. Every element ¢ of {2 may be written uniquely in the form
o=+ y O+ X1+ ..+x, X+ ...+ 1n0X1 + ...+ 4, 0X,,
et 21X Xo + L+ 2, XKn X+t rns1 n X1 Xy
.o+ y120X1X2 + ...+ 1‘123X1X2X3 =+ ...

The boundary operator is the linear function J : {2 — §2 given by
0p=y+nXi+ ..+ ynXn +y2X1Xo + .+ Y123 X1 X0 X5 + .

0 simply strips O from those basis elements OX;... X containing it and annihi-
lates those that don’t. Obviously % = 0.
FA=0+Ya; X; and B = O+ Xb; X; then
3(143) = 8(Eb]OX] - Y0, 0X; + Eaiijin)
= Eijj — EaiXi
=B — A.

One easily shows that d(ABC) = (B — A)(C' — A) = BC' — AC + AB and
J(ABCD) = (B—-A)(C—A)(D—-A)=BCD—-ACD+ ABD — ABC and, by
induction,

9(A1A2... Ag) = (A2 — A1)...(Ar — A1)
= AsAsz.. A — A1 As. A + ...



Since every element of a Grassmann algebra is a linear combination of products
of points, we see that, despite the definition, 0 is independent of the coordinate
system.

Fig. 7. Typical boundary calculations.

Typical boundary calculations (see Fig. 7) give:

d(AB + BC +CD + DE) =
O(AB + BC + CD + DE + EA) =0,
O(ABC + ACD + ADE) = AB + BC + CD + DE + EA.
) =

Observe that for any point A, 9(A
and, in general, d(Xa; A;) = Ya;.

Recall that elements Y'a; A; of the vector space {2y spanned by all points are
called chains of dimension 0 or, briefly, 0-chains; thus every 0-chain is either
a point or a vector or a multiple of a point. Elements Ya;; A;A; of the vector
space {27 spanned by all bipoints are called I-chains; these include bipoints and
bivectors. In general, elements Ya;, ;, A;,...A;, of the vector space £2; spanned
by all k-dimensional multipoints are called k-chains; for consistency, numbers
are called —1-chains, and we write £2_; = K.

Some of our earlier proofs become simpler if we use the boundary operator.
For example, the fact that

1, while for any vector V, 9(V) = 0;

CD=AB=D-C=B-A

is obtained immediately by just applying 0 to both sides of the hypothesis equa-
tion.

A k-chain ¢ is called a (global) k-boundary if it belongs to the range ran(9)
(that is to say, has the form 9(¢) for some k + 1-chain ¢) and a k-cycle if it
belongs to the kernel ker(9) (that is to say, satisfies 9(¢) = 0). From the fact
that 8% = 0 it follows that every k-boundary is a cycle. It is easy to see that



the converse also holds. For example, if the 1-chain ¢ = Yy, OX; + Yz; ; X X;
is a cycle, then 0 = 9(¢) = Zy; X;, and so every y; = 0 and ¢ has the form
¢ = Yu; ; X X; = 082 ;0X;X;, and this argument evidently works for k-
chains in general. Thus the k-cycles (or k-boundaries) are precisely the pure
vectorial k-chains.

In particular, areas of closed curves are 1-cycles, and for any P

m<A0,A1,...,An>Ia(AoAlp—FAlAzP—F...An_lAnP—i—AnAoP),

a formula that offers additional insight into our generalized notion of area.
Note that 0 does not preserve products and so is not a ring homomorphism;
however there 1s a simple interaction with multiplication:

Theorem 12. For multipoints ¢ and ¢
dey) = (90)0 + (=1) "D gy,

This is a special case of Theorem 16 below.

8 Grassmann Polynomials

The following is a typical affine geometry theorem.

A

B C D

Fig. 8. The Menelaus theorem.

Geometry Theorem 6 (The Menelaus Theorem).

hyp, D=aB+dC
hyp, E=bC+ VA
hyp; F=cA+ B
hyp, a'b'¢’ = —abe
conc collinear(D, E, F)

The hypotheses are constraints on some points. We may think of drawing a
diagram. Choose a point D on the line through B and C'. Choose E on the line



through C' and A. Choose F' on the line through A and B in such a way that
the fourth condition is satisfied. The conclusion is another constraint that the
three points must satisfy. The universe in which all this is interpreted is just
a plane containing the points. What about the proof? Given our definition of
collinearity, it is a simple algebraic calculation:

DEF = abeBCA+ d'b//CAB = (abe + a'b'/YABC = 0

Associated with the Menelaus theorem we have an algebra of Grassmann
expressions, satisfying the usual rules for numbers and points. Generalising,
we define the Grassmann polynomial algebra over the field K, K[n,m], to be
the (unique up to isomorphism) associative algebra over K freely generated
by the n point indeterminates P;, Ps,..., P, and m number indeterminates
X1,T9,...,Tm, subject to the relations

1. PZ'P]'I—P]'PZ' s 1§i,j§n,
2. iy = x5, 1 <, <m, and
3.Pixj:iji,1§i§n,1§j§m.

Elements of K[n,m] are called (Grassmann) polynomials. Sometimes we use
A,B,C,... and a,b,c,... to signify point and number variables respectively.
In K[n,m], two polynomials are equal if and only if their equality represents an
identity involving up to n points and m numbers which holds in every Grassmann
algebra 22[K, P]; that is, elements of K[n, m] are equal if and only if they define
the same polynomial function on every Grassmann algebra over K.

K[n,0] is a copy of the Grassmann algebra 2[K,P] with basis {P;, Ps,
..., P,}, while K[0,m] is just the familiar commutative ring of polynomials in
Z1, Ta, ..., &, over K. For this latter ring, the Grobner basis algorithm of Buch-
berger provides a powerful algorithmic tool: see [2]. But much work has appeared
in the literature generalising this algorithm to other sorts of structure, including
to a broad class which includes Grassmann algebras: see Apel [1]. The Grass-
mann case is treated in isolation in [26], and we present below a streamlined
version of that treatment which uses results from [1] and which incorporates the
boundary map.

The Hilbert Basis theorem extends easily to K[n,m], since it is a finite-
dimensional extension of a standard polynomial ring. Hence every left ideal,
right ideal and two-sided ideal is finitely generated.

Throughout the remainder of this paper, f, g, h, k will stand for elements of
Kn,m], F,G for finite subsets of K[n,m], r,s,t, u for elements of T}, ,,, and
a,b,c,a, 3,y for numbers in K. Additionally, we will often use A, B,C, ... for
point indeterminates.

We define the standard order on the indeterminates of KX[n, m] as follows:

PP<P<..<P<rm<ey<...<tm.

A non-zero product of the indeterminates in which they appear in ascending
order 1s called a ferm. For example, x‘;’x4P3P7 1s a term, but x4P7 Ps is not. Also
1 is a term. We denote by T}, ,, the set of all terms in K[n, m]. Each polynomial



in K[n,m] is uniquely expressible (modulo re-ordering of the summand terms)
as a linear combination of terms T, ,,, obtained by expanding in the usual way.
We call this a canonical form of the element. The set of terms occurring in this
linear combination for a given p € K[n,m] is denoted by T(p). If |T'(p)| = 1,
then we denote the single element of T'(p) by T'(p)*.

For t € T, ;, let P(t) denote the set of point variables appearing in ¢. For a
set S of point variables, T'(S) denotes the unique ¢ € T, ¢ such that P(¢) = S.

9 Ideals and Geometry Theorems

Let £2 = 2(K,P) be a Grassmann algebra. As we have seen, affine geometry the-
orems may be expressed in terms of Grassmann algebra. The hypotheses of the
theorem correspond to certain Grassmann expressions in the points and numbers
mentioned in the theorem being zero, and so does the one (or possibly more) con-
clusion, and we can say the theorem is true for §2 if and only if all substitutions
of points from P for the point variables mentioned in the Grassmann geometry
theorem statement which satisfy the hypotheses also satisfy the conclusion. So,
if the hypotheses are expressed in the form f; = 0, f; = 0,..., fr = 0 and the
conclusion in the form g = 0 where all f;, g € K[n, m], then we say the f; are the
hypothesis polynomials and ¢ 1s the conclusion polynomial of the possible theorem

flzoafZIOa"'afk:Ojg:O'

The consequence space associated with F' C K[n, m] is defined to be C(F) =
{f:f€K[n,m] f(a) =0 for all a € 2™ x K™ that satisfy g(a) = 0 for all g €
F}. Thus C(F) is the set of polynomials which vanish whenever all polynomials
in ' do. Thus the possible theorem f; = 0,fs =0,...,fx =0 = ¢ = 0 is true
for 2 if and only if g € C{f1, f2, - -, [ })-

For F C K[n, m], we denote the ideal generated by F by (F), so that

(F)={> _pifigi :pi,qi € K[n,ml], f; € F}.

Similarly, we denote the left ideal generated by F' by (F)r, so that (F)p =
5o pifilpi € Kn,m], fi € F}. It is easy to see that C(F) is actually an ideal of
K[n,m] for all F C K[n,m].

In earlier examples we used the fact that for any F' C K[n, m], (F) C C(F).
Our method often boiled down to doing some equational reasoning. For example,
consider the simple theorem:

Geometry Theorem 7.

hyp parallelogram(A, B, C, D)
conc parallelogram(B, C, D, A).

Equivalently, we have the hypothesis B — A — (' 4+ D = 0 and conclusion C' —
B — D+ A =0, so the conclusion polynomial is just —1 times the hypothesis



A P B

Fig. 9. A property of quadrilaterals.

polynomial,so C—=B—D+ A € (B—A—C+ D) (in the appropriate Grassmann
polynomial algebra).
Another example

Geometry Theorem 8.

hyp, P = midpoint(A4, B)
hyp, @ = midpoint(B, (')
hyp; M = midpoint(C, D)
hyp, N = midpoint(D, A)
conc parallelogram(P,Q, M, N)

(see Fig. 9) may be re-written as

hyp, f1=0
hyp, f»=0
hyp; f3 =0
hyp, f4=0

conc g=20

where f =2P—A—-B, b =2Q0—-B-C, fs=2M-C-D, fa=2N—-D—-A
and g =@Q — P— M + N, It is easy to see that

lfz - lfl - %fs + %fz}

I=350275

and hence g € (f1, fo, fa, fa).

Geometry Theorem 4, expressing a familiar fact about parallelograms, follows
from the fact that

ABC — ACD = (—AC)(B — A—C + D)

so again the 1deal generated by the hypothesis polynomial contains the conclu-
sion polynomial. The same happens in the Menelaus theorem, the first example
we see in which number variables occur in an essential way. The reader should



be convinced that any algebraic proof which makes use of substitution and sim-
plification is really just showing that the conclusion polynomial is in the ideal
generated by the hypothesis polynomials.

We would like to know exactly when a theorem of Grassmann geometry is
true; that is, we would like a method of checking whether f € C(F). In the case
where there are no point variables, it is clear that if some power of f isin (F),
then f € C(F). Conversely, we have the famous

Theorem 13 ( The Hilbert Nullstellensatz). Suppose K is an algebraically closed
field. For any F C K[0,m], f € C(F) if and only if there exists some integer
p > 0 such that f* € (F).

The Nullstellensatz implies the following very useful

Corollary 14. Suppose K is an algebraically closed field. For any F C K[0, m]
and f € K[0,m], f € C(F) if and only if 1 € (FU{frms1 — 1}) in K[0,m+ 1].

This provides a necessary and sufficient condition for determining whether
a geometry theorem is true over the complex numbers if n = 0, and has been
exploited with great success: see [21] and [22] where this refutational approach
is discussed in detail, as well as [4] where the useful notion of genericity is given
a full and elegant treatment.

Unfortunately there is no known analog of the Nullstellensatz for Grassmann
polynomials, over any kinds of field. Moreover, the notion of genericity seems
unable to be captured in terms of ideals only. The sufficient condition f € (F)
is quite useful as we have seen, but is not necessary, even if m = 0. A simple
counterexample is

ABC =0=AB+BC+CA=0.

Clearly AB+ BC 4+ CA ¢ (ABC'). Nevertheless, the implication holds, since
J(ABC) = AB + BC + CA.

We may define the boundary map on K[n,m] in the obvious manner. Linear-
ity of @ implies that for all 7' C K[n, m], C(F) is closed under taking boundaries:
9(f) € C(F) for all f € C(F). We call an ideal of K[n,m] closed under taking
boundaries a J-ideal.

It makes sense to talk about the smallest 0-ideal containing a subset F' of
K[n,m] — the 9-ideal generated by F' — essentially because K[n,m] together
with the unary operation 9 is a multi-operator group: see [23]. Notation: (F')s.
Thus for ' C K[n,m], (F) C (F)s CC(F).

Ideals of the form C(F) have another important algebraic property. We say
that f € K[n,m] is point homogeneous of degree p > 0 (usually shortened to
just homogeneous) if T(f) C {t € T, | |P(t)| = p}; thus f is homogeneous
of degree p if every term in f contains a product of p point variables. The set
of homogeneous polynomials of degree p in K[n, m], p < n, will be denoted by
K[n,m]®). Clearly K[n,m] = Z;Il K[n,m]®) so that every ¢ € K[n,m] may
be uniquely expressed as the sum of its homogeneous components.



A homogeneous left ideal T of K[n, m] is a left ideal for which I = Z;Il(f N

K[n,m]®)). A homogeneous subset of K[n,m] is a subset all elements of which
are homogeneous.

We note that K[n, m] is a graded ring with respect to the grading determined
by the degree of homogeneity. The above definition of ‘homogeneous’ is consistent
with that used for graded rings generally.

The following results will be useful when we come to consider algorithms.
The next one was proved in [26].

Theorem 15. In K[n,m], a homogeneous left ideal is an ideal.
We can now easily prove the following useful product rule.
Theorem 16. For ¢ € K[n, m]®*) and ¥ € K[n, m](9,
D(éut) = (000 + (~1)7 90
Proof. Let ¢ =3, a8, ¢ = Zj B;t;, where for all ¢, j, a; and ; are numbers,

s; is a term of degree p and ¢; a term of degree ¢. Then
S = aisi y_ Bty = aifysity,
d J i3
80

a(¢v) = 0> _ aifysity)

i
_ Zalﬁ] sit;
_Zalﬁ] (si)tj + (=1)Ps:0(t;))

_Zaﬁsz Zﬁ]t +( ZasZZﬁ]

= (3¢)1/) + (=1 )p¢31/)~
|
Theorem 17. For every homogeneous subset F' of K[n,m], (F)s = (FUOIF).

Proof. Since FUJF C (F)s, we have (FUJF) C (F)s.

Conversely, let € (FUOF) = (FUJF)r by Theorem 15. Then by using
distributivity, it is possible to express 6 in the form 6 = > " p; fi+ > ¢;0g;, where
the f; and g; are not necessarily distinct elements of F', and the p; and ¢; are
homogeneous elements of K[n, m]. Then by Theorem 16,

960 = Zﬁ(mfi) + Za(ijﬁgj)
= (Op)fi + P10fi) + (945095 + 4;0°g5)

= (i) fi +D>_piofi) + Y 94;09;

€ (FUIF),



where p; = £p; and ¢; = £¢;. Hence (F'UF) is a J-ideal. It contains F, so
(F)s C (F UOF), and the proof is complete. O

Because no non-trivial linear combination of m-points can equal a sum of non-
trivial linear combinations of n-points for various n # m, we have the following

Theorem 18. For F' C K[n,m], C(F) is homogeneous.

There are many homogeneous ideals not of the form C(F') however. For in-
stance, (P) is a homogeneous ideal in K[1,0], yet 0P = 1 € (P). So not every
homogeneous ideal is a d-ideal. Similarly, for

f=P — P+ (P — P3)(PL— Py)(PL — Ps),

it is easily shown that (f)s = (f)r and hence not every d-ideal is homogeneous.
We shall later see an example of a homogeneous d-ideal not of the form C(F).

In the Grassmann algebraic formulation of a geometry theorem, it is homo-
geneous polynomials which feature, as they are the important polynomials in
geometry.

Corollary 19. If F is a set of homogeneous polynomials, then (F)s = (F'U
IF)L.

Proof. Tf F' is homogeneous, so is FFUJF so (F UJF) is a homogeneous left
ideal, as follows from a basic fact concerning graded rings. Thus (FUJF) is an
ideal by Theorem 15, and so (FUJF)r = (FUOJF) = (I')s by Theorem 17. O

10 Grobner Bases and Theorem Proving

We next introduce the relevant variant of Grobner bases and the Buchberger
algorithm. There are some basic notions we must define first, such as admis-
sible orders, reduction and so on; they are mostly straight-forward variants of
the usual commutative notions, so we will be fairly brief. In any case, many
generalisations of Buchberger’s algorithm and the Grobner basis idea to various
kinds of generalised polynomial have already been considered in the literature.
Indeed the current one may be viewed as being a special case of one considered
by [1]. However, some of the special features of the Grassmann case, such as
homogeneity and the boundary map, have not been considered elsewhere apart
from in [26].

Let < be a total ordering of T}, ,,. For p € K[n, m], we denote the highest
term in 7, ,, occurring in f with respect to < by Hterm< (f), or, if there is no
ambiguity, by Hterm(f). -

The ordering < is admissible if, for all s, ¢, u

1.1<¢t,
2. if s <tand P(u)N P(s) = P(u)N P(t) =0, then T'(us)* < T(ut)*.



So 1 is the smallest term, and pre-multiplying by a term preserves the ordering
providing neither term becomes zero. In fact, because of the commutativity and
anti-commutativity relations in the Grassmann polynomial algebra, any such
order also satisfies the condition that if s < ¢ and P(u) N\ P(s) = P(u)N P(t) =
#, then T'(su)* < T(tu)*, so post-multiplication is order preserving providing
neither term becomes zero.

We note that if P(u)\P(¢) = @, then ut and tu are multiples of T'(ut)* =
T(tu)* = Hterm(ut)* = Hterm(tu)*. Examples are variants of the commutative
case: for instance, we have the total degree orderon T}, ,,. Withn = 2and m =1,
this is as follows:

1< P <Py<x <P Py< Py < Poxy < 23
<P1P2l‘1<P1$1<P2l‘1<l‘?<"',

Here is the lexicographic order for the same n, m:
1< PL<PIPs<Py<z <Pie; < Pory <P Py <a?<Pia?<. ..

It should be clear how these generalise.
Let < be a fixed admissible order in what follows (the total degree order in
all computed examples). We use the following abbreviations throughout:

coef(f,t) is the coefficient of the term ¢ in f, where f € K[n, m].
Heoef(f) is coef(f, Hterm(f)).

For example, with the total degree order on the terms of K[4, 0],

CO@f(Pl + 2P3P1, P1P3) = —2,
Ht@?“m(Plpz + P2P3 + P4P3) = P3P4, and
HCO@f(P1P2 + P2P3 + P4P3) = CO@f(P1P2 + P2P3 + P4P3, P3P4) = —1.

Every admissible order on T}, ,, is a well order (the proof of which is very
similar to the commutative, n = 0 case), so the terms can be listed in order from
the smallest element 1 up as far as one wishes. If m = 0, the list is finite.

We say ¢ —r h (g left reduces to h modulo F) if there are b,u, and f € F
with P(u) N P(Hterm(f)) = § and such that

h=g—buf,
coef(g,T(u- Hterm(f))) # 0, and
b=coef(g,T(u-Hterm(f)))/Hcoef(uf) # 0.

In such circumstances we say that ¢ —; ;. and that ¢ —¢ ; h where t = T'(u -
Hterm(f)). —F is the reduction relation for F.

These are just the analogs of the commutative polynomial notions. To say
that ¢ —F h 1s to say that there is a polynomial f in F' whose largest term
can be used to replace a term in ¢ by a linear combination of smaller terms
to give a polynomial A. Thus reduction is just a formalisation of the process
of substitution and simplification which is the basis of our equational approach
to geometric reasoning. The reduction relation — is a Noetherian relation (so



that reductions cannot go on forever), a straightforward generalisation of the
corresponding result for standard polynomials appearing in [2].

For example, in K[3,0], let F = {f}, f = P1P3s — 2P, Ps, g = Py PsP5. Then
g —F P1P2P3— (—1)P2(P1P3—2P1P2) = 0. Thus 9 =g 0 where t = P1P2P3,
and g = _1.p, -

Let K be a computable field (meaning one which can be implemented on a
computer, such as the rationals). The following algorithm yields a normal form
N(g) of a given polynomial g, modulo F.
begin

N(g) =g

while exist f € F, b, u such that N(g) — f,b,u, do
choose f € F, u € T, mm, b € K such that N(g) =50

N(g):==N(g)—b-u-f

end

Correctness is clear. Termination follows from the Noetherian property of —p.
For w,v € T, n, with P(u) = P(v) = 0, let lem(u,v) denote the usual
least common multiple of v and v as polynomial terms. Then for arbitrary s =
fp,t=gq €T, ym, with f, g containing only number variables and p, ¢ only point
variables, lem(s,t) is defined to be lem(f, ¢)T(P(s) U P(t)). So lem(s,t) is the
term of lowest degree (both number and point degree) divisible by both s and ¢.
The S-polynomial, SP(f1, f2), corresponding to fi and f2 is defined to be

SP(f1, f2) = a1 - Heoef(uafa) - urfi —az - Heoef(uy f1) - uafa,
with a1, as, uq, us such that
P(uy) N P(Hterm(f1)) = P(us) N P(Hterm(f2)) =0
and

ayuy - Hterm(f1) = T(uy - Hterm(f1))*
= Hterm(uy f1)
= lem(Hterm(f1), Hterm(fa))
= asus - Hterm(fa)
= T(usHterm(f2))*
= Hterm(usfa).
The existence and uniqueness of SP(fy, f2) for given f1, fo € P are easily shown -
let wy = T((P(Hterm(f1)) U P(Hterm(f2))\P(Hterm(f1))), and likewise with
uy. The S-polynomial is just the difference between the results of reducing the
lem of the highest terms of two polynomials using each of them in turn.
To illustrate these definitions, letting f = P3P5x§ —2PsPyand g = PsPyxo+
3P, P5, we have that lem(f, g) = lem(PsPsx3, PsPyxs) = 23 P3P4Ps, and so
SP(f,g) = —P4(P3P5l‘§ - 2P2P4) - P5$2(P3P4l‘2 + 3P1P2)
= P3Py Psx3 + 0 — P3PyPsxi — 3P Py Py
= —3P1P2P5l‘2.



Fis a Grébner basis if every f € (F))r can be reduced to zero by a sequence
of reductions involving —p.

Theorem 20. The following statements are equivalent:

1. I is a Grobner basis.
2. If 1, fo € F, then for any P; € P(Hterm(f1), Pi - f =% 0 and SP(f1, f2)
—7 0.

The proof follows from a more general result of Apel [1].

Theorem 21. Given a finite subset F of K[n, m], the following algorithm con-
structs a Grébner basis G such that (F)p = (G)r.

begin
V := {point variables in P}
G:=F
H=F

B = {{fi, fo}lfi,f2 € F, L # f2}

comment: H plays two roles in what follows

while H # (§ do

comment: in the next procedure H is the subset of G which supplies
polynomials which, when multiplied by appropriate point variables, are to
be included in G if they are not of normal form zero modulo GG

begin
while H # (§ do
begin
f = an element of H
H = H\{f)

W .= P(Hterm(f))
comment: W 1s the set of all point variables that do not occur in
Hterm(f)
while W # 0 do
begin
P := an element of W
k=P f
k= N(G,k)
if k' # 0 then
H:= HU{K}
G:=GU{k}
B:=BU{{g,Kk}|g € G}
comment: if the normal form of P - f is not zero, then it is added to
both G and H, thereby enlarging the basis and providing more
polynomials for multiplication by appropriate terms as above
end
end
end



comment: H is now empty; in the next procedure, H will comprise the
additions to G arising in the course of enlarging G' by means of
S-polynomials
while B #£ (§ do
begin

{f1, f2} := an element of B

B = B\{{/1, f2}}

h:= N(G, Spoly(fi1, f2))

if h # 0 then
B:=BU{{g,h'}|g € G}
G:=GU{nr'}
H:=HU{h'}
end

end

Proof. Termination occurs since the only polynomials that are used to extend
G or H are in normal form modulo G.

The algorithm will not terminate unless G has the two properties as in (3) of
Theorem 20, so that GG is a Grobner basis. Furthermore, every polynomial used
to extend the original set F' in the initial run through the routine is either a left
multiple of an element of F' or a linear combination of such left multiples (a left
multiple of an S-polynomial). Hence it is in (F)r, so by induction G C (F)p,
and hence (G)r = (F)r, since F C G. a

Thus the left ideal membership problem has an algorithmic solution. In fact,
if Fis a set of homogeneous polynomials, (F) = (F)r by 15, and we have the
obvious

Corollary 22. Given a finite subset F of K[n, m] consisting of homogeneous
polynomials, the above algorithm constructs a Grébner basis G such that (F) =

().
From Corollary 19, we also have the following

Corollary 23. Given a finite subset F of K[n, m] consisting of homogeneous
Grassmann polynomials, the above algorithm constructs a Grobner basis G from

F'= FUJF such that (G) = (F)s.

Hence the d-ideal membership problem for homogeneous polynomials has
an algorithmic solution; note that the boundary map is only needed initially
in order to compute the boundaries of all elements of /. Thus any equational
consequence of a set of hypotheses in which the boundary map is freely used will
be reduced to zero by the Grobner basis of the hypothesis polynomials together
with their boundaries, and conversely.

In geometry, it is more natural to encode collinearity information (and the
higher-dimensional analogs) using a single product: thus collinear(A, B, C') be-
comes ABC = 0; similarly M = midpoint(A, C') can be rendered as AM = MC.



Then ABC'D = 0 says that the four points A, B, C, D are coplanar, from which
one can deduce via the boundary map that ABC' = ABD+ BCD+CAD), which
has an interpretation in terms of oriented areas.

Consider the problem of proving Proposition 3. Encoding the hypotheses as
ADP = BCP = 0, AM = MC and BN = ND, it is impossible to prove
the conclusion that AB 4+ BC' + CD+ DA = 4(MN + NP + PM) using only
substitutions and ideal-theoretic manipulations generally: the conclusion is not
in the ideal of the hypotheses, nor even is the stronger conclusion polynomial
ABC + ACD — 4M N P from which the original conclusion may be derived by
applying the boundary map. Instead one must first apply the boundary map to
the hypotheses, and then reduction of both conclusions to zero is possible.

A more striking example arises by considering the one-dimensional analog
of oriented area. Thus if AB = C'D, it follows that AC' + CD = AD, although
clearly AC' 4+ C'D — AD is not a multiple of AB — C'D. However, taking the
boundary of AB —C'D gives A— B— '+ D, and then one can easily check that
AC+CD — AD is in the ideal (AB—-CD,A— B—C+ D).

A final observation. For vectors U, V,W of a Grassmann algebra, it fol-
lows from the Exchange Theorem that if UV = 0 and UW = 0 then ei-
ther U = 0 or VW = 0. Hence in K[5,0], letting FF = {(P1 — P2)(P1 —
Pg), (P1 — Pz)(Pl — P4), (P1 — Pz)(Pl — P5) — (P1 — P3)(P1 — P4)}, we have
that (P — P3)(P1 — Py) € C(F). Note that dF = {0}, so by Theorem 17,
(F') = (F)s, a homogeneous J-ideal. Now one can apply the above algorithm to
show that (P — P3)(Py — P4) & (F) = (F)s. This shows that a theorem prover
based solely upon the computation of Grobner bases of 0-ideals is not complete.
We conjecture that there is an algorithm which incorporates use of the Exchange
Theorem to produce two or more new subcases of the hypotheses every time it is
used and which is complete; such an algorithm should also be able to deal with
genericity issues.

11 Conclusion

The origins of the ideas in this paper lie in the great works Die Lineale Aus-
dehnungslehre, of 1844, and Die Ausdehnungslehre, of 1862, of Hermann Grass-
mann, in which he founded a core discipline of modern mathematics: linear
algebra, including exterior algebra. Although the second of these books was
published as a new edition of the first, it really offered a very different approach
to the same material and both are included in full in the Collected Works [15].
An historical analysis of Grassmann’s work appears in [10]; also, in [12] it is
argued that Grassmann anticipated some aspects of modern universal algebra.
The approach to area advocated in the present paper has been used by one of
us in geometry courses for twenty years or so.

For an overview of automated geometry theorem proving and of algebraic
methods, [29] and [18] are recommended. The algorithmic method for proving
Euclidean geometry theorems, beautifully presented by Shang-Ching Chou in [4],
has its origin in the pioneering work of Wu Wen-tsiin; see also [3], [30] and [31].



A somewhat different approach is to use Buchberger’s Grobner base algorithm,;
see, for example, [20], [21], [22] and [24]. The algorithms presented in this paper
(and in [26]) extend Buchberger’s algorithm to take in exterior products.
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