### Australopithecus garhi

- Recently discovered 2.5 m.y.a. hominid as a site in Ethiopia
- Associated with crushed bones
- In the right place and dates from the right time to have given rise to later humans
- The skull of *A. garhi* looks very different from *A. africanus*, surprisingly primitive with a protruding apelike face.
- Looks like a scaled-up *afarensis* except its brain stayed small with a capacity of about 270cc









## A. garhi phylogenetic relationships



## The Taung Baby

- The first Australopithecine discovery
- Described by Raymond Dart as a hominid based on dental and cranial features
- Given the name: Australopithecus africanus
- Not accepted at first because of Piltdown









**Raymond Dart** 

### Australopithecus africanus

- Initially described by Robert Broom as a new genus, *Pleisanthropus*
- Remains of this comparatively lightly built or "gracile" species of australopithecine have been recovered from sites in South Africa (Sterkfontein, Makapansgat and Taung)
- Its presence in East Africa is subject of dispute



**Robert Broom** 





#### Australopithecus africanus dental features

- No sectorial canine function, canines only wear on the tip not on the back edge as in A. afarensis
- No gap (diastema) between canines and premolars
- Lacks a sectorial lower premolars. premolars are similar in shape and used for grinding
- Molars are bigger than in A. afarensis



•A. afarensis



# Cranial Features of Australopithecus africanus

- Brain case is small and rounded
- Considerable facial prognathism with a "dished out" facial profile





#### The Brain of Australopithecus africanus

- Average cranial capacity around 450 to 500 cc
- Foramen magnum is located under vault for bipedalism
- Studies of internal casts of the braincase indicate an expansion of areas associated with higher cognitive functions.
   Whether or not lateralization was present is unclear from available material





# Post-Cranial Features of Australopithecus africanus

- Pelvic and femoral anatomy indicates full bipedalism
- Some foot bones have been interpreted as indicating that the feet were adapted for climbing







### Australopithecus robustus

- Also know as Paranthropus robustus
- This is a heavily built species of *Australopithecus* the remains of which date later than those of the A. africanus.
- It appears to have evolved into a hyper-robust form known as *Australopithecus boisei* that persisted in Africa until as late as 1.3 million years ago.







# Sites containing robustus Australopithecine remains

- South Africa (Kromdraai, Swartkrans, Makapansgat)
- East Africa (Omo, Olduvai Gorge, East Lake Turkana)



#### A. robustus Cranial Features

- Face is less prognathic than in *A. africanus*
- Sagittal crest is frequently present in males
- Heavy cheek bones for attachment of the masseter muscle indicates heavy chewing
- Cranial capacity between 500 cc and 540 cc is somewhat larger than of *A. africanus*





#### A. robustus Dental Features

- Parabolic dental arch
- Continuation of trend toward increase in molar size
- Thick enamel on molars
- Evidence of tooth development indicates the rate of maturation was intermediate between that of modern humans and great apes



## Discovery of Australopithecus boisei

- Hyper-robust australopithecine discovered in 1959 by Mary Leakey at Olduvai Gorge, Tanzania,
- Described a a new genus:
   Zinjanthropus boisei
- K-Ar dates on an overlying basalt indicates a date of ca 1.8 mya.









#### A. boisei dental features

- Massive molars indicate an adaptations that involved heavy chewing
- Reduced canines and incisors suggest foods consumed required little incisor preparation before ingestion





#### A. boisei cranial features

 Flat face and jaws placed under the cranial base suggest a masticatory adaptation that emphasized heavy chewing







## Phylogenetic relationships of A. boisei

 Relatively late disappearance suggests that it was a specialized form that became marginalized and eventually was driven to extinction





### Australopithecus aethiopicus

- Most complete specimen is known as The "Black Skull"
- Heavily built, small brained australopithecine
- Found in an east African deposit that dates to around 2.5 million years ago
- This early date for a robust australopithecine has made paleontologists re-evaluate their theories of australopithecine evolution.





## A. aethiopicus phylogenetic relationships



#### Separate East and South African robust lineages?



## Trends in Australopithecine evolution

- Premolars lose their shearing function and take on the grinding function of the molars
- The relative size of the molars increases as grinding becomes more important
- There is a reduction in facial prognathism and a development of the cheek bones for heavy chewing muscles
- Increase in brain size and perhaps internal reorganization of the brain accommodates higher cognitive functions
- There is some evidence for an increase in the length of the developmental period over that found in apes

## **Early Hominid Environments**



## Olduvai paleoecology

 Geological evidence suggests that early hominids were living in a lakeside environment





#### Australopithecine tool use

 Chimpanzee analogy suggests behaviors such as termite "fishing" were well within the capacities of Australopithecus



#### The earliest stone tools

- The earliest recognizable stone tools are from the Omo and date from between 2.5 and 2.0 m.y.a.
- Oldowan is the term used to describe crude stone tools associated with australopithecines.





#### **Oldowan Tools**

- Often these consist of only slightly modified pebbles with an edge chipped off to serve as a cutting edge.
- Such tools are difficult to distinguish from naturally broken rocks







#### Who made Oldowan tools?

- Oldowan tools have been recovered from South African sites.
- These may have been made by *Homo* rather than *Australopithecus*
- Oldowan tools from the early Olduvai Bed I sites are less diverse than those from the lower Bed II.
- This appears to have been a period of comparatively rapid cultural evolution



Figure 30.29

A time line of some hominid species. Notice that there have been times in the history of human evolution when two or more hominids coexisted.

## Were early hominids killer apes?





#### The Osteodontokeratic Culture

- Osteodontokeratic refers to tools made of bones (osteo-), teeth (-donto-) and horns (-keratic)
- Raymond Dart suggested that australopithecines used such implements for hunting the animals found in the South African cave deposits



#### Evidence of the Osteodontokeratic Culture

- Dart believed the accumulations of bones in the south African caves were a result of hominid hunting activities
- Bones from
   Sterkfontein and other
   sites show damage that
   Dart interpreted as
   evidence of hominid
   activity.







## Were early hominids scavengers or hunters?





## Evidence of scavenging?

- Cut marks
- Signs of crushing











#### Cut marks on the bone bones of hominids

 Cutmarks on a jaw from Sterkfontein suggests processing of hominids by hominids



# An alternative interpretation of the South African cave deposits

- Dart argued that hominids were responsible for the accumulation of bones in the South African caves.
- More recent studies, however suggest that they were sinkholes that served as traps for animal remains



# Were australopithecines preyed upon by carnivores?





## Tooth mark evidence of leopard predation









## Evidence of Australopithecine Social Organization

- Some sites appear to be living floors with traces of some kind of shelter.
- This suggests that camps or home bases were maintained.
- It has been suggested that food was brought to these camps and shared.
- Prolonged infant dependency might have resulted in a sexual division of labor



#### The Seedeater Hypothesis







#### Pigs and roots, tubers and digging sticks









#### Australopithecine environments





# Dietary Differences: A. Africanus vs. A. robustus





# Dental caries: an indication of carbohydrates in the diet







#### Australopithecus the Hunter?







## San and Chimp analogies









## Olduvai Living Floor: DK1 A





## Reconstruction of living floor







## Base camps?



#### Selective Pressures for Bipedalism







### Heat load and bipedalism

