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Abstract— We present an attack containment framework
against value-changing attacks in large-scale critical infras-
tructures, based on early warning and cooperative response
approaches. We define an information structure, called attack
container, which captures the trust behavior of a group of
nodes and assists to contain the damage of the attack. The
attack container is then used for distributed early warning and
cooperative response in our framework. The simulation results
show that our containment framework can detect, mitigate and
contain large-scale attacks quickly.

I. INTRODUCTION

Nowadays, critical infrastructure (CI) such as Power Grid is
supported by large-scale computer information systems whose
losses could lead to the reduction or even disruption of the
critical infrastructure services. These computer information
systems, however, are vulnerable to cyber-attacks as they move
from isolated systems with propriety protocols to systems
with commercial off-the-shelf components [1]. Therefore, pro-
tecting CIs against cyber-attacks becomes a very important
problem [2].

In this paper, we consider large-scale critical infrastructures
that are monitored and controlled by multi-tier and hierarchi-
cal structure computing networked control systems1. We are
interested in this domain to investigate two issues: 1) the effect
of large-scale value-changing worm-like attacks in the control
systems for critical infrastructure and 2) fast containment of
these attacks. We will investigate these attacks in CI sensing
devices that sense the level of power distributed through power
lines, or the level of gas flowing through the pipelines. The
threat assumption will be that the sensing devices, leaves of
the CI network hierarchy, will get “infected” due to erroneous
vendor maintenance and upgrades of the devices 2.

The type of worm-like attacks we consider are slightly
different from Internet worm attacks. We consider in a sub-
tree group of sensors that a vendor erroneously upgrades

*This material is based upon work supported by the National Science Foun-
dation under Grant CNS-0524695. Any opinions, findings, and conclusions
or recommendations expressed in this material are those of the author(s) and
do not necessarily reflect the views of the National Science Foundation.

1This topology can be found in many critical infrastructure such as SCADA
networks and Power Grid[3][4][5].

2Intelligent Electronic Devices (i.e. sensing devices) in a power substation
have firmware and other software-based services. A bug in updated firmware
or an intended malicious bug in software services could cause the sensing
devices behave maliciously

one device, and then initiates an automated distribution
firmware/software upgrade protocol, acting similar to a worm,
to upgrade other devices in the subtree3. The vendor moves
on to another subtree of devices to upgrade them in the same
erroneous way4. We refer to this type of attacks as value-
changing attacks. Furthermore, this attack could cause serious
consequences. For example, in a station of the power grid,
maliciously reported voltage values from a digital relay could
cause a trip command to other power devices for protection,
which may stop the operation of the this station. Furthermore,
such local effect at one station could cause a cascading effect
to other stations due to the voltage stability issue. Therefore,
it is very important to detect spread of erroneous upgrades and
contain this type of value-changing worm-like attacks.

Since we consider worm-like attacks, it is important to
emphasize the work addressing Internet worms. The Code
Red [8] and Slammer worm [9] outbreak have demanded a
special attention from the research community on network
worms. Moore et al. [10] and Staniford et al. [11] have shown
that the worm containment must be automatic to have any
chance of success because worms spread too fast for humans
to respond. Much work on worm analysis and modeling
[11][12][13][14][15] has shown that fast scanning worms have
an exponential rate of infection after the slow-start phase.
Therefore, it is very important to detect the worms at their
early stage and to response quickly. Zou et al. proposed an
algorithm for early warning of worms based on Kalman filter
[16]. Moore et al. presented the concept of a centralized
“network telescope”, in analogy to light telescope, by using a
small fraction of IP space to observe security incidents on the
global Internet [17]. A distributed telescope was introduced in
[18] [19] where smaller telescopes observing different regions
of the network address space are combined into a single, large
network telescope. Researchers have also suggested to use
cooperative mechanisms where nodes exchange alerts among
themselves [20] [21] [22] [23] [24] [25]. Nojiri et al. proposed
the notion of “friends” where nodes could detect their infection
and warn their friends [20]. Senthilkumar et al. further looked
at the “friends” protocol in a hierarchical structure rather

3EnerVista, a product of General Electric, allows to program and update
the settings of all devices directly in a substation (i.e. subtree) via Ethernet
[6].

4This threat of the moving vendor has been discussed in [7].



than just in a flat structure [21]. These results essentially
showed that a cooperative response mechanism could give
faster containment at the cost of false alarms.

Previous work on worm detection and containment has
shown that distributed monitoring and detection is more accu-
rate with lower false alarms while cooperative mechanisms
could help in faster response time. None of the current
solutions, however, achieve low false alarms and fast response
to attacks. Hence, in this paper, we investigate the convergence
of distributed early warning with hierarchical cooperative
response mechanisms to achieve fast attack containment with
low false alarms. Through distributed early warning, each node
cooperatively exchanges their observations to carry out the
detection for early warning. Through hierarchical cooperative
response mechanisms, nodes organize themselves in a multi-
layer hierarchical structure where both vertical and horizontal
communication are exploited. The benefits of this multi-layer
hierarchical response are in the “summarization” of the attack
characteristics and suppression of false alarms while still
achieving a fast alert propagation and containment throughout
the system.

Our novel Attack Containment framework (ACF) is based on
the novel “attack container” (AC) information structure. The
AC structure is defined by a sensor group, and keeps track
of the trust behavior of nodes in the group. The ACF issues
distributed early warning and mitigates the attacks. The ACF
also includes distributed monitoring and detection which allow
the system to quickly detect abnormal and critical events.
Each parent node in the network plays a monitoring role,
uses a non-parametric Cumulative Sum (CUSUM) algorithm
for quick detection of abrupt sensor measurement changes
and classifies measurements according to two metrics: 1)
abnormality to represent a fraction of sensors with abnormal
behaviors and 2) severity to represent how severe the attack
is in its sub-tree. We show that the metric pair (abnormality,
severity), embedded inside the attack container information
structure (ACIS), helps in characterizing attacks and defining
two important regions: abnormal region where the system
collects evidence about attacks and enters early warning, and
critical region where the system is confident about the presence
of attacks and reacts quickly to contain them.

Our contributions in this paper are three-fold: 1) concept of
attack container that enables convergence of early warning and
cooperative response algorithm via efficient data structures,
and expressive metrics such as abnormality and severity, 2)
attack containment framework including attack container and
its important associated services and protocols which enable
the fast containment of value-changing worm-like attacks, and
3) integration of early warning and hierarchical cooperative
response mechanism in ACF and validation of the promising
ability against other cooperative mechanisms.

The rest of the paper is organized as follows. First, we
present our system models and assumptions in Section II.
Then we present the concept of attack container and the
attack containment framework in Section III. Section IV shows
the architecture and the implementation of ACF services and

protocols. In Section V, we show our simulation setup and
results. Finally, we conclude the paper in Section VI.

II. SYSTEM MODELS & ASSUMPTIONS

A. Network Model
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Fig. 1. Network Model

We model the underlying control system for the critical
infrastructure as a multi-tier and hierarchical network with
peers communicating at the same level, shown in Figure 1.
Nodes are connected with their parents, siblings and children5.
Leaf nodes in the tree are sensing nodes (called sensors).
Sensors are digital devices attached to physical measurement
devices that capture the measurement value in digital form
and send this value to the higher level intermediate digital
nodes for monitoring and control6. Nodes, that are monitoring
multiple sensors, are called AC monitors. The function of these
nodes is monitoring sensors, detecting anomalies of sensors
and reporting their values to AC aggregators. We assume
monitors have the ability to “immunize” the healthy sensors
by issuing a command that cause sensors to deny any future
upgrades. It implies that immunized sensors will be immune
to erroneous upgrades. The last type of nodes are called AC
aggregators. Aggregators receive reports from their children
and neighbors, “summarize” and alert their neighbors and
parents if necessary.

B. Trust Assumptions & Threats

Trust Assumptions: We assume all AC nodes (monitors,
aggregators) except sensors are trusted. Specifically, the op-
erating systems are trusted and the software running on these
nodes is tampering-resistant. This can be achieved with the
support of hardware such as eXcute Only Memory architecture
(XOM) [26] or Trusted Platform Module (TPM) [27]. These
techniques basically can prevent modifications on executed
software. However, they cannot prevent Denial of Service
attacks. We also assume that all nodes except sensors will trust
each other. Since intermediate nodes are already trusted, this
assumption can be achieved by using secure communication
mechanism (authentication, encryption).

5In this model, when we talk about “neighbors” of a node A, we mean
nodes that are in the same hierarchical level and connected with A.

6Here we consider sensors that are different from motes. Power-
consumption is not an issue.



However, we assume weak security assumptions on sensor
nodes (e.g. no trusted software). These nodes can be compro-
mised and be used for some specific purposes. They can be
infected via erroneous external updates and expose random
behaviors in reporting values.

Threats: Although the critical infrastructure networks are
usually isolated from open shared networks, they get con-
nected to external machines. (e.g. vendors do software updates
on sensing devices). These external updates introduce threats
to inject erroneous upgrades causing undesirable value changes
into the system.

Once a sensor is infected or compromised7, it is fairly easy
to infect neighbor nodes because they can directly talk to each
other due to a given automated upgrade distribution protocol.
This behavior can cause a dramatic spread of erroneous
upgrades, exhibiting worm-like behaviors in the network.

Attack/Failure Model: Once a sensor is infected or com-
promised through an erroneous, it will engage in abnormal
behaviors on readings. The first type of abnormal behavior will
be the value-changing attacks where the sensors maliciously
deliver modified readings. Specifically, these attacks will shift
the mean of reading values arbitrarily. We call the attack the
mean-changing attack. The consequence of reporting mali-
cious values may possibly lead to false alarms of the critical
infrastructure systems, inappropriate decisions of operators or
other catastrophic failures of the critical infrastructure systems.

The second type of abnormal behavior will be changed
reading patterns to cause DoS(Denial of Service) or WoS
(Withdrawal of Service) attacks where the readings can be
flooded or delayed arbitrarily. Although our framework enables
the detection of both types of attacks, we only consider the
first type in this paper due to allowed paper length.

Infection model:
Due to the automated upgrade distribution protocol in a

subtree, we assume that the infection model in the subtree
is a K-multicast model. In this model, we assume that once
the vendor/attacker logins to a subtree, he then keeps choosing
another K non-infected sensors to update until all sensors in
the subtree are upgraded. If K is equal to the number of
sensors in the subtree, it becomes the model being used in
[6].

Besides the infection caused by the automated upgrade dis-
tribution happening within each subtree, we have another in-
fection caused by the mobile vendor/attacker among subtrees.
We assume the vendor logs in into each subtree, triggers the
automated upgrade distribution protocol, logs out and moves
to another subtree. We denote the time for the vendor/attacker
to finish his job in a subtree before moving to another subtree
as Tvendor.

C. Sensor Data Model

Data reported by sensors is the physical data such as
temperature, voltage or water level. Since we are interested

7“Infected” sensors refer to those that were erroneously upgraded.

in both normal and abnormal behaviors of sensors, we model
the data of a sensor i as the random process {Xi

t}
Xi

t = µi
0 + N iI(t < ki) + (hi + M i)I(t ≥ ki)

where N i = {N i
t}∞t=0,M

i = {M i
t}∞t=0 are sensor measure-

ment noise factors with E[N i] = E[M i] = 0, I(·) is the
indication function, ki is the time the sensor has abnormal be-
havior and hi is the mean deviation of the sensor measurement.
We further assume that 0 < hi < hi

max, where hi
max is the

upper bound of the mean increased under abnormal condition.
Under this model, the sensor has normal behavior when

t < ki and E[Xi] = µi
0. It becomes abnormal when t > ki

and E[Xi] = µi
0 + hi = µi

1 where µi
0, µ

i
1 are usually referred

to as the mean of Xi before and after the change happens.

III. ATTACK CONTAINMENT FRAMEWORK (ACF)

The goals of our protection system are monitoring, de-
tecting, isolating infected sensors and immunizing healthy
sensors as soon as possible, under communication and false
alarm rate constraints.

As mentioned in Section II-B, we only consider value-
changing attacks. In the subsequent sections, first we show our
approach to achieve the goals. Second, we give the concept
of the attack container. Finally, we show the details of our
attack containment framework (ACF) including protocols and
algorithms for monitoring, detection and containment.

A. Framework Overview

To deal with the value-changing infection attack in a large-
scale system, we use a distributed monitoring and detection
approach for early warning and a hierarchical cooperative
response strategy for attack containment.

Distributed Monitoring and Detection for Early Warning:
Each AC monitor maintains an attack container for its sub-tree,
which is updated and aggregated on receiving either sensor
readings or attack containers from the children. It performs
a non-parametric CUSUM to detect value-changing attacks.
Each monitor further classifies, in its sub-tree, attack according
to the abnormality metric representing the fraction of sensors
having abnormal behaviors and the severity metric represent-
ing how severe the attack is. These two metrics, embedded
inside the ACIS and exchanged among the nodes, present the
metric plane (see Figure 2) and help in characterizing the
attacks and in cooperative response for containment purposes.

Hierarchical Cooperative Response Strategy for contain-
ment: Once AC monitor nodes detect a potential attack in their
subtree, characterized by the pair of (abnormality, severity) as
shown in Figure 2, they will start to react. In the early phase
(i.e. abnormal region of the metric plane), AC monitors and
aggregators alert their peers and parent faster depending on the
evidence of the attack. In the later phase (i.e. critical region
of the metric plane), they react strongly and contain the attack
by immunizing healthy sensors.

The hierarchical cooperative response strategy has two im-
portant advantages: 1) A high-level node (i.e. AC aggregators)
will have a broader knowledge about its sub-tree since it has



an aggregated view from its children and an aggregated view
of its neighbors. False alarms due to the detection algorithm
can be fused and suppressed to have only a small effect. 2) The
attack can be contained faster due to the early alert propagation
at each hierarchy level.

Before going into the detail of the strategy, we present the
attack container that will be the core of our framework.

B. Attack Container

Attack Container is an information structure (ACIS), defined
per sensor group, that keeps track of the trust behavior of
sensor nodes in the group8. ACIS data includes meta-data that
is built from readings of sensors or others’ ACIS data. For
example, AC will store abnormality and severity values for
each sensor data reading as well as summary of (abnormality,
severity) pairs over longer period of time. Furthermore, AC
will store timestamps of vendor upgrades, names of vendors,
and other attack-relevant data. Note that in this paper we
concentrate on two information in the AC, the abnormality
and severity metrics. AC monitor builds its ACIS from sensors’
readings. The aggregators can build the ACIS by summarizing
the ACIS data of its children and neighbors. The details of
ACIS construction, ACF operations and the ACF framework
will be discussed in subsequent sections.

C. Severity

The severity metric indicates how severe the attack is in
terms of erroneous sensor readings. Severity metric must be
aggregatable, i.e. it is possible to compute a severity of a node
from other severities. To be precise, we define the severity of
a sensor and intermediate nodes as follows.

1) Severity of a sensor: A severity S(i) of a sensor i is
measured by the ratio of the deviation of its mean values under
attack from the mean values in normal condition over the upper
bound of that deviation. Formally, S(i) = hi/hmax

i , where
hi, h

max
i are the deviation and upper bound of the shifted

amount of mean, respectively (see section II-C). S(i) takes
only values in the interval [0..1].

2) Severity of an intermediate node: A severity of an
intermediate node k is an average of severity of its children.
Formally,

S(k) =
|children(k)|∑

j=1

S(j)/|children(k)| (1)

S(k) ∈ [0..1]. It is now becoming obvious that severity
could be aggregatable by the above definition.

D. Abnormality

Abnormality A(i) of a sensor i is 1 if its corresponding AC
monitor declares the sensor is abnormal (see Section III-E and
IV-A) and is 0 otherwise.

8The term AC and ACIS are used interchangeably since they have the same
meaning

Abnormality A(k) of an intermediate node k is the fraction
of abnormal children in the subtree over the total number of
its children. Formally,

A(k) =
|children(k)|∑

j=1

A(j)/|children(k)| (2)

It is fairly easy to see that the abnormality metric is in the
range [0..1] and is aggregatable.

E. Role of Severity and Abnormality

In ACF, the two metrics: severity and abnormality play a
very important role in classifying the degree of an attack.
While abnormality captures the scale of the attacks, severity
captures the impact of the attacks. Putting them together will
help in characterizing the degree of the attack and thus help
the system to react accordingly.

Figure 2 illustrates the role of severity and abnormality in
characterizing attacks in a case where we assume hmax

i = 1
for all sensors i9. The abnormal behavior detected within a
small number of sensors with slight deviation of measured
values is considered as “normal” since it just might be the
result of noises, normal failures or false alarms. As the number
is getting larger in terms of severity and abnormality, the
behavior is considered as “abnormal”. For example, the situa-
tion where a large number of nodes has behaviors with small
severity is abnormal since it might be the beginning phase of
a large-scale attacks. Similarly, a single but severe failure can
be considered as abnormal because the consequence could be
catastrophic to the critical infrastructure. As the two metrics
exceed a certain threshold, the attacks are declared as critical.
The system must respond quickly to mitigate and contain the
attacks.

As one might notice, fully characterizing the exact curves
of the “abnormal” and “critical” thresholds is very challenging
since it depends on the semantics and nature of the system.
Therefore, we present a simple approximation of these two
thresholds by treating them separately. For each metric, we
define two thresholds: “abnormal” (Ã1, S̃1) and “critical”
(Ã2, S̃2). The regions defined by these points are the approx-
imations of nodes behavior.
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Fig. 2. Role of severity and abnormality in characterizing the degree of
attacks

9This assumption is for the simplification of the illustration of the attack
degree function. In general, the function can be much more complicated.



IV. ACF ARCHITECTURE AND IMPLEMENTATION
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Fig. 3. Architecture

Figure 3 shows the architecture of our framework. Our
framework resides within the control plane. At the bottom
layer is the distributed monitoring and detection service pro-
viding monitoring and detection capabilities. It is also the first
step to create ACIS for later use of other services.

Summarization Service is performed by monitors and ag-
gregators where ACIS data from the children and neighbors
is summarized to provide the summary of behaviors at each
node.

Finally, ACIS are used by the Cooperative Response Strat-
egy to provide early warnings and containment. Cooperative
Response Service interacts with Distributed Monitoring and
Detection Service in case of early warnings such as requesting
for faster reports.

It is important to emphasize that attack container data is
stored and maintained at each node, i.e. it is distributed.

A. Value-Changing Detection and Cumulative Sum Monitor-
ing Box (CMB)

Monitoring and detection service in ACF creates the attack
container. This operation, carried out at the AC monitors, will
monitor the sensors and detect the anomalies. In this case, the
input is the data stream from sensors and the output is abnor-
mality and severity meta-data values, shared in AC. However,
this operation could also be used at other higher level nodes
such as aggregators to monitor their children or neighbors and
detect abrupt changes on severity and abnormality data series.

The design of this service is base on the concept of
Cumulative Sum Monitoring Box (CMB). A CMB is used to
monitor the changes of a data stream. It processes the sensor
data stream and generates alerts based on two thresholds:
abnormal threshold and critical threshold (i.e. (A1, A2) for
abnormality and (S1, S2) for severity as mentioned in Section
III-E). The CMB could return “normal” if no change in the
data stream is detected, “abnormal” if the change exceeds
abnormal threshold and “critical” if the change exceeds critical
threshold. The illustration of CMB is shown in Figure 4. For
notation convenience, we denote CMB(DS) as the current
state of the data stream DS. CMB uses non-parametric Cumu-
lative SUM change-detection algorithm as its value-changing
detection algorithm. We now give a brief description of the
non-parametric CUSUM. The details of the non-parametric
algorithm can be found in [28] and [29].

Critical

Abnormal

Normal

{X}

Time

Value

CUSUM Monitoring Box

Fig. 4. CUSUM Monitoring Box

1) Non-parametric CUSUM: CUSUM algorithm was first
introduced by Page [30] and has been known to be good
at detecting abrupt changes [28]. Recently, it has been also
applied to detect Denial-of-Service attacks [29][31] due to
its simplicity and light-weight while still achieving a good
performance in terms of false alarm rate and average detection
delay.

Essentially, the Cumulative Sum Change-Point keeps the
positive part of the log-likelihood ratio and triggers an alarm
if the cumulation exceeds the threshold. The threshold is set
according to the required false alarm rate. The non-parametric
version extends the parametric method by estimating the
changes based on historical observation.

Formally, consider a sensor i with the data model defined
as in Section II-C. Let us define “accumulator” Y i

t = (Y i
t−1 +

ξi
t)

+, Y0 = 0 where X+ = max(0,X) and ξi
t = Xi

t − µi
0 −

δE[µi
1|X0,X1...Xt−1] where δ is the sensitive factor.

The rule for CUSUM to declare the change that happens at
time ki is

ki = min{t : Y i
t ≥ T}, t = 0 → ∞

where T is the threshold and is normally set to log 1
FAR and

FAR is the desirable false alarm rate.
The estimation of µi

1 based on historical observation could
be an average or a simple linear estimator. However, as
shown in [29], the adaptive exponentially weighted estimator
is preferred due to the ability to “forget” observations that are
far in the past. This estimator predicts based on sequential
inputs as follows.

Let θ̂ be the current prediction of the mean µi
1. If ξi

t = 0,
we just set θ̂n = µi

0 because there is no change occurring. If
ξi
t > 0,

θ̂t =
1

βt−1 + 1
(βt−1θ̂t−1 + Xi

t) (3)

where the weight is βn = 1 + βn−1 and is reset to zero when
ξi
t = 0. This weight is similar to the weight of the exponential

moving average10. The only difference is that it depends on
historical observations.

B. Summarization Operation

Because each non-sensor node receives attack container
from its children and its neighbors to update its own ACIS, the
ACIS metadata values have to be aggregatable. Due to the way
we define the attack container including severity (Equation

10The moving average has the form θ̂t = αXt +(1−α)θ̂t−1. α is similar
to 1

βt−1+1
as in (3)



1) and abnormality (Equation 2) values, the summarization
operation becomes feasible 11.

C. Early Warning and Hierarchical Cooperative Response
Protocol
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Fig. 5. State diagram of the protocol

We have just defined monitoring and detection operation
used to create ACIS and summarization operation used to
update ACIS at monitors and aggregators. This section will
describe how ACIS are exchanged to form early warning and
hierarchical cooperative response.

To enable the hierarchical cooperative response, each non-
sensor node i keeps two ACIS: one for its children and the
other one for its peers. We denote them as ACchildren(i) and
ACpeers(i), respectively.

ACIS Update: Each AC monitor or AC aggregator i,
when receiving an ACIS (or a sensor measurement) from
a child or a neighbor, will use the CMB Box to detect
anomalies. If anomalies are detected, the node calculates
how much deviation is from the expected mean. Finally, it
updates the abnormality and severity value of ACchildren(i)
and ACneighbors(i).

AC Node state diagram: As mentioned above, an attack
container AC contains abnormality A(i) and severity S(i) that
are used to detect the abnormal/critical behaviors by using
CUSUM box.

Figure 5 shows the state diagram of a AC node. At the
system bootstrap stage and in the normal condition, the node
stays at “N” state. If either ACchildren → “A” or ACpeers →
“A” (i.e. (A(i), S(i)) moves into abnormal region), the node
state transits to “A” state. This is the early warning state
of the node. When a node i is in “A” state, it will update
the attack container for its peers and parents at the rate
R = Rmax max(A(i), S(i)) where Rmax is the pre-defined
maximum rate that a node allows to send. The intuition for
this rate update is that as the abnormality and severity values
in a sub-tree get larger, the update rate will be faster to react
to the signal of large-scale attacks. R cannot exceed Rmax

because abnormality A(t) and severity S(t) are always less
than 1. Also, if A(t) = 0 or S(t) = 0, R will be a pre-defined
rate Rdefault.

11For numerical values, ACIS will be aggregatable. For textual informa-
tion or other non-numerical information, values will be summerizable, not
aggregatable

If node stays at “A” state and ACchildren → ”N“
&&ACpeers → “N” for an interval time Tnormal, node will
switch back to state “N”. This behavior will help to reduce
the update rate for communication efficiency.

When either ACchildren → “C” or ACpeers → “C”, the
state transits to “C” state. This is the state where the node
starts to react strongly. It will issue the “CONTAINMENT”
messages to all of its children. This message will be relayed at
each level and eventually reach the healthy sensors who will
become immune to the value-changing worm-like attack.

If the AC monitor stays at “C” state and ACchildren →
“A” &&ACpeers →“A” for an interval time Tresume, it will
switch back to state “A”, issue the “RESUME” command
to sensors and updates its parent and peers. This behavior
happens when the false alarms happen and monitors try to get
sensors resumed to the normal operation.

V. SIMULATION STUDY

We modify the simulator used in [16] to evaluate our frame-
work. We discretize time into slots with length tslot(seconds).
For each time slot tslot, we simulate the effect of automated
upgrade distribution protocols, the vendor movement and ACF
framework on sensors.

Goals: The goals of the simulation study are 1) to show
that our attack containment framework really helps in terms of
speed and false alarms and 2) to show the effect of “abnormal
region” and “critical region”. Specifically, what the effects of
abnormal thresholds (A1, A2) and critical thresholds (S1, S2)
are.

Simulation Setup: We evaluate our scheme in a hierarchical
network with five levels. Level 0 is sensor level. Level 1 is
the monitoring level. The rest are aggregation levels. Nodes at
each level have the same number of children and number of
peers. Links at each level will also be assigned different delay.
The parameters are shown in Table I. We also would like to
note that since we are only interested in the speed and false
alarms, we will not simulate the transition from “abnormal”
to “normal” and “critical” to “abnormal” discussed in section
IV-C.

As one might see that finding of optimal threshold setting
is a very challenging problem in both simulation and analysis.
Therefore, we simplify this problem by representing thresholds
as 4 pairs (T i

1, T
i
2) for each level i, i = 1..4. At each level i,

T i
1 is used for abnormal threshold (i.e. A1 = S1 = T i

1) and
T i

2 is used for critical threshold (i.e. A2 = S2 = T i
2).

Metrics: We use two metrics for the evaluation. The first
metric is the number of infected sensors and the number of
immunized sensors. The second metric is false alarm rate.

Simulation of attacks without any containment: Figure 6
shows the simulation of attacks without any containments with
various pairs of (K,Tvendor) where K is the parameter for K-
multicast infection model described in II-B and Tvendor is the
speed of the vendor. Figure 6 clearly shows that the attack we
described in section II-B can be really fast. The containment
system must be automatic to deal with this attack.



Parameter Value Description
tslot 1/20 (s) length of a time slot

#Nodes [5000, 100, 10, 5, 1] Number of nodes at each level.
#Children [0, 50, 10, 2, 1] Number of children of each node at each level.

Children Link Delay [0, 0.5, 0.5, 0.5, 0.5] delays of link from parent to children at each level
Peers link weights [0, 0.5, 0.5, 0.5, 0.5, 0.5] delays of peer-to-peer link at each level

Rdefault 1 msg/sec Default update rate
Rmax 10 msgs/sec Maximum update rate

Tvendor 5 seconds Speed of the vendor II-B

TABLE I

SIMULATION PARAMETERS
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Fig. 6. Infection without containment

Effect of Containment: Figure 7(a) shows the typical
behavior of our system for threshold setting in {(0.3, 0.5),
(0.2, 0.3), (0.15, 0.3), (0.1, 0.3)}. The attack is detected at the
early phase and is contained quickly due to the cooperative
mechanism. Figure 7(b) further shows that AttackContainer
outperforms the mechanism proposed by Nojiri et al. [20] with
different thresholds. AttackContainer could immunize more
sensors than that of Nojiri’s. The reason for faster speed is
because hierarchical cooperative response allows faster alert
propagation at high-level of the hierarchy.

Effect of Abnormal and Critical Thresholds: In this
section, we want to see the effect of abnormal and critical
thresholds because they define the “abnormal region” and
“critical region” which directly affect the behaviors of the
response mechanism.

We choose the threshold setting {(T 1
1 ,0.7), (0.2, 0.2), (0.15,

0.1), (0.1, 0.1) } and vary the abnormal threshold T 1
1 from 0.1

to 0.7. Figure 8(a) shows the effect of abnormal thresholds.
When the threshold is low, the abnormal region is large and
therefore the system can collect the evidence of attacks faster,
of course, at the cost of message overhead. This explains why
the system could immunize more sensors than the cases of
high abnormal threshold.

The effect of critical thresholds is similar to that of abnormal
threshold, shown in Figure 8(b). We vary T 1

2 in the tuple {(0.3,
T 1

2 ),(0.2, 0.8),(0.1, 0.7),(0.1, 0.6)} from 0.3 to 0.9. Figure 8(b)
also shows that critical threshold has a stronger effect than
abnormal threshold since it directly affects when the sensors
are blocked.

In summary, abnormal and critical thresholds are absolutely
important to the behavior of the containment framework. More
importantly, Figure 8 shows that our approach of distributed
early warning (i.e. abnormal region) truly has effect on the
attack containment.

False Alarms: We evaluate the false alarms as follows. We
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Fig. 9. False Alarm

assume that the monitors, the ones that directly detect the
abnormal behaviors of sensors, could generate false alarm with
probability pfa. We use the same thresholds as in experiment
of the effect of containment shown in Figure 7. Figure 9 shows
that even when the monitors have false alarm rate pfa = 0.2,
our scheme could still tolerate them. Furthermore, it also
shows that compared to Nojiri’s scheme, our ACF framework
has a significant faster speed while keeping the false alarms
at a reasonable rate. We believe an adaptive adjustment of
thresholds at each level, such as the one proposed on [25],
will further yield better false alarms. However, we leave this
problem for the future work.

VI. CONCLUSION

We have presented attack containment framework for large-
scale value-changing attacks in critical infrastructures. The
concept of attack container provides the uniform view for
each node about the behavior of its group as well as other
peer’s groups. Hence, attack containment framework enables
the convergence of distributed early warning and hierarchical
cooperative response mechanism.

We also give an integrated protocol for early warning and
cooperative containment mechanism in our ACF framework.
The simulation results clearly show that our scheme can alert
and contain large-scale attacks under various scenarios.
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