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Abstract: Environment Canada’s One-Dimensional Hydrodynamic Model is built upon Gunaratnam’s six-point, implicit
finite difference scheme which was developed at the Massachusetts Institute of Technology in 1970. Many of the details of the
implementation of the numerical scheme, and its appropriate use, are available only in the original unpublished references.
Therefore, it is appropriate to examine the numerical behavior of the implemented scheme in order to determine optimal
relative time and space step increments and also to identify any potential limitations in the applicability of the model. This
paper examines these issues through a Fourier analysis of the stability and accuracy characteristics of this numerical scheme.
The validity of the results of this linear stability analysis are verified through nonlinear wave propagation tests. It is concluded
that the current guidelines regarding the recommended relationship between the time and space step increments and the
number of nodes used to describe a wave profile should be changed. Adequate results can be obtained at reasonable spatial
discretizations by limiting the Courant number to 0.5 or less.
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Résumé: Le modèle hydrodynamique unidimensionnel d’Environnement Canada est bâti sur l’arrangement implicite par
éléments finis à six-points de Gunaratnam qui a été développé au Massachussetts Institute of Technology en 1970. Plusieurs
des détails de mise en oeuvre de cet arrangement numérique et de son utilisation appropriée sont seulement disponibles dans
les références originales non publiées. Ainsi, il est approprié d’examiner le comportement numérique du modèle mis en
oeuvre afin de déterminer les pats d’augmentations relatives optimales de temps et d’espace, et aussi d’identifier toutes
limitations potentielles dans l’applicabilité du modèle. Cet article examine ces problèmes à travers une analyse de Fourier de
la stabilité et précision de cet arrangement numérique. La validité des résultats de cette analyse de stabilité linéaire est vérifiée
à travers des essais de propagation non-linéaire d’ondes. Il est conclu que les directives courantes relatives à la relation
recommandée entre les pats d’augmentation de temps et d’espace et le nombre de noeuds utilisés pour décrire un profil d’onde
doivent être changées. Des résultats adéquats peuvent être obtenus avec une discrétisation spatiale raisonnable en limitant le
nombre Courant à 0,5 ou moins.

Mots clés: St-Venant, analyse de Fourier, ONE-D, Environnement Canada.
[Traduit par la Rédaction]

Introduction

The One-Dimensional Hydrodynamic Model (ONE-D) is an
unsteady flow model which was developed by Environment
Canada for the analysis of wave propagation problems in open
channels. The model is extensively used by Environment
Canada specialists in the analysis of a variety of complex open
channel flow problems in rivers and tidal estuaries, and has
been adapted to handle simple ice covers, sediment transport,
and channel networks. It is currently being incorporated into
Environment Canada’s river ice model, RIVICE (Martinson
et al. 1993).

The ONE-D model employs a numerical scheme which was
developed at the Massachusetts Institute of Technology (MIT)
more than 25 years ago (Gunaratnam and Perkins 1970). Many
of the details of the ONE-D implementation, and of the known
behavior of the underlying numerical scheme, are available
only in the original MIT reports (Gunaratnam and Perkins
1970; Daily and Harleman 1972; Wood et al. 1972), which are
not easily obtained. Given the extensive use of the ONE-D
model in Canada today, it is of value to examine the numerical
behavior of the implemented scheme to determine optimal dis-
cretizations and to identify potential limitations in the applica-
bility of the model.

This paper provides a review of the available information
regarding the numerical scheme implemented in the ONE-D
model, as well as details of the symmetric formulation used.
Then, a Fourier analysis is used to assess the stability and
accuracy of the implemented numerical scheme. The validity
of these results, and the conservation characteristics of the
implemented scheme, are then examined through nonlinear
wave propagation tests. The results of these analyses are used
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to establish new guidelines for optimum time and space step
relationships.

Equations modelled

The ONE-D model is a one-dimensional, unsteady, open chan-
nel flow model based on a formulation of the St. Venant equa-
tions which uses discharge,Q, and water surface elevation,z,
as the dependent variables (Environment Canada 1988):
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wherex is the longitudinal coordinate;t is the temporal coor-
dinate;B is the total top width of a cross section;z is the water
surface elevation;Q is discharge;qL is the lateral inflow;V is
the cross-sectionally averaged longitudinal velocity;g is accel-
eration due to gravity;A is the cross-sectional area perpendicu-
lar to flow; Fr is the Froude number; andSf is the friction slope;
and
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which represents non-prismatic channel effects.
Although the equations do not explicitly appear in the pro-

gram documentation, the ONE-D model is actually based on
the following symmetric formulation of these equations
(Environment Canada 1988; Dailey and Harleman 1972;
Gunaratnam and Perkins 1970; and the program source code,
1987-10-15):
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where

[6] λ+ = V + c

[7] λ− = V − c

and

[8] c = √g
A
B

Equations [4] and [5] can be derived from [1] and [2] through
linear transformation or simply by multiplying [1] succes-
sively by λ+ andλ–, and then subtracting the resulting equa-
tions from [2]. The results are quite different in appearance
from the classical symmetric equations used in the method of
characteristics, but the equivalence can be seen if we consider
the simplified case of a horizontal, frictionless, rectangular

channel of constant width, with no lateral inflow. In this
case, [4] and [5] reduce to
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in which h is the flow depth in the rectangular section. Rear-
ranging and substituting forλ+ andλ–, we obtain
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Focusing on [11] as an example and employing the following
equalities:
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Dividing through byBc2/g, and using the following equalities:
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equation [15] reduces to
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Similarly, [12] reduces to
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Equations [17] and [18] combine to give the familiar equa-
tions:

[19]
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= 0

Potential limitations of this symmetric formulation
In comparing the symmetric formulation in [4] and [5] to the
nonsymmetric formulation presented by [1] and [2], Gunarat-
nam and Perkins (1970) considered the symmetric formulation
to be “much more accurate for numerical solution by implicit
finite difference schemes because the coefficients of the result-
ing sets of equations are of the same order of magnitude, hence
roundoff error has less effect on the overall solution.” Al-
though there may be some merit in this argument, this reason-
ing neglects consideration of the conservation properties of the
formulation. Hicks and Steffler (1995) have found that, for
finite element schemes at least, symmetric formulations of the
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St. Venant equations display inferior mass and momentum
conservation characteristics, when compared to nonsymmetric
formulations.

Numerical solution method

In Environment Canada’s ONE-D model, the unsteady
flow equations presented in [4] and [5] are solved using
Gunaratnam’s six-point, implicit finite difference scheme
(Environment Canada 1988; Gunaratnam and Perkins
1970). The equations are first linearized to
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whereBo is a constant top width, and
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in which (V 6 c), (V 7 c), andψ are all assumed constant.
Gunaratnam and Perkins (1970) solved these linearized

equations using a finite element weighted residual method,
employing the Galerkin technique and setting the test func-
tions equal to the basis functions. A fully implicit formulation
was used. They also employed a uniform spatial discretization
in order to implement this finite element scheme as a finite
difference method (Dailey and Harleman 1972). In fact,
Gunaratnam’s six-point implicit finite difference scheme is a
fully implicit, finite difference implementation of the Galerkin
weighted residual finite element method known as the
Bubnov–Galerkin finite element scheme. This finite differ-
ence implementation results in two equations for each (inte-
rior) computational node, specifically (Gunaratnam and
Perkins 1970):
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wherenandj are the temporal and spatial indices, respectively,
and∆x and∆t are the space and time step increments, respec-
tively.

Potential limitations of this numerical scheme
In open channel flow applications, semi-implicit formulations
of the Bubnov–Galerkin finite element scheme has been
shown to be useful for modeling relatively flat waves but have
been found to perform poorly in the vicinity of steep gradients
in the solution, such as are experienced in transitions between

supercritical and subcritical flows (Katapodes 1984). Instabili-
ties (spurious oscillations) result and the solution deteriorates
rapidly. One way to avoid such oscillations is to refine the
discretization (use more nodes to describe the wave profile).
An alternate approach is to employ the fully implicit formula-
tion, as Gunaratnam and Perkins (1970) did, as it can be shown
that a fully implicit formulation always causes numerical at-
tenuation, guaranteeing stability. However, as will be illus-
trated with the Fourier analysis, this use of a fully implicit
formulation introduces nonselective artificial diffusion into the
solution, damping physical wave components as well as nu-
merically generated instabilities.

Gunaratnam’s finite difference implementation of this
scheme operates on the linearized form of the equations, which
is equivalent to conducting the first iteration in a nonlinear
iterative solution. Linearization can mean significant compu-
tational time savings, as each iteration requires the solution of
the computational matrix. However, when variables are chang-
ing quickly, as is the case for transcritical flows (transitions
between subcritical and supercritical flows) and shock propa-
gation problems, the linearized solution may be inaccurate.

Implementation of this finite element scheme as a finite
difference method places two key constraints on the model.
First, a constant spatial discretization must be used. Second,
separate solution algorithms are required based upon the type
of flow regime anticipated (subcritical or supercritical). There-
fore this scheme cannot model transitions between the two.
This need for separate solution algorithms is associated with
the different boundary conditions required for each flow re-
gime. For example, in the case of subcritical flow, one bound-
ary condition must be specified at each end of the domain and
a double-sweep solution algorithm is employed. In the case of
supercritical flow, two boundary conditions are specified at the
upstream end of the domain and therefore the system of equa-
tions is solved sweeping from upstream to downstream. Only
the subcritical algorithm has been implemented in the ONE-D
model (Environment Canada 1988).

Fourier stability analysis of phase and
amplitude accuracy

Description of the analysis method
A linear stability analysis allows us to examine the ampli-

fication and phase characteristics of a particular numerical
scheme. The amplification characteristics are determined by
examining the “algorithmic damping” of the numerical
scheme, which is the ratio of the computed peak magnitude to
the actual peak magnitude. This quantifies wave peak attenu-
ation which occurs as a result of errors in the numerical calcu-
lations, rather than as a result of some physical influence (such
as friction). In an analogous manner, phase accuracy refers to
the ability of the numerical scheme to propagate these waves
at the correct speed. This behavior is described by the “relative
celerity,” which is the ratio of the computed wave speed to the
actual wave speed.

The analysis used here may be described as a Fourier (or
von Neumann type) linear stability analysis. Roache (1982)
provides a description of the theory and methodology. Details
of the implementation are provided by Hicks (1996), and by
Hicks and Steffler (1995). Because this is a linear analysis, it
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does not predict instabilities associated with nonlinearities in
the problem. Nevertheless, such an analysis is a valuable aid
in the determination of the appropriate discretization of a prob-
lem for a particular numerical scheme and equation formula-
tion. The applicability of the results to the nonlinear case is
examined through wave propagation tests afterwards.

When the algorithmic damping is less than 1, the wave peak
attenuates. When it is greater than 1, numerical amplification
occurs. The latter case is an unstable situation which may lead
to large oscillations and possibly even a breakdown in the
solution. To quantify the algorithmic damping, we must con-
sider frictionless flow; otherwise we would not be able to distin-
guish between physical attenuation and numerical dissipation
effects. This is done by considering the equations in [19] which
describe shallow water gravity waves (dynamic waves in hori-
zontal, frictionless channels). These waves have two charac-
teristic velocities:V + c (for progressive waves) andV – c (for
regressive waves). When the relative celerity is less than 1, the
numerical scheme is propagating these waves too slowly; and
when it is greater than 1, the waves are propagated too quickly.
Nonlinear waves are comprised of multiple wave components,
each with their own frequency. Therefore, the relative celeri-
ties obtained from the linear stability analysis for different
spatial resolutions give an indication of the behavior for wave
components of the same resolution. When wave components
are propagated at different speeds in the nonlinear case, the
wave will spread out and the peak will be lowered. This is
called wave diffusion.

An important parameter in examining the ability of numeri-
cal schemes to propagate waves accurately, both in terms of
peak magnitude and wave speed, is the Courant number,C:

[23] C =
α∆t

∆x

whereα represents the speed of propagation of the modelled
wave (e.g.,α = V + c for progressive, dynamic waves).

For any given numerical scheme, numerical dissipation and
diffusion effects, and therefore solution accuracy, will vary
depending upon the Courant number used. This characteristic
behavior is strongly dependent upon the number of nodes used
to describe the wave, with accuracy improving as the number
of nodes per wavelength (i.e., the grid resolution) increases. It
is important to recognize that both stability and accuracy are
important considerations in determining an appropriate Cou-
rant number and grid resolution for a particular application.
Consequently, explicit and implicit models may require simi-
lar Courant numbers, but for different reasons. In the case of
explicit schemes, stability is usually the dominant issue. In
contrast, the dissipative nature of this fully implicit formula-
tion means that the primary consideration in choosing an ap-
propriate Courant number, when applying the ONE-D model,
is accuracy.

Historical information
Despite the lack of sophisticated mathematical software at the
time of their study, Gunaratnam and Perkins (1970) did man-
age to conduct a limited linear stability analysis on the finite
difference scheme which has been implemented in the ONE-D
model. However, they included the friction term in their stabil-
ity analysis and, therefore, the physical attenuation due to fric-

tion masked the numerical damping behavior. They concluded
that for 90% or better accuracy, at least 100 nodes per wave-
length should be used and that the Courant number should not
exceed 5.5. Morse (1991) reported that, provided 50 to 100
nodes were used to describe a wave profile, “many applica-
tions of ONE-D have shown that accurate results are still ob-
tained as long asσ [the Courant number]≤15.”

Since 1970, research into the behavior of numerical tech-
niques applied to the St. Venant equations has clearly estab-
lished that the fully implicit approach leads to an excessive
amount of artificial diffusion. Therefore, although stability
may be guaranteed through the use of a fully implicit model,
large time step increments can lead to very inaccurate results.
This explains the need for an excessively large number of
nodes to describe a wave profile. In fact, for most implicit
numerical schemes, the use of 100 nodes to describe a wave
profile would result in good phase and amplitude accuracy,
regardless of the Courant number used. However, the use of
such a high grid density is only practical for modelling long
flat waves. When modelling surge propagation, this may be an
unreasonable limitation and a far better approach may be to
simply limit the Courant number. It is stressed that the latter
is a more flexible approach than that recommended by Gu-
naratnam and Perkins (1970), as it facilitates the use of the
scheme for a greater variety of flow scenarios.

An important consideration in the modelling of dynamic
waves is the fact that there are two wave components: a pro-
gressive wave and a regressive wave. Examples of these are
seen in the classic dam break problem. The progressive wave
is the surge that propagates downstream, while the regressive
wave is the deficit that propagates upstream into the depleting
reservoir. In the case of waves propagating on still water
(Fr = 0), there is no difference in the physical behavior of
progressive and regressive waves. However, for waves propa-
gating on a moving flow (Fr > 0), the regressive wave will
propagate at a different speed and will display different phase
and amplitude accuracy from the progressive wave for many
schemes.

Progressive waves (all Froude numbers) and regressive
waves (Fr= 0)

Figure 1 illustrates the amplitude and phase characteristics ob-
tained for the ONE-D scheme from the linear stability analysis
at a Froude number of zero (wave propagation in still water)
and Courant numbers ranging from 0.1 to 5.0. In the figures,
the spatial resolution is equal to the wavelength,L, divided by
the spatial discretization,∆x. Therefore, the spatial resolution
represents the number of nodes per wavelength. As the Cou-
rant number is based upon the progressive wave velocity in all
cases, these results represent progressive wave behavior for all
Froude numbers, not just for a Froude number of zero.

As Fig. 1a illustrates, the numerical scheme used in the
ONE-D model is highly dissipative at high Courant numbers,
and this numerical dissipation is nonselective (affecting all
wave components rather than just the high frequency compo-
nents associated with numerically generated instabilities). For
example, the linear stability analysis suggests that if we were
to use a Courant number of 5 and only 10 nodes to describe a
wave, the peak amplitude would diminish to 20% of its origi-
nal value in a single time step. In contrast, for the case where
100 nodes were used, the wave peak would only be lowered

Hicks 563

© 1997 NRC Canada

http://www.nrc.ca/cisti/journals/cjce/cjce24/civico97.pdf


to 90% of its original value in one time step. This illustrates
the reasoning behind Gunaratnam and Perkins’ (1970) recom-
mended discretizations. However, this combination of large
time steps and small space steps is not necessarily optimum,
as the same accuracy can be achieved with a more reasonable
number of nodes per wavelength simply by decreasing the time
step increment (effectively reducing the Courant number). For
example, at a Courant number of 1, only about 20 nodes per
wavelength are required to achieve the same accuracy as 100
nodes at a Courant number of 5. This behavior has important
implications for modelling steep waves where it is not feasible
to use 100 nodes to describe the wave front. Furthermore, the
reduction in the time step increment does not necessarily lead
to greater computational effort, as the number of arithmetic
operations per time step is 53(2N – 1), whereN is the number
of nodes (Gunaratnam and Perkins 1970). Therefore, the re-
duction in the number of nodes compensates for the additional
time steps required.

In the phase diagram of Fig. 1b it is seen that most wave
components are propagated too slowly and that this phase error

increases with decreasing wavelength (as∆x is held constant).
This means that in a nonlinear problem, a separation of wave
components would develop. This wave diffusion would at-
tenuate the wave peak, further decreasing the amplitude accu-
racy. The figure also shows that increasing the spatial
resolution, or decreasing the time step increment (i.e., the Cou-
rant number), would reduce phase error.

A feature of particular interest in Fig. 1 is the fact that for
2∆x waves, the type associated with numerical errors, the al-
gorithmic damping and relative celerity are very close to 1.0
and 0.0, respectively. That is, these wave components are neg-
ligibly propagated and attenuated by this scheme and might
therefore be expected to remain at the location where they
were generated, accumulating over time.

Effect of Froude number on the regressive wave behavior
Figure 2 illustrates the regressive wave amplitude and phase
characteristics for the numerical scheme in the ONE-D model
at a Froude number of 0.5 and Courant numbers ranging from

Fig. 1.Amplitude and phase accuracy of the ONE-D scheme for
progressive waves (all Froude numbers) and regressive wave
(Fr = 0): (a) algorithmic damping; (b) relative celerity.

Fig. 2.Amplitude and phase accuracy of the ONE-D scheme for
regressive waves (Fr= 0.5 and 2.0): (a) algorithmic damping; (b)
relative celerity.
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0.1 to 5.0. These results also describe the behavior for the
reciprocal of this Froude number (i.e., for Fr= 2.0), as well.
Comparing Figs. 1 and 2, we see that the scheme implemented
in the ONE-D model is less dissipative for these regressive
waves than for the progressive waves and phase accuracy is
better as well, especially at the higher Courant numbers. Nev-
ertheless, the damping is still large and unselective, and the
phase error is significant, at large Courant numbers.

Discussion of results
These results identify a number of expectations about the per-
formance of this scheme. For example, we would expect to see
significant amplitude damping of any waves for spatial resolu-
tions less than 100, when modelled at the recommended Cou-
rant number (>5). At lower Courant numbers we would expect
that the algorithmic damping would be less, resulting in greater
wave peak accuracy though possibly at the expense of persist-
ent, numerically generated, high frequency disturbances. We
might also expect to see high frequency wave components
trailing the physical waves in this case, as these would not be
expected to be damped at the lower Courant numbers.

Nonlinear wave propagation tests

To further examine the behavior of this numerical scheme, two
test problems were conducted. The first test scenario involved
the simple propagation of waves in still water. The intention
was to validate the general tendencies predicted by the Fourier
analysis, as well as to point out any effects of the nonlinearities
which are missed in that linear stability analysis. The second
test was a classic (subcritical) dam break problem. This surge

propagation problem was useful for assessing model perform-
ance for dynamic flows with steep water surface gradients and,
in particular, the conservation properties of Gunaratnam’s six-
point finite difference scheme. By eliminating the friction and
slope terms from consideration, exact solutions based on the
method of characteristics could be obtained easily, thus facili-
tating a quantitative assessment of performance. Because the
ONE-D model has not been set up to handle these idealized
cases (specifically frictionless flow), a computer program im-
plementing the scheme was developed based on the equation
formulation in [19].

It is important to remember that although it may seem ide-
alistic to consider these simplified cases, the elimination of the
friction and slopes terms from consideration allows for the
determination of exact solutions based on the method of char-
acteristics. This is the only way in which to make a quantitative
assessment of the accuracy of the numerical solutions. Further-
more, this is the only way to facilitate an evaluation of the
linear stability analysis, remembering in particular that the ar-
tificial damping associated with the numerical solution tech-
nique is indistinguishable from friction, in terms of its effect
on attenuating the wave peak.

Propagation of progressive and regressive waves in still
water

For this test, the geometry consisted of a unit-width section of
a horizontal, frictionless, rectangular channel. A total of 100
nodes were used, with a uniform spatial discretization of 5 m.
A zero discharge boundary condition was specified at each end
of the domain throughout the simulation. The initial depth con-
dition was taken as 3.5 m, except in the vicinity of the disturbances.

Fig. 3.Comparison of the results of the wave propagation test att = 17.34 s for varying Courant number.
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To facilitate the computation of an exact solution, the initial
condition was set as two identical disturbances, one progres-
sive and one regressive, each initially prescribed over 20
nodes. The tests were run at time step increments of 0.0578,
0.289, 0.578, and 2.89 s, corresponding to Courant numbers of
0.1, 0.5, 1.0, and 5.0, respectively. Results were presented at
t = 17.34 s, after the disturbances had each traveled exactly
150 m. The peaks, each of depth 4.70 m, were located at 65 and
430 m, respectively, by that time.

Figure 3 illustrates the results of the simulation and Table 1
presents the mass conservation and peak amplitude error for
this range of Courant numbers att = 17.34 s. Mass conserva-
tion is good (within 1%) but, as expected from the linear sta-
bility analysis, amplitude damping and wave diffusion (due to
phase error) are evident. The results forC = 5.0 are particularly
inaccurate, with the peaks propagated too slowly and the com-
puted wave peak amplitudes 17.1% below the actual value.
Both phase and amplitude accuracy increase with decreasing
Courant number, with the results atC = 0.1 exhibiting primar-

ily wave diffusion effects. It is a particular advantage of this
numerical scheme that the method accuracy improves with
decreasing Courant number. This is not a general rule. For
example, for the four-point implicit finite difference scheme
used in the NWS DAMBRK model (Fread 1988), solution
accuracy is optimum at a Courant number of 1 and decreases
for both lower and higher Courant numbers.

Although the test results confirm that the amplitude accu-
racy is poor at high Courant numbers, the damping effect is
noticeably smaller than that predicted by the linear stability
analysis. This result is associated with the nonlinearities in the
problem, which can be examined through a spectral analysis.
This analysis involves taking a Fourier transform of the flow
depth profile both for the initial condition and after one time
step. The results of this analysis for a Courant number of 5 are
shown in Fig. 4, and are presented in terms of the energy den-
sities associated with the various wave components. This en-
ergy density may be interpreted as the amount of energy
contained within each of these wave components. In the figure,
the smaller spatial resolutions represent the higher frequency
(shorter wavelength) disturbances and we see that most of
these shorter wave components are damped by almost an order
of magnitude over one time step at this Courant number. The
magnitude of this damping effect is consistent with what was
predicted by the linear stability analysis. At the same time, the
longer wave components are accurately modelled, with negli-
gible energy density damping over one time step, again as
predicted by the linear stability analysis.

Another apparent inconsistency between the predictions of
the Fourier analysis and the results of this nonlinear test is that
we do not see the persistence of numerically generated 2∆x

Courant number

Error (%)

Mass conservation Peak magnitude

0.1 –0.1 –3.4
0.5 –0.4 –8.2
1.0 –0.6 –10.8
5.0 –1.0 –17.1

Table 1.Mass conservation and peak magnitude errors in the wave
propagation problem.

Fig. 4.Results of the spectral analysis of the wave propagation test for a Courant number of 5.
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waves in the solutions. Here, again, the spectral analysis is
useful, as Fig. 4 illustrates evidence of the nonlinear transfer
of energy between wavelengths, known as aliasing. For exam-
ple, the initial condition exhibits a deficit of 2∆x, 3∆x, and
6∆x wave components, yet after one time step the energy den-
sities at these wavelengths have increased. The increase is par-
ticularly significant for the 2∆x waves, indicating that there is
no damping of 2∆xwave components, a result that is consistent
with the linear stability analysis prediction. Therefore, even
though these 2∆x disturbances do not appear in the solution,
they would be expected to accumulate over time and conse-
quently might be expected to present a problem in real world
applications which involve significantly longer reaches and
simulation periods.

Subcritical dam break test
This test simulates the wave propagation resulting from the
instantaneous failure of a dam in a horizontal, frictionless
channel. It is a rigorous test for Gunaratnam’s six-point finite
difference scheme, since it is not feasible to model the surge
front profile with 50 to 100 nodes, as is currently recom-
mended. Furthermore, from a computational perspective, the
more dynamic the wave the greater the potential for numerical
instabilities. Therefore, the simulation of an “instantaneous”
failure represents the most difficult possible scenario in terms
of the difficulty presented to the numerical scheme. If the op-
timum discretization relationship is determined under this sce-
nario, then the scheme can be expected to provide a stable
solution for the more practical case of a more prolonged dam
breach (or ice jam release) event. The elimination of the fric-
tion and slope terms in this case are also not limiting to the
practical applicability of the results, since it can be shown that
the magnitude of these terms are negligible in the zone just
downstream of the dam (Henderson 1966). These terms only
become significant further downstream when, as a result of the
influence of friction, the wave spreads out and diffuses. The
latter scenario is not a challenge to the stability or accuracy of
any of the formulations considered here, as the spatial resolu-
tion at that point becomes very high (as the wave becomes very
long).

For this test, the channel geometry consisted of a unit-width
section. A total of 81 nodes were used, with a uniform spatial
discretization of 25 m. The dam itself was approximated be-
tween two nodes, over 25 m at the centre of the domain. The
discharge was initially set to zero at all nodes, and through the
upstream half of the domain the initial flow depth was set to
10 m. For the downstream half, a depth of 5 m was specified.
One boundary condition at each end specified a discharge of
zero throughout the duration of the simulation. The tests were
run at time step increments of 0.25, 1.25, 2.5, and 15 s, corre-
sponding to Courant numbers of 0.1, 0.5, 1.0, and 6.0, respec-
tively. Results were presented att = 60 s.

Table 2 presents the mass and momentum conservation er-
rors for each Courant number att = 60 s. Figure 5a illustrates
the results for Courant numbers of 0.5 and higher. As expected
from the linear stability analysis, we see that adequate results
can be obtained for the progressive wave if the Courant
number is limited to 0.5. Nevertheless, algorithmic damping
and wave diffusion are evident in the solutions. The fact that
the leading edge of the surge trails the exact solution suggests
that mass is not being conserved, and this is confirmed by the

data in Table 2. It is significant to note that momentum con-
servation errors occur even at the lower Courant numbers, re-
flecting the fact that the conservation properties are strongly
dependent upon the equation formulation used. Hicks (1996)
has illustrated that, for the six-point implicit finite difference
scheme, the conservation characteristics of the symmetric for-
mulation used in the ONE-D code are significantly inferior to
the more conventional nonsymmetric formulations used in
most models of this type.

Figure 5a shows that the regressive wave is also quite dif-
fused at the higher Courant numbers. As for the previous test,
the fact that 2∆x oscillations are not seen trailing the propagat-
ing disturbances indicates that aliasing effects have not had
time to accumulate over the short duration of this idealized
test. However, these disturbances are seen in Fig. 5b, which
presents the results forC = 0.1.

Discussion of results
The results of these nonlinear tests confirm the tendencies pre-
dicted by the linear stability analysis in that it has been shown
that good phase and amplitude accuracy can be achieved at
reasonable discretizations, provided that the Courant number
is limited. Based on the results of the wave propagation tests,
a maximum Courant number of 0.5 is recommended as suit-
able for most applications, assuming the use of at least 10 to 20
nodes to describe a wave profile. The computational effort
required is comparable to that for the currently recommended
use of 100 nodes with Courant numbers in excess of 5. It is not
considered appropriate to develop separate criteria for long
and short wave problems, as this would require a means of
classification, which is an impractical requirement for real
world applications.

It was found that errors in momentum conservation, and to
a lesser extent mass conservation, occurred for the surge
propagation problem and that these errors are not insignificant
even at low Courant numbers. Based on similar findings for
finite element methods (Hicks and Steffler 1995), these con-
servation errors are primarily attributed to the symmetric for-
mulation used.

It was seen that wave aliasing could be expected to lead to
the generation of high frequency disturbances and, as expected
from the linear stability analysis, 2∆x waves would not be
numerically attenuated. Although these did not present a prob-
lem for the short duration idealized test cases examined here,
they can be expected to accumulate over time and might be
expected to be a concern in practical applications.

For practical applications where friction is dominant, the
issue of numerical wave diffusion and dissipation is less criti-
cal than for the dynamic situation represented by the dam break
problem. Friction dominated problems tend to involve long flat
waves, and in these cases the grid resolution required to define

Courant number

Conservation error (%)

Mass Momentum

0.1 –0.4 –3.4
0.5 –0.8 –3.5
1.0 –1.1 –3.4
6.0 –2.7 –7.5

Table 2.Conservation errors in the dam break problem.
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the channel geometry will likely be the limiting factor in de-
termining model accuracy.

Summary and recommendations

This paper has provided a review of the details of the equation
formulation and numerical scheme implemented in Environ-
ment Canada’s ONE-D unsteady open channel flow model. In
addition, the linear stability and accuracy characteristics of the
implemented numerical scheme have been examined using a
Fourier stability analysis and nonlinear wave propagation
tests. The latter were also used to provide information on the
mass and momentum conservation properties of the model.

The ONE-D model is based on a symmetric formulation of
the St. Venant equations solved using Gunaratnam’s six-point,

implicit finite difference scheme, which is, in fact, a fully implicit
finite difference implementation of the Bubnov–Galerkin finite
element scheme. This finite difference implementation necessi-
tates the use of an even grid spacing as well as separate solution
algorithms for subcritical flow. Consequently, transitions be-
tween subcritical and supercritical flow cannot be modelled.
In addition, only the subcritical flow algorithm has been im-
plemented in the ONE-D model.

Based on the results of this investigation into the numerical
behavior of the six-point, implicit finite difference method, a
number of conclusions can be drawn about the expected per-
formance of Environment Canada’s ONE-D model.

1. This fully implicit formulation introduces nonselective
artificial diffusion into the solution, particularly at high Cou-
rant numbers. This not only damps out numerical oscillations,

Fig. 5.Comparison of the results of the dam break test att = 60 s for varying Courant number: (a) C = 0.5, 1.0, and 6.0; (b) C = 0.1.
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but physical wave components as well. In particular, it leads
to a smearing of surge fronts. Thus the main issue in the ap-
plication of the model becomes one of accuracy rather than
stability.

2. The use of a symmetric formulation of the St. Venant
equations contributes to mass and momentum conservation
errors, particularly for shock propagation problems.

3. The conclusions of Gunaratnam and Perkins (1970), and
Morse (1991), that accurate solutions could be obtained with
this scheme for high Courant numbers (between 5.5 and 15)
by using at least 50 to 100 nodes per wavelength does not
represent an optimal implementation of this scheme.

Despite these apparent limitations, it has been shown that
reasonable accuracy can be obtained with the implemented
scheme and equation formulation, provided appropriate dis-
cretizations are used. However, it is concluded that the guide-
lines regarding the recommended relationship between the
time and space step increments and the number of nodes used
to describe a wave profile should be changed. It has been
shown here that a better compromise between stability and
accuracy can be obtained at much lower, and more reasonable,
spatial discretizations (10 to 20 nodes to describe the wave
profile) by limiting the Courant number to 0.5. The added
computation expense of the additional time steps is more than
offset by the reduced number of nodes required, particularly
for shock propagation problems where it is not feasible to use
100 nodes to describe the wave profile. Improved mass con-
servation accuracy can be expected when the Courant number
is limited, as well.
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List of symbols

A cross-sectional area perpendicular to flow
B total top width of a cross section
Bo constant top width of a cross section
c wave celerity
C Courant number
Fr Froude number
g acceleration due to gravity
h depth of flow in a rectangular channel
j, n spatial and temporal indices
N number of computational nodes
qL lateral inflow
Q discharge
Sf friction slope
V cross-sectionally averaged longitudinal velocity
t temporal coordinate
x longitudinal coordinate
z water surface elevation
∆t time step increment
∆x space step increment
α speed of propagation of the modelled disturbance
λ+, λ– characteristic velocities
ψ source terms in the symmetric equations
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