
GridRod – A Dynamic Runtime Scheduler for Grid
Workflows

Shahaan Ayyub
Monash University

MESSAGE LAB, Faculty of Information Technology,
Monash University Australia, 3145

+61 (03) 9903 1217

ayyub.shahaan@infotech.monash.edu.au

David Abramson
Monash University

MESSAGE LAB, Faculty of Information Technology,
Monash University Australia, 3145

+61 (03) 9905 1183

davida@infotech.monash.edu.au

ABSTRACT
Grid Workflows are emerging as practical programming models
for solving large e-scientific problems on the Grid. However, it is
typically assumed that the workflow components either read or
write data to conventional files, which are copied from one
execution stage to another, or they are tightly coupled using IPC
libraries such as MPI or distributed streaming. More flexible
communication can be achieved by overloading conventional
READ and WRITE operations with advanced IO mechanisms
such as sockets, streams and pipes, as is done in the GriddLeS
environment. Such flexibility allows the pipelining of temporally
dependent components, or in contrast, delaying of tightly coupled
computations based on the current resource availability and
network connectivity. However, it is also harder to schedule the
workflow, because the communication mode may not be decided
until run time. In this paper, we propose a new scheduling model
that leverages such communication flexibility and allows us to
generate dynamic runtime schedules. The scheduler in this case,
not only allocates components to distributed Grid resources, but
also specifies the inter-component communication mechanism
(socket, pipe etc.) The current model is implemented as a dynamic
workflow scheduling tool called GridRod, which harnesses
Nimrod/G's [1] Grid services and GriddLeS [2] web services.

Categories and Subject Descriptors
I.2.8 [Artificial Intelligence]: Heuristic Methods and Scheduling
– runtime resource allocation and communication specification,
spatio/temporal concurrency.

General Terms
Algorithms, Management, Performance, Design, Reliability.

Keywords
Models of Computation, runtime scheduling, communication
specification, spatial and temporal concurrency.

1. INTRODUCTION
The Grid Virtual Organization (VO) model integrates distributed
resources such as high performance clusters, distributed data
repositories, scientific instruments and specialized hardware
devices to provide a collaborative platform to perform e-Science
[3, 4]. Such platforms are used to solve large-scale problems by
deploying complex application models, such as GENIE [1],
specified as Grid workflows. The components of these workflows
may consist of monolithic applications, data processing software,
scientific instruments, visualization interfaces, or even remote
Grid/Web services. Conceptually, formulation of this single
“integrated application model” is fairly simple. However, its
deployment and scheduling on highly distributed, dynamic and
heterogeneous Grid environments is both interesting and
challenging.
Accordingly, several projects such as ICENI [5], GridRPC [6] and
VGrADS [2] implement a range of scheduling models for
achieving high application performance whilst meeting such
challenges. However, existing work does not allow the workflow
to adapt to the underlying resource base that is available at
execution time. Typically, there are two orthogonal approaches
for modeling Grid workflows. The first approach temporally
orders the workflow execution, where data is transferred from one
execution stage to another as files. The second approach binds the
components as co-executing computations communicating
through unidirectional FIFO channels via pipes, streams or
message passing. Both approaches tightly couple the
communication and thereby restrict the runtime component
allocation. Importantly, a designer specifies which approach to
use statically when the workflow is built.
Communication libraries such as GriddLeS [2], allows the
communication mode to be delayed until run time. This means
that it is possible to choose the most appropriate mechanism
depending on the resource base. For example, if there are
sufficient resources, then it may be possible to co-schedule a
number of the workflow components, and have these run
concurrently. On the other hand, if there are not enough resources
to run the components at the same time, then it is best to run each
one sequentially, and to write results to intermediate files in
between. GriddLeS provides this flexibility by intercepting and
redirecting primitive IO operations (such as READ and WRITE)
to a local file, a remote file or a remote socket. In this way,
application components behave as if they are executing in a
conventional file system whilst leveraging the distributed
computational power of the Grid. Such flexible specification
allows pipelining temporally dependent components or, in
contrast, delaying tightly coupled co-executing computations.
Furthermore, this exposes both temporal and spatial concurrency

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. To copy
otherwise, or republish, to post on servers or to redistribute to lists,
requires prior specific permission and/or a fee.
ICS’07, Jun 18–20, 2007, Seattle, WA, USA.
Copyright (c) 2007 ACM 978-1-59593-768-1/07/0006 ...$5.00.

in the Grid workflows, which can be exploited for achieving high
throughput. Dynamic specification of inter-component
communication in this way provides more opportunities to
optimize runtime component allocation based on the current Grid
state.
In this paper, we propose a new model, which makes flexible
runtime decisions for scheduling Grid workflow components and
for specifying inter-component communication behaviour. The
model leverages the IO mechanisms already provided by
GriddLeS to generate lazy runtime schedules. In a lazy approach
the runtime scheduling decisions are delayed as much as possible.
This allows the scheduling model to use the current information
about the resource availability and network connectivity for
achieving the optimisation. So, in cases where the data generation
and consumption is continuous, the scheduler pipelines the
distributed components when sufficient computational and
network resources are available. In contrast, if the application
components have producer-consumer relationships, then the
model delays the execution of the downstream computation in
case of resource unavailability or in order to optimise the
execution overlap. So, if the data transfer on IO channels is
unidirectional, the data can be temporarily stored in a buffer at the
writer’s end and later copied to the reader’s location for its
execution when sufficient resources become available. This would
remove the necessity to execute the tightly coupled applications
together, providing opportunities to optimise scheduling as well as
improving resource utilization and consequently, applications
performance. The scheduling function in this case is therefore a
composite function, which not only allocates computational
components to Grid resources, but also specifies how they should
interact. The proposed model is embedded in the Nimrod/G
framework [1], leveraging the flexible IO infrastructure already
provided by GriddLeS. This infrastructure provides opportunities
for spatial (parallelism) as well as temporal (pipelining) co-
execution of the components. In order to maximize the
throughput, both types of concurrency should be exploited.
However, most Grid scheduling heuristics [2, 5, 7] [8, 9] tend to
search in only one of the two orthogonal directions, exploiting
only one type of concurrency. To address this, we propose a new
class of scheduling heuristics called HyBD, which represents the
hybrid of Breadth First and Depth First. The heuristics iteratively
explores the workflow graph in both directions to optimise
scheduling. Two novel heuristics, HyBD_MAKESPAN and
HyBD_DELAY, are proposed under this class with different
objective functions. The resulting infrastructure called GridRod is
a step towards building a service-oriented architecture (SOA) for
Grid Workflow Orchestration. GridRod leverages GriddLeS web
services and Nimrod/G’s Grid services to achieve the same.

2. Grid Workflows; An orchestration
perspective
This section discusses Grid Workflows and workflow modeling
techniques mainly from the orchestration and scheduling
perspective. Synchronous Data Flow (SDF) [10] and Kahn
process Nets (PN) [11], the two most prevalent workflow-
modeling approaches, are described. These models are inherited
from the set of existing models of computation in Digital Signal
Processing (DSP). Variants of these models have been used in the
projects such as Kepler [7] and ICENI for specifying Grid

workflows, with some nomenclature differences. In the rest of the
paper, we use the Kepler nomenclature (PN and SDF) as a
reference.
General definition: We define Grid workflows as an integration of
distributed standalone components interacting with each other by
exchanging data through flexible communication links. The
workflow is initially defined in an abstract form followed by the
concrete mapping or triggering of components by an orchestration
engine to appropriate Grid resources, whilst respecting
dependencies. Also, Grid workflows can be represented as
Directed Acyclic Graphs (DAGs). In this perspective, workflow
modeling defines the workflow components as DAG nodes and
their relationships as edges.

2.1 Grid Workflow Models
• SDF – Components in Grid-based SDF models are

interconnected as temporally dependent units. Each
component reads and writes data to a local file, in which case
the inter-component communication is established by simply
copying the data generated by an upstream writer to the
reader’s location. Currently, SDF is the most common model
for Grid workflow specification as it allows integration of
isolated components using a simple reader/writer
relationship. However, for the very same reason, pipelining
between these components becomes challenging.

• PN – Components in a PN model are linked by unidirectional
first-in-first-out (FIFO) channels. All components
communicate through these channels and their execution is
synchronized (by essentially blocking and unblocking the
reader process) depending on the data availability on the
input channels. Examples of Grid based process networks
include distributed streaming applications such as count-
Samps [12] and Clust-streams [13]. These applications occur
in scientific areas where a large amount of data is being
continuously generated and must be processed in real-time.
The Gates project [14], specifically targets scheduling and
migration of these applications. However, it is assumed that
applications modeled under PN have a communication layer
already present between the components for coherent inter-
component communication.

2.2 Static Modeling
Current Grid workflow modeling approaches tightly couple the
inter-component communication, restricting the lazy runtime
scheduling based on the latest CPU and network state. So, if the
workflow is modeled as an SDF or a PN, then the components
should communicate according to the tight coupling entailed by
the model. This limits their dynamic allocation to distributed
resources. A Grid workflow may well be constituted from a
variety of components and therefore may have its sections
modeled differently (as SDF or PN).
As mentioned earlier, if primitive I/Os such as read () and write ()
can be overridden by sockets, streams and pipes, then temporally
dependent computations (modeled as SDF) can be pipelined
provided the data is written and read continuously and sufficient
resources are available. In this way SDF applications can behave
as a network of dataflow processes, which is a special case of PN,
and the main focus of our current work.

PN models, while providing concurrency and parallelism, tightly
couple the communication between application components,
which are assumed to interact using a pre-existing communication
mechanism. Further, co-scheduling workflow components might
not be optimal at all times. Consider a situation where a
downstream reader takes less time to execute than its parent
writer, or where the upstream writer takes only half of its
execution period to generate the data that is to be consumed by the
reader. Co-scheduling the components in these situations (a
typical static co-scheduling approach [15]) would hold the
reader’s resource while waiting for the data availability, leading to
poor resource utilization. Further, it is very likely, in highly
dynamic environments, that by the time the reader is actually
ready for execution, its resource is no longer the ‘best resource’ or
even available for the execution. In these scenarios, a better
approach would be to delay the execution of the downstream
reader.
The knowledge of inherent communication behavior of the
components is important in optimizing the scheduling. Also, such
knowledge can be utilized to understand the bandwidth/latency
and data requirements of the components thereby providing more
chances for the scheduler to make optimized runtime decisions.
In the next section we describe our scheduling model, which
dynamically schedules workflow components as clusters of PN
and SDF based on their communication behavior. The scheduling
model leverages the IO infrastructure provided by GriddLeS to
achieve such modeling. Applications exhibiting asynchronous
read/write patterns specifically benefit from such scheduling.

3. Dynamic Scheduling Model
Our model adopts a two-step process to optimize runtime
scheduling of the workflow components. The first step is the
clustering, which involves analytical selection of downstream
components based on their communication behavior. The second
step involves the following:

• Allocation of the selected components to Grid resources based
on data availability and CPU performance.

• Selection of the appropriate communication mechanism to
achieve better runtime application performance.

A new heuristic model called HyBD is proposed in this paper and
two novel heuristics based on the proposed model are described.

3.1 HyBD Heuristics
HyBD stands for Hybrid of Breadth First and Depth First, and
signifies a hybrid of the two prevalent search approaches. A
problem space can be described as a Directed Acyclic Graph
(DAG) in at least two orthogonal representations, namely spatial

and temporal [16]. In a spatial representation, all the components
exist simultaneously and are executed concurrently, (spatial
parallelism). On the other hand, in a temporal representation, the
components have temporal precedence and are executed either in
a sequential or a concurrent pipeline, depending on their
communication behavior. The key to improve throughput is to
explore both types of concurrency in order to optimize scheduling.
However, existing graph exploration algorithms search in either
of the two orthogonal directions (spatial or temporal), rather than
in both. Thus an algorithm such as breadth first would explore the
DAG spatially, whereas, the depth first would search it
temporally. On the other hand, we are interested in finding a local
optimization and therefore intend to explore the graph in both
directions. For this, we have developed variants of Breadth and
Depth First search approaches, which performs repeated searches
along the orthogonal directions until a halting condition is
encountered. In which case, each repetition essentially appends
the visited nodes to a node-cluster list. However, the ordering in
which the nodes are visited depends on the search method and the
depth and breadth limits are obtained dynamically. This approach
provides us with local search completeness to optimize
component clustering.

3.2 Component Clustering
The clustering depends on the data generation and consumption
patterns of the workflow components. Oldfield and Koltz [17],
outline several scientific applications and their I/O behavior,
including medical applications, seismic imaging, climate
modeling, computational chemistry and biology. The report
implies that most applications show asynchronous I/O patterns,
and the basic read/write operations are partially ordered. Also,
from our experiences in executing climate modeling applications
[2, 18], we observed that some applications generate data
continuously, whereas others perform this operation in single or
discrete phases. This information is crucial and can be used for
making clustering decisions in order to optimize the overlap
between component executions.
Our scheduling model clusters the downstream components,
which consume and generate data continuously as PN, and leaves
the rest to behave as SDF (See Stages in Figure 1). The traversal
is performed iteratively on every element of the set of temporally
independent nodes. A child node becomes temporally independent
once its parent finishes execution. The traversal stops if sufficient
resources are not available or the heuristic decides to delay the
execution of a downstream component due to data unavailability.
This leaves the unscheduled downstream components waiting for
resource or data availability. The clustered components are
subsequently allocated and executed on distributed resources. At

Figure 1. The graph has symmetric depth and breadth. The breadth of a graph defines the spatial concurrency between the
components. The different shades of Gray represent two different clusters of PN within the same graph. The round-ended
arrows mean that the two connected components can be streamed and concurrently executed. The large arrows show
different scheduling states.

this point we propose that our scheduling approach is different
from the conventional gang scheduling [19] as well as Gates’
algorithm [14], as we assume that the components are non-pre-
emptive applications and cannot be migrated once they start
execution.
Ideally, if there are sufficient resources available, all clustered
components can be co-scheduled; in which case, the execution
time of downstream computations within the cluster would be
normalized to the computation time of its parent. Figure 2(b)
illustrates this scenario where jobs below are automatically
stretched to the length of their respective parents. We would call
this the normalization effect and would use it as a reference in the
experiments section. This approach reduces the overall application
make-span. However, it wastes CPU time because downstream
computations have to wait for the data to arrive. Regardless, if no
resources are available for further scheduling, then the delay is
automatic. In situations where resource utilization is more
important than reducing the application make-span, a delay may
well be enforced explicitly. Thus, in cases where the estimated
computation time of a downstream reader is lower than its parent,
then it can be delayed for the difference in their execution time.
This improves CPU utilization, at the expense of an increase in
the application make span. We call this the delay effect as shown
in Figure 2(c).

The third possibility is that a downstream computation is
scheduled only after its parent finishes execution such as in SDF.
This situation is likely to occur in cases where the upstream
computation generates data in a single phase, which is generally at
the end of its execution.
Depending on the possibilities described above, the application
components are clustered and further allocated to distributed
resources. However, in every case, the scheduling of downstream
computations is delayed as much as possible by exploiting the
components’ inherent communication patterns. This delay is
desired in order to get the latest system (network and CPU)
information to generate better schedules. Grid workflows
consisting of components with different write/read behaviors
would specifically benefit from such an approach by optimizing
the execution overlap between components, resulting in an
improved workflow performance.

3.3 Component Allocation and
Communication Specification
The second step involves allocation of the clustered components
to best resources. This step also specifies how the scheduled
components would communicate i.e. which GriddLeS IO
mechanism should be implemented.

3.3.1 Component Allocation
Allocating components based on their data dependency can
significantly improve application performance by reducing the
communication overheads. In many scientific areas such as
astronomy, geographic information systems and earth systems,
data sets characterize the regions of the problem space. As a
result, components processing common data sets exhibit spatial
proximity. Luiz et al. [20] have demonstrated that allocating
components based on such spatial proximity can reduce the
application make-span. This is specifically true when the
dependency between components in terms of file sharing is high.
Casanova et al in [21, 22] demonstrate the efficiency of pre-
staging and reusing the shared files to reduce data transfer
overheads. We also base the allocation of clustered components
on the similar criteria to achieve application performance as well
as data and resource utilization. Once an optimum resource is
chosen, then the communication behavior is dynamically specified
based on current network and CPU states as described below.

3.3.2 Communication Specification
In the case of PN, there are several ways in which communication
behavior can be specified. Depending on the location of the reader
and writer, the IO can be redirected to a local file or remote file or
a pipe. However, when remote communication is performed, a
single point of network or CPU failure, which is very common in
Grid environments, would require rescheduling of the
components. This approach is clearly not very fault tolerant;
would waste a lot of CPU time and incur additional data transfer
costs. An alternative approach is to interpose a buffer at both the
reader and writer’s end. So, if the writing/reading is unidirectional
then the writer and reader can uninterruptedly write and read data
from their respective local buffers without getting affected by
network failures. The proxy mechanism [23] implemented in
Griddles allows such communication and also ensures data
transfer and communication synchronization between the writer
and reader buffers. Regardless of the time a downstream reader
takes to get ready for the execution, the data which has been
already generated on the writer’s end can be copied using

Figure 2 (a). Applications with different cost units. Block
~ Cost unit.

Figure 2(b). The Normalization Effect; The computation
time of downstream computation is getting normalized.
The total make-span is 10 cost units, however, with an
additional wait time.

Figure 2(c). The Delay Effect. The delay in the
downstream computation accrued an additional time of 3
cost units in the total make span. Nevertheless saving the
CPU hours.

specialized multi-channel file transfer mechanisms such as
GridFTP [24], also supported in GriddLeS, to the reader’s buffer.
The reader can therefore begin execution assuming that the file is
available at its end. Similarly, in the case of SDF, data generated
by the writer can also be copied using such specialized copy
mechanisms.

Once the components are scheduled and communication between
them is specified, appropriate Grid/Web services can be invoked
to perform component execution and communication. Figure 1
shows temporal instances of the workflow DAG where parts of it
are scheduled as PN and the rest of them are behaving as SDF.

 Global Variables
 Sn |V| {set of components or nodes}
 R N {number of Resources}
 Cp Cp is a subset of |E| {set of parallel edges}
 CS Cs is a subset of |E| {set of sequential edges}
 procedure schedule
 while Sn ≠ Ø d o
 Ssj 0 {set of sorted ready jobs}
 Ssj call(getReadyJobs,NULL) {get Sorted Ready Jobs}
 R R + call(relinquishResources,NULL)\n
 {relinquish resources from done jobs}
 SBF Ø {set of clustered jobs from BF traversal}
 CBF 0 {total cost units for Breadth First}
 SDF Ø {set of clustered jobs from DF traversal}
 CDF 0 {total cost units for Depth First}
 call(traverseBF, Ssj, CBF, SBF)

 for each pj Є Ssj do

 CSDF 0 {total cost units for
 Depth First for single seed}
 SSDF Ø {set of clustered
 jobs from DF traversal for single seed}
 call(traverseDF, pj,, CSDF, SSDF)
 SDF SDF + SSDF
 CDF CDF + CSDF

 end for

 if CBF < CDF then
 execute SDF
 Sn Sn - SDF
 else
 execute SBF
 Sn Sn - SBF
 end if
 end while
 **

 procedure traverseDF(p, ,, CDF, SDF)
 Jc {q : for all p q, set of all children of p}

 for each q Є Jc:
 if CHILDREN(q) ≠ Ø do
 traverseDF(q,, CBF, SBF)
 else
 r allocate(q)
 if x do

 CDF += c(q) {c: cost unit}
 SDF SDF + q
 R R - r {remove chosen resource}

 end if
 end if
 end for

procedure TraverseBF (Ssj, CBF, SBF):
 LBF { Ssj } {LBF set of BF jobs; local variable}
 while LBF ≠ Ø do
 for each p Є LBF
 LBF LBF + CHILDREN(p)
 x allocate(p)
 if x do

CBF += c(p) {c: cost unit}
SBF SBF + p
R R - r {remove chosen resource}

 end if
 end for

end while

**

procedure Allocate (p)
 if !R do
 return 0
 end if
 q PARENT(p) {q: parent of p}
 if (Heuristic == HyBD_DELAY)&& c(p) < c(q) do

return 0
 else
 r call(chooseResource, p, R) {select resource for p
from R}

call(chooseCommunication, p, q)\n
{select appropriate communication between the p and q}
return r

 end if

**

Procedure getReadyJobs (NULL)
 for each p in Sn do
 q PARENT(p)
 e p q {e: the edge between p and q}
 if STATUS(q) in (‘done’,’executing’) do
 if e Є Cp && R > 1 && do
 STATUS(p) ‘ready’
 else if e Є Cs && R > 1 && STATUS(q) = ‘done’ do
 STATUS(p) ‘ready’
 end if
 else if STATUS(p) == ‘pending’ do
 if ! PENDINGTIME(p) do
 STATUS(p) ‘ready’
 else
 STATUS(p) STATUS(p)

 end if
 end for
 return Sn

Figure 3. Pseudo Code

3.4 Scheduling Heuristics
This section describes two new scheduling heuristics, namely
HyBD_MAKESPAN and HyBD_DELAY, each having a
different objective function for task allocation. These heuristics
are prototypes of a class of heuristics, called HyBD, which we
have described earlier in this paper.

3.4.1 HyBD_MAKESPAN
HyBD_MAKESPAN focuses on minimizing the total application
make-span giving less priority to CPU utilization. Accordingly, it
co-schedules as many components as possible without any delay.
This results in CPU overheads as some of the downstream
computations hold the resource whilst waiting for the data arrival
at their respective input channels, owing to the normalization
effect explained earlier. However, our simulation results show that
the overall make-span of the application is reduced by this
heuristic at the expense of additional CPU cost.

3.4.2 HyBD_DELAY
The primary objective of HyBD_DELAY is to maximize CPU
utilization at the expense of additional delay in the application
make-span. Nevertheless, this approach is beneficial in situations
where the CPU costs are high, in which case the component
allocation can be optimized according to its computational
requirements.
The pseudo code of HyBD heuristics is shown in Figure 3.

4. Implementation; GridRod
The conceptual model described above has been implemented as a
workflow orchestration tool called GridRod (see Figure 4).
GridRod integrates and harnesses GriddLeS web services and
Nimrod/G’s Grid services to perform orchestration operations.
Apart from high-level operations such as component allocation
and communication specification, the integration allowed
leveraging of already implemented low-level orchestration
services in GriddLeS and Nimrod/G. These services include job
launching, job execution and communication establishment. The
proposed scheduling model has been embedded in Nimrod/G and
the new heuristics were added to the already existing suit of
heuristics to schedule workflow components.
After the components are allocated to suitable resources, the
scheduling module considers the underlying resource
infrastructure (e.g. Globus [1], Condor [25]) and invokes
appropriate actuation services to launch the components (Figure 4,
components x, y and z) on remote resources (Figure 4, edgeJL).
Likewise, the scheduling module also calls the GriddLeS web
service to interpose appropriate IO mechanisms (edgeCS) for
inter-component communication. For example, edgeC4 in Figure
4 represents a local file mapping, in which case, comp y and z
read and write data to a local file, and the execution coherence is
handled by GriddLeS. Similarly, edgeC1 represents a direct
socket, edgeC2 a direct file copy and edgeC3 a proxy-based data
transfer mapping. Each communication edge (edgeCn where n Є
{1,2,3,4}) is specified as a logical entry in the GriddLeS Naming
Service (GNS) [2]. These entries are further used by GriddLeS to
interpose the specified communication mechanism. GridRod
utilizes Nimrod/G as the experiment launch pad and GriddLeS as
its basic communication layer to handle inter-component
interaction.

5. Related Work
In this section we describe some of the related work, which
complements our proposed model. However, to the best of our
literature review, we could not find a direct comparison with our
model, and we therefore performed an empirical analysis.

5.1 Co-scheduling Overview
The DAG co-scheduling problem is not new, and there exists a
number of static [9, 26] and dynamic [25, 27] models for
scheduling Grid workflow components. Grid workflow
components are primarily non-preemptive applications and the
data arrival and consumption times on communication links are
unpredictable. This makes their scheduling on dynamic and
heterogeneous platforms such as the Grid NP-Hard.
Consequently, most of the scheduling effort focuses on
developing the “heuristics” that targets a near optimal solution to
the problem. These heuristics can be categorized as follows

• List Based – HEFT [28]

• Clustering Based – Gang Scheduling [19]

• Implicit Co-scheduling heuristics – Spin Block [29]

• Partition Based – Pegasus [30]

• First In First Out Based – GridRPC [6]

• Ordering Based – ICENI [5], Condor-DagMAN [31]

• Data dependency based – APST [21]
List based algorithms generate static schedules, which are
ineffective under dynamic network and resource conditions. There
is a chance, for example, that the resource on which a component
was statically scheduled is no longer optimal or available at the
time of component execution. Clustering-based algorithms (e.g.
gang scheduling [19]) involves scheduling of pre-emptive
processes, however, we assume that the workflow components are
non pre-emptive applications. Similarly, implicit co-scheduling
schemes, implemented primarily in cluster environments, assume
that the components interact with each other by passing messages,
e.g., using MPI, and by blocking and unblocking their execution,
something that does not apply to our situation.
Pegasus implements a just-in-time level-based task partitioning
algorithm to schedule workflow components. However, arbitrarily
partitioning the graph and clustering tasks based on levels delays
the execution of the whole cluster just because of one task waiting
for its execution trigger. On the other hand, the FIFO-based
GridRPC co-scheduling model is very simple and does not
consider issues such as network and computational resource
performance when making scheduling decisions.
Also, all of these scheduling models, including ICENI and APST,
are designed to optimise the task allocation and have limited
control over the communication specification. As mentioned
earlier, such static modelling restricts the scheduling of workflow
components either as SDF or PN. However, we are interested not
only in dynamically allocating the components but also in
specifying how and when the components should communicate,
which made a direct comparison of our model with other work
difficult.

An empirical experimental analysis of our scheduling model was
performed. Non-iterative variants of simple Breadth First and
Depth First algorithms were developed, which provided us with
bounds to compare our heuristics. The non-iterative variants
search the graph in one of the two orthogonal directions.
However, they use the common task allocation and
communication specification functions used by the HyBD
heuristics.

6. Evaluation

6.1 Evaluation Metrics
The metrics against which we compared our proposed heuristics
are described below:
1. Application make-span: We propose that, by exploiting the

spatial and temporal parallelism between application
components, the total make-span of the application can be
significantly reduced. This makes application make-span a
suitable metric to compare how well a heuristic explores the
problem space and thereby improves the overall
performance.

2. CPU utilization: We measured this metric in terms of
cumulative execution time of all the components in the
application. Both CPU utilization and cumulative execution
time are inversely proportional to each other, which means
that a high cumulative cost is equal to low CPU utilization.

6.2 Random Graph Generator
As described earlier, a workflow may have different concurrency
patterns (temporal and spatial) between components, depending
on their inherent communication behavior. Temporal concurrency
refers to streamed pipelining whereas spatial concurrency
represents parallelism. In order to generate graphs with varied

concurrency patterns, we developed a random graph generator.
The parameters for graph generation are the following:

6.2.1 Aspect Ratio
This parameter defines the ratio of breadth1 vs. depth in the graph,
and is specified as a value between 0 and 1. A value of 0
corresponds to a completely parallel application (breadth =
number of nodes), e.g. a Parameter Sweep Application (PSA) (See
figure 5(a) with breadth = number of nodes –1). On the other
hand, a value of 1 corresponds to a sequential application (depth =
number of nodes) (See figure 5(b)). A value of 0.5 generates the
graph with a balanced depth vs. breadth ratio. The aspect ratio
also determines the out-degree of the nodes, although we assume
that all the nodes have unit or 1 in-degree. We are aware of the
usage of the term aspect ratio in other literature such as graph
drawing and image manipulation [32], and suggest that our
definition is different from them. To the best of our literature
search in graph generation, we could not find any terminology,
which defines the aspect of breadth vs. depth, and therefore
proposed our own definition.

1 The Breadth describes the spatial parallelism of the graph.

GNS Entry: edgeC1, edgeC2, edgeC3, edgeC4

Nimrod/G

Griddles

Actuator

edgeCS

edgeJL

Resource b
Resource a

edgeC3

edgeC2

edgeC1

Proxy
Buffers

edgeC4
Comp x

Comp y Comp z

Figure 4. GridRod Architecture

Figure 5(a) Figure 5 (b)

Figure 6(a). Cumulative cost vs. streaming factor Figure 6(b). Make span vs. Streaming factor

Figure 7(a). Cumulative cost vs. Aspect ratio Figure 7(b). Make span vs. Aspect ratio

Figure 8(a). Cumulative cost vs. Number of resources Figure 8(b). Make span vs. Number of resources

6.2.2 Streaming Factor
This parameter is a probability measure of the streaming between
workflow components. A streaming value of 0 means no
streaming. All temporally non-pipelined SDF models come under
this category, where a child waits for the termination of its parent
to start execution. On the other hand, a value of 1 corresponds to a
typical PN model where all the nodes execute concurrently. A
value of 0.5 represents a symmetrically modeled workflow.
Different combinations of aspect ratio and streaming factor
generate various temporal and spatial concurrency patterns in the
graph, which should be appropriately exploited by the heuristics
for optimizing component allocation.

6.2.3 Number of Resources
The analysis of heuristics under limited resource conditions is
necessary especially when the number of tasks is relatively higher
than the number of accessible resources.

6.3 The Simulator
Analyzing the behavior of scheduling models on large,
heterogeneous and dynamic platforms such as a Grid is extremely
difficult. The reason is that such platforms are highly
unpredictable, and performing a meaningful comparison between
the results obtained from real test cases is difficult. Furthermore,
to perform the scalability analysis of the heuristic, a setup
involving a large number of network and computational resources
is required. This makes simulation an appropriate and preferable
choice for conducting experimental evaluation.
In order to perform such analysis, we have developed a discrete
event simulator in which our proposed heuristics are integrated. In
order to simulate the Grid behavior, we used the Network
Weather Services (NWS) [33] traces taken from several different
resources.

7. Experiments and Results
We conducted a large set of 3,920 experiments with graphs,
obtained from different combinations of parameters, namely
streaming factor, aspect ratio and the number of resources. Such
a large number of test cases prevented us from being biased
towards a specific heuristic. We compared the execution time and
cumulative computational costs of the tasks against each of the 3
parameters.

7.1 Execution Time
This section compares the three parameters (plotted on x-axes)
against the execution time (plotted on y-axis) of the experiment.
Figure 6(b) shows a declination in the execution time as the
streaming between the components increases. The decline is
expected as a high level of streaming provided more chances for
co-scheduling, resulting in a reduced value at the y-axis. In
contrast, Figure 7(b) shows a rise in the overall execution time
resulting from the reduced spatial concurrency. The spatial
concurrency decreased as the aspect ratio was increased. On the
other hand, Figure 8 (b) shows an asymptotic behavior in the
curves as the number of resources increased. The execution time
was initially high owing to the low resource availability, which
limited the concurrent allocation of the components. However, as
the number of resources approximated the number of components,
a limiting behavior in the execution time can be observed. This
means that the application performance became less dependent on
resource availability and more on other parameters after a
threshold value.

HyBD based heuristics, when compared with breadth first and
depth first always performed better. However, HyBD_DELAY
always performed worse than HyBD_MAKESPAN, owing to the
delays that the former incurs to optimize CPU utilization, but
CPU time is saved at this expense as described next.

7.2 Cumulative Cost
Ideally, if all the components were executed independently, then
their cumulative cost would remain the same on individual
resources. However, owing to the normalization effect explained
earlier in Section 3.2, the cumulative cost of the application
actually increased. This relationship is important in order to
understand the analysis described in this section.
In Figures 6 (a), 7(a) and 8(a) the cumulative computational cost
for HyBD_DELAY remained the same and always lower
compared to other heuristics. This is because HyBD_DELAY
maximizes the resource utilization by optimizing the allocation of
downstream components based on their computational
requirements. Thus, a downstream component gets delayed in
cases where the upstream writer has more cost units than the
reader. This essentially saves time that would have been wasted
whilst waiting for data arrival. However, this is at the expense of
additional delays in the total make span of the application as
demonstrated in Figures 6(b), 7(b) and 8(b).

8. Conclusion and Future Work
In this paper we proposed GridRod, a new service oriented
workflow-scheduling tool. GridRod integrates GriddLeS and
Nimrod/G machinery for providing the orchestration services
based on web-and Grid-based architectures. A new heuristic
model called HyBD is proposed which exploits both spatial and
temporal concurrency between workflow components for
scheduling. The scheduler, in this case, not only allocates
workflow components to distributed grid resources but also
specifies the communication mechanism for inter-component
interaction. We suggest that the runtime communication
specification gives the proposed model an edge over the currently
existing workflow scheduling efforts. We leverage the already
existing flexible IO mechanisms provided by GriddLeS to achieve
such runtime flexibility. We believe that our work opens a new
field of dynamic workflow modeling and scheduling on which
further research is required. We also propose two novel heuristics
called HyBD_MAKESPAN and HyBD_DELAY under the HyBD
model as initial steps towards the new dynamic workflow-
scheduling model. As our proposed model is unlike other
prevalent approaches, we performed an empirical evaluation of
our heuristics. The obtained results show that both heuristics
behaved consistently with their respective objective functions
whilst scheduling workflow components. HyBD_MAKESPAN
reduced the application make-span in all the cases whereas
HyBD_DELAY always reduced the cumulative cost unit of the
application components, thereby saving a significant amount of
CPU time.
Our future efforts include the improvement of the current
scheduling model and investigation of advanced scheduling
heuristics. The objective of this investigation is to perform
efficient scheduling of applications with high communication to
computation ratios (CCRs). Furthermore, we are interested in
integrating GridRod with advanced workflow specification tools
such as Kepler for more comprehensive workflow specification,
driving us to develop more descriptive models of computation for
workflow orchestration.

9. REFERENCES
[1] Abramson, D., et al., High Performance Parametric Modeling

with Nimrod/G: Killer Application for the Global Grid ?, in
International Parallel and Distributed Processing
Symposium. 2000.

[2] Abramson, D. and J. Komineni, A Flexible IO Scheme for
Grid Workflows, in IPDPS-04. 2004: New Mexico.

[3] Ilkay Altintas, A.B., Kim Baldridge,Wibke Sudholt, Mark
Miller, Celine Amoreira,Yohann Potier and Bertram
Ludaescher. A Framework for the Design and Reuse of Grid
Workflows. in Intl. Workshop on Scientific Applications on
Grid Computing (SAG'04). 2005: Springer.

[4] The Taverna Project. [cited; Available from:
http://taverna.sourceforge.net.

[5] The Genie Project. [cited; Available from:
http://www.genie.ac.uk

[6] Anthony Mayer, S.M., Nathalie Furmento, Jeremy Cohen,
Murtaza Gulamali, Laurie Young, Ali Afzal Contact
Information, Steven Newhouse and John Darlington. ICENI:
An Integrated Grid Middleware to Support E-Science. in
Workshop on Component Models and Systems for Grid
Applications. 2004. Saint Malo, France: Springer US.

[7] K. Seymour, H.N., S. Matsuoka, D. Dongarra, C. Lee, and H.
Casanova, GridRPC: A remote procedure call api for grid
computing, in ICL Technical Report ICL-UT-02-06. June
2002, Innovative Computing Laboratory, Department of
Computer Science, University of Tennessee: Baltimore, MD,
USA.

[8] The VrGrads Project. [cited; Available from:
http://vgrads.rice.edu/.

[9] The Kepler Project. [cited; Available from: http://kepler-
project.org/.

[10] Messerschmitt, E.A.L.a.D.G. Static Scheduling of
Synchronous Data Flow Programs for Digital Signal
Processing. in IEEE Transactions on Computers. Jan 1987.

[11] Thomas L. Adam, K.M.C., J. R. Dickson. A comparison of
list schedules for parallel processing systems. in
Communications of the ACM. 1974: ACM Press New
York, NY, USA.

[12] Messerschmitt, E.A.L.a.D.G. Synchronous Data Flow. in
Proceedings of the IEEE. 1987.

[13] Kahn., G. The Semantics of a Simple language for Parallel
Programming. in In Proceedings of IFIP Congress. 1974:
North Holland Publishing Company.

[14] Matias, P.B.G.a.Y. New sampling-based summary statistics
for improving approximate query answers. in Proceedings of
the 1998 ACM SIGMOD international conference on
Management of data. 1998. Seattle, Washington, United
States.

[15] Charu C. Aggarwal, J.H., Jianyong Wang, Philip S. Yu. A
Framework for Clustering Evolving Data Streams in In
Proceeings of the 29th VLDB conference. 2003.

[16] Liang Chen Reddy, K.A., G. . GATES: a grid-based
middleware for processing distributed data streams. in In
Proceedings of IEEE Conference on High performance
Distributed Computing, 2004. Proceedings. 4-6 June 2004:
IEEE Computer Society Press.

[17] Ahmad, Y.-K.K.a.I. Static Scheduling Algorithms for
Allocating Directed Task Graphs to Multiprocessors. in
ACM Computing Surveys. 1999.

[18] Anthony Mayer, S.M., Nathalie Furmento, William Lee,
Steven Newhouse, John Darlington. ICENI Dataflow and

Workflow: Composition and Scheduling in Space and Time
in Proceedings of the Workshop on Component Models and
Systems for Grid Applications. 2003. Saint Malo, France:
SpringerLink.

[19] Ron Oldfield, D.K., Applications of Parallel I/O Oct 1996.
[20] Abramson, D., Kommineni, J., McGregor, J. and Katzfey, J.

An Atmospheric Sciences Workflow and its Implementation
with Web Services. in The International Conference on
Computational Sciences. June 6 – 9, 2004. Krakow Poland.

[21] Jette., M.A. Performance Characteristics of Gang
Scheduling in Multiprogrammed Environments. in In
Proceedings of the 1997 ACM/IEEE conference on
Supercomputing. Nov - 1997.

[22] Luiz Meyer, Mike Wilde, Marta Mattoso, Ian Foster.
Planning spatial workflows to optimize grid performance. in
Distributed systems and grid computing (DSGC). 2006:
ACM Press New York, NY, USA.

[23] Casanova, H., et al. Heuristics for Scheduling Parameter
Sweep Applications in Grid Environments. in In Proceedings
of the 9th Heterogeneous Computing Workshop (HCW00).
2000.

[24] Casanova, H., et al., The AppLeS Parameter Sweep
Template: User-Level Middleware for the Grid, in In
Proceedings of the Super Computing Conference (SC'2000).
2001.

[25] Abramson, J.K.a.D. GriddLeS Enhancements and Building
Virtual Applications for the GRID with Legacy Components.
in European grid conference. 2005. Amsterdam: Springer.

[26] Stiles, J.R., et al., Monte Carlo simulation of neuromuscular
transmitter release using MCell, a general simulator of
cellular physiological processes. Computational
Neuroscience, 1998: p. 279-284.

[27] Foster, I. and C. Kesselman, Globus: A Meta-computing
Infrastructure Toolkit. International Journal of
Supercomputer Applications, 1997. 11(2): p. 115-128.

[28] Hategan, M., et al., GridAnt - A Client Controllable Grid
Workflow System. 2003, Argonne National Laboratory.

[29] Sarkar, V., Partitioning and Scheduling Parallel Programs
for Multiprocessors. 1989: Paperback. 215.

[30] S. Cheng, J.S.a.K.R. Dynamic Scheduling of Groups of Tasks
with Precedence Constraints in Distributed Hard Real-Time
Systems. in Real-Time Symposium. December 1986.

[31] H. Topcuoglu, S.H., and M.Y. Wu. Performance-Effective
and Low-Complexity Task Scheduling for Heterogeneous
Computing. in IEEE Trans. Parallel and Distributed
Systems. 2002.

[32] Andrea C. Arpaci-Dusseau, D.E.C., Alan M. Mainwaring.
Scheduling with Implicit Information in Distributed Systems.
in Joint Conference Measurement and Modeling Computer
Systems. 1998. Madison, Wisconsin.

[33] Python xml.dom
[34] DAGMan (Directed Acyclic Graph Manager).
[35] Garg, A.a.R., Adrian Straight-Line Drawings of Binary Trees

with Linear Area and Arbitrary Aspect Ratio. in Proceedings
Graph Drawing. 2002. Irvine, CA, USA.

[36] Rich Wolski, N.T.S., Jim Hayes. The Network Weather
Service: A Distributed Resource Performance Forecasting
Service for Metacomputing in Future Generation Computer
Systems. 1998.

