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ABSTRACT 
Grid Workflows are emerging as practical programming models 
for solving large e-scientific problems on the Grid. However, it is 
typically assumed that the workflow components either read or 
write data to conventional files, which are copied from one 
execution stage to another, or they are tightly coupled using IPC 
libraries such as MPI or distributed streaming. More flexible 
communication can be achieved by overloading conventional 
READ and WRITE operations with advanced IO mechanisms 
such as sockets, streams and pipes, as is done in the GriddLeS 
environment. Such flexibility allows the pipelining of temporally 
dependent components, or in contrast, delaying of tightly coupled 
computations based on the current resource availability and 
network connectivity. However, it is also harder to schedule the 
workflow, because the communication mode may not be decided 
until run time. In this paper, we propose a new scheduling model 
that leverages such communication flexibility and allows us to 
generate dynamic runtime schedules. The scheduler in this case, 
not only allocates components to distributed Grid resources, but 
also specifies the inter-component communication mechanism 
(socket, pipe etc.) The current model is implemented as a dynamic 
workflow scheduling tool called GridRod, which harnesses 
Nimrod/G's [1] Grid services and GriddLeS [2] web services. 

Categories and Subject Descriptors 
I.2.8 [Artificial Intelligence]: Heuristic Methods and Scheduling 
– runtime resource allocation and communication specification, 
spatio/temporal concurrency. 

 

General Terms 
Algorithms, Management, Performance, Design, Reliability. 

 

Keywords 
Models of Computation, runtime scheduling, communication 
specification, spatial and temporal concurrency. 

 

1. INTRODUCTION 
The Grid Virtual Organization (VO) model integrates distributed 
resources such as high performance clusters, distributed data 
repositories, scientific instruments and specialized hardware 
devices to provide a collaborative platform to perform e-Science 
[3, 4]. Such platforms are used to solve large-scale problems by 
deploying complex application models, such as GENIE [1], 
specified as Grid workflows. The components of these workflows 
may consist of monolithic applications, data processing software, 
scientific instruments, visualization interfaces, or even remote 
Grid/Web services. Conceptually, formulation of this single 
“integrated application model” is fairly simple. However, its 
deployment and scheduling on highly distributed, dynamic and 
heterogeneous Grid environments is both interesting and 
challenging.  
Accordingly, several projects such as ICENI [5], GridRPC [6] and 
VGrADS [2] implement a range of scheduling models for 
achieving high application performance whilst meeting such 
challenges. However, existing work does not allow the workflow 
to adapt to the underlying resource base that is available at 
execution time. Typically, there are two orthogonal approaches 
for modeling Grid workflows. The first approach temporally 
orders the workflow execution, where data is transferred from one 
execution stage to another as files. The second approach binds the 
components as co-executing computations communicating 
through unidirectional FIFO channels via pipes, streams or 
message passing. Both approaches tightly couple the 
communication and thereby restrict the runtime component 
allocation. Importantly, a designer specifies which approach to 
use statically when the workflow is built. 
Communication libraries such as GriddLeS [2],  allows the 
communication mode to be delayed until run time. This means 
that it is possible to choose the most appropriate mechanism 
depending on the resource base. For example, if there are 
sufficient resources, then it may be possible to co-schedule a 
number of the workflow components, and have these run 
concurrently. On the other hand, if there are not enough resources 
to run the components at the same time, then it is best to run each 
one sequentially, and to write results to intermediate files in 
between.  GriddLeS provides this flexibility by intercepting and 
redirecting primitive IO operations (such as READ and WRITE) 
to a local file, a remote file or a remote socket. In this way, 
application components behave as if they are executing in a 
conventional file system whilst leveraging the distributed 
computational power of the Grid. Such flexible specification 
allows pipelining temporally dependent components or, in 
contrast, delaying tightly coupled co-executing computations. 
Furthermore, this exposes both temporal and spatial concurrency 
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in the Grid workflows, which can be exploited for achieving high 
throughput. Dynamic specification of inter-component 
communication in this way provides more opportunities to 
optimize runtime component allocation based on the current Grid 
state. 
In this paper, we propose a new model, which makes flexible 
runtime decisions for scheduling Grid workflow components and 
for specifying inter-component communication behaviour. The 
model leverages the IO mechanisms already provided by 
GriddLeS to generate lazy runtime schedules. In a lazy approach 
the runtime scheduling decisions are delayed as much as possible.  
This allows the scheduling model to use the current information 
about the resource availability and network connectivity for 
achieving the optimisation. So, in cases where the data generation 
and consumption is continuous, the scheduler pipelines the 
distributed components when sufficient computational and 
network resources are available. In contrast, if the application 
components have producer-consumer relationships, then the 
model delays the execution of the downstream computation in 
case of resource unavailability or in order to optimise the 
execution overlap. So, if the data transfer on IO channels is 
unidirectional, the data can be temporarily stored in a buffer at the 
writer’s end and later copied to the reader’s location for its 
execution when sufficient resources become available. This would 
remove the necessity to execute the tightly coupled applications 
together, providing opportunities to optimise scheduling as well as 
improving resource utilization and consequently, applications 
performance. The scheduling function in this case is therefore a 
composite function, which not only allocates computational 
components to Grid resources, but also specifies how they should 
interact. The proposed model is embedded in the Nimrod/G 
framework [1], leveraging the flexible IO infrastructure already 
provided by GriddLeS. This infrastructure provides opportunities 
for spatial (parallelism) as well as temporal (pipelining) co-
execution of the components. In order to maximize the 
throughput, both types of concurrency should be exploited. 
However, most Grid scheduling heuristics [2, 5, 7] [8, 9] tend to 
search in only one of the two orthogonal directions, exploiting 
only one type of concurrency. To address this, we propose a new 
class of scheduling heuristics called HyBD, which represents the 
hybrid of Breadth First and Depth First. The heuristics iteratively 
explores the workflow graph in both directions to optimise 
scheduling. Two novel heuristics, HyBD_MAKESPAN and 
HyBD_DELAY, are proposed under this class with different 
objective functions. The resulting infrastructure called GridRod is 
a step towards building a service-oriented architecture (SOA) for 
Grid Workflow Orchestration. GridRod leverages GriddLeS web 
services and Nimrod/G’s Grid services to achieve the same. 

 

2. Grid Workflows; An orchestration 
perspective 
This section discusses Grid Workflows and workflow modeling 
techniques mainly from the orchestration and scheduling 
perspective. Synchronous Data Flow (SDF) [10] and Kahn 
process Nets (PN) [11], the two most prevalent workflow-
modeling approaches, are described. These models are inherited 
from the set of existing models of computation in Digital Signal 
Processing (DSP). Variants of these models have been used in the 
projects such as Kepler [7] and ICENI for specifying Grid 

workflows, with some nomenclature differences. In the rest of the 
paper, we use the Kepler nomenclature (PN and SDF) as a 
reference.   
General definition: We define Grid workflows as an integration of 
distributed standalone components interacting with each other by 
exchanging data through flexible communication links. The 
workflow is initially defined in an abstract form followed by the 
concrete mapping or triggering of components by an orchestration 
engine to appropriate Grid resources, whilst respecting 
dependencies. Also, Grid workflows can be represented as 
Directed Acyclic Graphs (DAGs). In this perspective, workflow 
modeling defines the workflow components as DAG nodes and 
their relationships as edges. 

2.1 Grid Workflow Models 
• SDF – Components in Grid-based SDF models are 

interconnected as temporally dependent units. Each 
component reads and writes data to a local file, in which case 
the inter-component communication is established by simply 
copying the data generated by an upstream writer to the 
reader’s location. Currently, SDF is the most common model 
for Grid workflow specification as it allows integration of 
isolated components using a simple reader/writer 
relationship. However, for the very same reason, pipelining 
between these components becomes challenging.  

• PN – Components in a PN model are linked by unidirectional 
first-in-first-out (FIFO) channels. All components 
communicate through these channels and their execution is 
synchronized (by essentially blocking and unblocking the 
reader process) depending on the data availability on the 
input channels. Examples of Grid based process networks 
include distributed streaming applications such as count-
Samps [12] and Clust-streams [13]. These applications occur 
in scientific areas where a large amount of data is being 
continuously generated and must be processed in real-time. 
The Gates project [14], specifically targets scheduling and 
migration of these applications. However, it is assumed that 
applications modeled under PN have a communication layer 
already present between the components for coherent inter-
component communication.  
 

2.2 Static Modeling 
Current Grid workflow modeling approaches tightly couple the 
inter-component communication, restricting the lazy runtime 
scheduling based on the latest CPU and network state. So, if the 
workflow is modeled as an SDF or a PN, then the components 
should communicate according to the tight coupling entailed by 
the model. This limits their dynamic allocation to distributed 
resources. A Grid workflow may well be constituted from a 
variety of components and therefore may have its sections 
modeled differently (as SDF or PN).  
As mentioned earlier, if primitive I/Os such as read () and write () 
can be overridden by sockets, streams and pipes, then temporally 
dependent computations (modeled as SDF) can be pipelined 
provided the data is written and read continuously and sufficient 
resources are available. In this way SDF applications can behave 
as a network of dataflow processes, which is a special case of PN, 
and the main focus of our current work. 
 



PN models, while providing concurrency and parallelism, tightly 
couple the communication between application components, 
which are assumed to interact using a pre-existing communication 
mechanism. Further, co-scheduling workflow components might 
not be optimal at all times. Consider a situation where a 
downstream reader takes less time to execute than its parent 
writer, or where the upstream writer takes only half of its 
execution period to generate the data that is to be consumed by the 
reader. Co-scheduling the components in these situations (a 
typical static co-scheduling approach [15]) would hold the 
reader’s resource while waiting for the data availability, leading to 
poor resource utilization. Further, it is very likely, in highly 
dynamic environments, that by the time the reader is actually 
ready for execution, its resource is no longer the ‘best resource’ or 
even available for the execution. In these scenarios, a better 
approach would be to delay the execution of the downstream 
reader.  
The knowledge of inherent communication behavior of the 
components is important in optimizing the scheduling. Also, such 
knowledge can be utilized to understand the bandwidth/latency 
and data requirements of the components thereby providing more 
chances for the scheduler to make optimized runtime decisions. 
In the next section we describe our scheduling model, which 
dynamically schedules workflow components as clusters of PN 
and SDF based on their communication behavior. The scheduling 
model leverages the IO infrastructure provided by GriddLeS to 
achieve such modeling. Applications exhibiting asynchronous 
read/write patterns specifically benefit from such scheduling. 
 

3. Dynamic Scheduling Model 
Our model adopts a two-step process to optimize runtime 
scheduling of the workflow components. The first step is the 
clustering, which involves analytical selection of downstream 
components based on their communication behavior. The second 
step involves the following: 

• Allocation of the selected components to Grid resources based 
on data availability and CPU performance.  

• Selection of the appropriate communication mechanism to 
achieve better runtime application performance.  

A new heuristic model called HyBD is proposed in this paper and 
two novel heuristics based on the proposed model are described. 

3.1 HyBD Heuristics 
HyBD stands for Hybrid of Breadth First and Depth First, and 
signifies a hybrid of the two prevalent search approaches. A 
problem space can be described as a Directed Acyclic Graph 
(DAG) in at least two orthogonal representations, namely spatial 

and temporal [16]. In a spatial representation, all the components 
exist simultaneously and are executed concurrently, (spatial 
parallelism). On the other hand, in a temporal representation, the 
components have temporal precedence and are executed either in 
a sequential or a concurrent pipeline, depending on their 
communication behavior. The key to improve throughput is to 
explore both types of concurrency in order to optimize scheduling. 
However, existing graph exploration algorithms search in either 
of the two orthogonal directions (spatial or temporal), rather than 
in both. Thus an algorithm such as breadth first would explore the 
DAG spatially, whereas, the depth first would search it 
temporally. On the other hand, we are interested in finding a local 
optimization and therefore intend to explore the graph in both 
directions. For this, we have developed variants of Breadth and 
Depth First search approaches, which performs repeated searches 
along the orthogonal directions until a halting condition is 
encountered. In which case, each repetition essentially appends 
the visited nodes to a node-cluster list. However, the ordering in 
which the nodes are visited depends on the search method and the 
depth and breadth limits are obtained dynamically. This approach 
provides us with local search completeness to optimize 
component clustering. 
 

3.2 Component Clustering 
The clustering depends on the data generation and consumption 
patterns of the workflow components. Oldfield and Koltz [17], 
outline several scientific applications and their I/O behavior, 
including medical applications, seismic imaging, climate 
modeling, computational chemistry and biology. The report 
implies that most applications show asynchronous I/O patterns, 
and the basic read/write operations are partially ordered. Also, 
from our experiences in executing climate modeling applications 
[2, 18], we observed that some applications generate data 
continuously, whereas others perform this operation in single or 
discrete phases. This information is crucial and can be used for 
making clustering decisions in order to optimize the overlap 
between component executions.  
Our scheduling model clusters the downstream components, 
which consume and generate data continuously as PN, and leaves 
the rest to behave as SDF (See Stages in Figure 1). The traversal 
is performed iteratively on every element of the set of temporally 
independent nodes. A child node becomes temporally independent 
once its parent finishes execution. The traversal stops if sufficient 
resources are not available or the heuristic decides to delay the 
execution of a downstream component due to data unavailability. 
This leaves the unscheduled downstream components waiting for 
resource or data availability. The clustered components are 
subsequently allocated and executed on distributed resources. At 

 

 
Figure 1. The graph has symmetric depth and breadth. The breadth of a graph defines the spatial concurrency between the 
components. The different shades of Gray represent two different clusters of PN within the same graph. The round-ended 
arrows mean that the two connected components can be streamed and concurrently executed.  The large arrows show 
different scheduling states. 



this point we propose that our scheduling approach is different 
from the conventional gang scheduling [19] as well as Gates’ 
algorithm [14], as we assume that the components are non-pre-
emptive applications and cannot be migrated once they start 
execution.  
Ideally, if there are sufficient resources available, all clustered 
components can be co-scheduled; in which case, the execution 
time of downstream computations within the cluster would be 
normalized to the computation time of its parent. Figure 2(b) 
illustrates this scenario where jobs below are automatically 
stretched to the length of their respective parents. We would call 
this the normalization effect and would use it as a reference in the 
experiments section. This approach reduces the overall application 
make-span. However, it wastes CPU time because downstream 
computations have to wait for the data to arrive. Regardless, if no 
resources are available for further scheduling, then the delay is 
automatic. In situations where resource utilization is more 
important than reducing the application make-span, a delay may 
well be enforced explicitly. Thus, in cases where the estimated 
computation time of a downstream reader is lower than its parent, 
then it can be delayed for the difference in their execution time. 
This improves CPU utilization, at the expense of an increase in 
the application make span. We call this the delay effect as shown 
in Figure 2(c). 

The third possibility is that a downstream computation is 
scheduled only after its parent finishes execution such as in SDF. 
This situation is likely to occur in cases where the upstream 
computation generates data in a single phase, which is generally at 
the end of its execution. 
Depending on the possibilities described above, the application 
components are clustered and further allocated to distributed 
resources. However, in every case, the scheduling of downstream 
computations is delayed as much as possible by exploiting the 
components’ inherent communication patterns. This delay is 
desired in order to get the latest system  (network and CPU) 
information to generate better schedules. Grid workflows 
consisting of components with different write/read behaviors 
would specifically benefit from such an approach by optimizing 
the execution overlap between components, resulting in an 
improved workflow performance.  

3.3 Component Allocation and 
Communication Specification 
The second step involves allocation of the clustered components 
to best resources. This step also specifies how the scheduled 
components would communicate i.e. which GriddLeS IO 
mechanism should be implemented. 

3.3.1 Component Allocation 
Allocating components based on their data dependency can 
significantly improve application performance by reducing the 
communication overheads. In many scientific areas such as 
astronomy, geographic information systems and earth systems, 
data sets characterize the regions of the problem space. As a 
result, components processing common data sets exhibit spatial 
proximity. Luiz et al. [20] have demonstrated that allocating 
components based on such spatial proximity can reduce the 
application make-span. This is specifically true when the 
dependency between components in terms of file sharing is high. 
Casanova et al in [21, 22] demonstrate the efficiency of pre-
staging and reusing the shared files to reduce data transfer 
overheads. We also base the allocation of clustered components 
on the similar criteria to achieve application performance as well 
as data and resource utilization. Once an optimum resource is 
chosen, then the communication behavior is dynamically specified 
based on current network and CPU states as described below. 

3.3.2 Communication Specification 
In the case of PN, there are several ways in which communication 
behavior can be specified. Depending on the location of the reader 
and writer, the IO can be redirected to a local file or remote file or 
a pipe. However, when remote communication is performed, a 
single point of network or CPU failure, which is very common in 
Grid environments, would require rescheduling of the 
components. This approach is clearly not very fault tolerant; 
would waste a lot of CPU time and incur additional data transfer 
costs. An alternative approach is to interpose a buffer at both the 
reader and writer’s end. So, if the writing/reading is unidirectional 
then the writer and reader can uninterruptedly write and read data 
from their respective local buffers without getting affected by 
network failures. The proxy mechanism [23] implemented in 
Griddles allows such communication and also ensures data 
transfer and communication synchronization between the writer 
and reader buffers. Regardless of the time a downstream reader 
takes to get ready for the execution, the data which has been 
already generated on the writer’s end can be copied using  

 

 
Figure 2 (a). Applications with different cost units. Block 
~ Cost unit. 
 

 

 
Figure 2(b). The Normalization Effect; The computation 
time of downstream computation is getting normalized. 
The total make-span is 10 cost units, however, with an 
additional wait time. 
 

 

 
Figure 2(c). The Delay Effect. The delay in the 
downstream computation accrued an additional time of 3 
cost units in the total make span. Nevertheless saving the 
CPU hours. 

 



specialized multi-channel file transfer mechanisms such as 
GridFTP [24], also supported in GriddLeS, to the reader’s buffer. 
The reader can therefore begin execution assuming that the file is 
available at its end.  Similarly, in the case of SDF, data generated 
by the writer can also be copied using such specialized copy 
mechanisms.  

Once the components are scheduled and communication between 
them is specified, appropriate Grid/Web services can be invoked 
to perform component execution and communication. Figure 1 
shows temporal instances of the workflow DAG where parts of it 
are scheduled as PN and the rest of them are behaving as SDF. 

 Global Variables 
 Sn  |V| {set of components or nodes}  
 R   N  {number of Resources} 
 Cp  Cp is a subset of |E| {set of parallel edges} 
 CS  Cs is a subset of |E| {set of sequential edges} 
 procedure schedule  
 while Sn ≠ Ø d o 
  Ssj  0  {set of sorted ready jobs} 
  Ssj  call(getReadyJobs,NULL) {get Sorted Ready Jobs} 
  R  R + call(relinquishResources,NULL)\n 
   {relinquish resources from done jobs} 
  SBF  Ø {set of clustered jobs from BF traversal}  
  CBF  0 {total cost units for Breadth First} 
  SDF  Ø {set of clustered jobs from DF traversal} 
  CDF  0 {total cost units for Depth First} 
  call(traverseBF, Ssj, CBF, SBF) 

 for each pj Є Ssj do 
  

 CSDF  0 {total cost units for   
 Depth First for single seed} 
 SSDF  Ø {set of clustered  
 jobs from DF traversal for single seed} 
 call(traverseDF, pj,, CSDF, SSDF) 
 SDF   SDF + SSDF 
 CDF   CDF + CSDF 

  end for 
  
  if CBF < CDF then 
   execute SDF 
   Sn   Sn - SDF  
  else  
   execute SBF 
   Sn   Sn - SBF 
  end if 
 end while 
 ****************************************************************
  
 procedure traverseDF(p, ,, CDF, SDF) 
  Jc  {q : for all p q, set of all children of p}  

 for each q Є Jc: 
   if CHILDREN(q) ≠ Ø do 
    traverseDF(q,, CBF, SBF) 
   else 
    r  allocate(q) 
    if x do  

 CDF += c(q) {c: cost unit} 
 SDF   SDF + q 
 R  R - r {remove chosen resource} 

    end if 
   end if 
  end for 
  
  
  

 

procedure TraverseBF (Ssj, CBF, SBF): 
 LBF  { Ssj } {LBF set of BF jobs; local variable} 
 while LBF ≠ Ø do 
  for each p Є LBF 
   LBF  LBF + CHILDREN(p) 
   x  allocate(p) 
   if x do  

CBF += c(p) {c: cost unit} 
SBF   SBF + p 
R  R - r {remove chosen resource} 

 end if 
  end for 

end while 
 
****************************************************************** 
 
procedure Allocate (p) 
 if !R do 
  return 0 
 end if  
 q  PARENT(p) {q: parent of p} 
 if (Heuristic == HyBD_DELAY)&& c(p) < c(q) do  

return 0 
 else 
  r  call(chooseResource, p, R) {select resource for p   
from R} 

call(chooseCommunication, p, q)\n 
{select appropriate communication between the p and q} 
return r 

 end if 
 

****************************************************************** 
  
Procedure getReadyJobs (NULL) 
 for each p in Sn do 
  q  PARENT(p) 
  e  p q {e: the edge between p and q} 
  if STATUS(q) in (‘done’,’executing’) do 
   if e Є Cp && R > 1 && do 
    STATUS(p)  ‘ready’ 
   else if e Є Cs && R > 1 && STATUS(q) = ‘done’ do 
    STATUS(p)  ‘ready’ 
   end if 
  else if STATUS(p) == ‘pending’ do 
   if ! PENDINGTIME(p) do 
    STATUS(p)  ‘ready’ 
  else 
   STATUS(p)  STATUS(p) 
 
  end if 
 end for 
 return Sn 
 

 
  

Figure 3. Pseudo Code 



3.4 Scheduling Heuristics 
This section describes two new scheduling heuristics, namely 
HyBD_MAKESPAN and HyBD_DELAY, each having a 
different objective function for task allocation. These heuristics 
are prototypes of a class of heuristics, called HyBD, which we 
have described earlier in this paper. 

3.4.1 HyBD_MAKESPAN 
HyBD_MAKESPAN focuses on minimizing the total application 
make-span giving less priority to CPU utilization. Accordingly, it 
co-schedules as many components as possible without any delay. 
This results in CPU overheads as some of the downstream 
computations hold the resource whilst waiting for the data arrival 
at their respective input channels, owing to the normalization 
effect explained earlier. However, our simulation results show that 
the overall make-span of the application is reduced by this 
heuristic at the expense of additional CPU cost.  

3.4.2 HyBD_DELAY 
The primary objective of HyBD_DELAY is to maximize CPU 
utilization at the expense of additional delay in the application 
make-span. Nevertheless, this approach is beneficial in situations 
where the CPU costs are high, in which case the component 
allocation can be optimized according to its computational 
requirements.  
The pseudo code of HyBD heuristics is shown in Figure 3. 
 

4. Implementation; GridRod 
The conceptual model described above has been implemented as a 
workflow orchestration tool called GridRod (see Figure 4).  
GridRod integrates and harnesses GriddLeS web services and 
Nimrod/G’s Grid services to perform orchestration operations. 
Apart from high-level operations such as component allocation 
and communication specification, the integration allowed 
leveraging of already implemented low-level orchestration 
services in GriddLeS and Nimrod/G. These services include job 
launching, job execution and communication establishment.  The 
proposed scheduling model has been embedded in Nimrod/G and 
the new heuristics were added to the already existing suit of 
heuristics to schedule workflow components.  
After the components are allocated to suitable resources, the 
scheduling module considers the underlying resource 
infrastructure (e.g. Globus [1], Condor [25]) and invokes 
appropriate actuation services to launch the components (Figure 4, 
components x, y and z) on remote resources (Figure 4, edgeJL). 
Likewise, the scheduling module also calls the GriddLeS web 
service to interpose appropriate IO mechanisms (edgeCS) for 
inter-component communication. For example, edgeC4 in Figure 
4 represents a local file mapping, in which case, comp y and z 
read and write data to a local file, and the execution coherence is 
handled by GriddLeS. Similarly, edgeC1 represents a direct 
socket, edgeC2 a direct file copy and edgeC3 a proxy-based data 
transfer mapping. Each communication edge (edgeCn where n Є 
{1,2,3,4}) is specified as a logical entry in the GriddLeS Naming 
Service (GNS) [2]. These entries are further used by GriddLeS to 
interpose the specified communication mechanism. GridRod 
utilizes Nimrod/G as the experiment launch pad and GriddLeS as 
its basic communication layer to handle inter-component 
interaction. 

 

5. Related Work 
In this section we describe some of the related work, which 
complements our proposed model. However, to the best of our 
literature review, we could not find a direct comparison with our 
model, and we therefore performed an empirical analysis. 

5.1 Co-scheduling Overview 
The DAG co-scheduling problem is not new, and there exists a 
number of static [9, 26] and dynamic [25, 27] models for 
scheduling Grid workflow components. Grid workflow 
components are primarily non-preemptive applications and the 
data arrival and consumption times on communication links are 
unpredictable. This makes their scheduling on dynamic and 
heterogeneous platforms such as the Grid NP-Hard. 
Consequently, most of the scheduling effort focuses on 
developing the “heuristics” that targets a near optimal solution to 
the problem. These heuristics can be categorized as follows  

• List Based – HEFT [28] 

• Clustering Based – Gang Scheduling [19] 

• Implicit Co-scheduling heuristics – Spin Block [29] 

• Partition Based – Pegasus [30] 

• First In First Out Based – GridRPC [6] 

• Ordering Based – ICENI [5], Condor-DagMAN [31]  

• Data dependency based – APST [21]  
List based algorithms generate static schedules, which are 
ineffective under dynamic network and resource conditions. There 
is a chance, for example, that the resource on which a component 
was statically scheduled is no longer optimal or available at the 
time of component execution. Clustering-based algorithms (e.g. 
gang scheduling [19]) involves scheduling of pre-emptive 
processes, however, we assume that the workflow components are 
non pre-emptive applications. Similarly, implicit co-scheduling 
schemes, implemented primarily in cluster environments, assume 
that the components interact with each other by passing messages, 
e.g., using MPI, and by blocking and unblocking their execution, 
something that does not apply to our situation.   
Pegasus implements a just-in-time level-based task partitioning 
algorithm to schedule workflow components. However, arbitrarily 
partitioning the graph and clustering tasks based on levels delays 
the execution of the whole cluster just because of one task waiting 
for its execution trigger. On the other hand, the FIFO-based 
GridRPC co-scheduling model is very simple and does not 
consider issues such as network and computational resource 
performance when making scheduling decisions.  
Also, all of these scheduling models, including ICENI and APST, 
are designed to optimise the task allocation and have limited 
control over the communication specification. As mentioned 
earlier, such static modelling restricts the scheduling of workflow 
components either as SDF or PN. However, we are interested not 
only in dynamically allocating the components but also in 
specifying how and when the components should communicate, 
which made a direct comparison of our model with other work 
difficult.  



An empirical experimental analysis of our scheduling model was 
performed. Non-iterative variants of simple Breadth First and 
Depth First algorithms were developed, which provided us with 
bounds to compare our heuristics. The non-iterative variants 
search the graph in one of the two orthogonal directions. 
However, they use the common task allocation and 
communication specification functions used by the HyBD 
heuristics.  

6. Evaluation 
 

6.1 Evaluation Metrics 
The metrics against which we compared our proposed heuristics 
are described below: 
1. Application make-span: We propose that, by exploiting the 

spatial and temporal parallelism between application 
components, the total make-span of the application can be 
significantly reduced. This makes application make-span a 
suitable metric to compare how well a heuristic explores the 
problem space and thereby improves the overall 
performance. 

2. CPU utilization: We measured this metric in terms of 
cumulative execution time of all the components in the 
application. Both CPU utilization and cumulative execution 
time are inversely proportional to each other, which means 
that a high cumulative cost is equal to low CPU utilization. 

 

6.2 Random Graph Generator 
As described earlier, a workflow may have different concurrency 
patterns (temporal and spatial) between components, depending 
on their inherent communication behavior. Temporal concurrency 
refers to streamed pipelining whereas spatial concurrency 
represents parallelism. In order to generate graphs with varied 

concurrency patterns, we developed a random graph generator. 
The parameters for graph generation are the following: 

6.2.1 Aspect Ratio 
This parameter defines the ratio of breadth1 vs. depth in the graph, 
and is specified as a value between 0 and 1. A value of 0 
corresponds to a completely parallel application (breadth = 
number of nodes), e.g. a Parameter Sweep Application (PSA) (See 
figure 5(a) with breadth = number of nodes –1). On the other 
hand, a value of 1 corresponds to a sequential application (depth = 
number of nodes) (See figure 5(b)). A value of 0.5 generates the 
graph with a balanced depth vs. breadth ratio. The aspect ratio 
also determines the out-degree of the nodes, although we assume 
that all the nodes have unit or 1 in-degree. We are aware of the 
usage of the term aspect ratio in other literature such as graph 
drawing and image manipulation [32], and suggest that our 
definition is different from them. To the best of our literature 
search in graph generation, we could not find any terminology, 
which defines the aspect of breadth vs. depth, and therefore 
proposed our own definition. 

 
 

                                                                 
1 The Breadth describes the spatial parallelism of the graph. 
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6.2.2 Streaming Factor 
This parameter is a probability measure of the streaming between 
workflow components. A streaming value of 0 means no 
streaming. All temporally non-pipelined SDF models come under 
this category, where a child waits for the termination of its parent 
to start execution. On the other hand, a value of 1 corresponds to a 
typical PN model where all the nodes execute concurrently. A 
value of 0.5 represents a symmetrically modeled workflow. 
Different combinations of aspect ratio and streaming factor 
generate various temporal and spatial concurrency patterns in the 
graph, which should be appropriately exploited by the heuristics 
for optimizing component allocation. 

6.2.3 Number of Resources 
The analysis of heuristics under limited resource conditions is 
necessary especially when the number of tasks is relatively higher 
than the number of accessible resources. 

6.3 The Simulator 
Analyzing the behavior of scheduling models on large, 
heterogeneous and dynamic platforms such as a Grid is extremely 
difficult. The reason is that such platforms are highly 
unpredictable, and performing a meaningful comparison between 
the results obtained from real test cases is difficult. Furthermore, 
to perform the scalability analysis of the heuristic, a setup 
involving a large number of network and computational resources 
is required. This makes simulation an appropriate and preferable 
choice for conducting experimental evaluation.  
In order to perform such analysis, we have developed a discrete 
event simulator in which our proposed heuristics are integrated. In 
order to simulate the Grid behavior, we used the Network 
Weather Services (NWS) [33] traces taken from several different 
resources. 

7. Experiments and Results 
We conducted a large set of 3,920 experiments with graphs, 
obtained from different combinations of parameters, namely 
streaming factor, aspect ratio and the number of resources. Such 
a large number of test cases prevented us from being biased 
towards a specific heuristic. We compared the execution time and 
cumulative computational costs of the tasks against each of the 3 
parameters. 

7.1 Execution Time 
This section compares the three parameters (plotted on x-axes) 
against the execution time (plotted on y-axis) of the experiment. 
Figure 6(b) shows a declination in the execution time as the 
streaming between the components increases. The decline is 
expected as a high level of streaming provided more chances for 
co-scheduling, resulting in a reduced value at the y-axis. In 
contrast, Figure 7(b) shows a rise in the overall execution time 
resulting from the reduced spatial concurrency. The spatial 
concurrency decreased as the aspect ratio was increased. On the 
other hand, Figure 8 (b) shows an asymptotic behavior in the 
curves as the number of resources increased. The execution time 
was initially high owing to the low resource availability, which 
limited the concurrent allocation of the components. However, as 
the number of resources approximated the number of components, 
a limiting behavior in the execution time can be observed. This 
means that the application performance became less dependent on 
resource availability and more on other parameters after a 
threshold value. 

HyBD based heuristics, when compared with breadth first and 
depth first always performed better. However, HyBD_DELAY 
always performed worse than HyBD_MAKESPAN, owing to the 
delays that the former incurs to optimize CPU utilization, but 
CPU time is saved at this expense as described next. 

7.2 Cumulative Cost 
Ideally, if all the components were executed independently, then 
their cumulative cost would remain the same on individual 
resources. However, owing to the normalization effect explained 
earlier in Section 3.2, the cumulative cost of the application 
actually increased. This relationship is important in order to 
understand the analysis described in this section.  
In Figures 6 (a), 7(a) and 8(a) the cumulative computational cost 
for HyBD_DELAY remained the same and always lower 
compared to other heuristics. This is because HyBD_DELAY 
maximizes the resource utilization by optimizing the allocation of 
downstream components based on their computational 
requirements. Thus, a downstream component gets delayed in 
cases where the upstream writer has more cost units than the 
reader. This essentially saves time that would have been wasted 
whilst waiting for data arrival. However, this is at the expense of 
additional delays in the total make span of the application as 
demonstrated in Figures 6(b), 7(b) and 8(b). 

8. Conclusion and Future Work 
In this paper we proposed GridRod, a new service oriented 
workflow-scheduling tool. GridRod integrates GriddLeS and 
Nimrod/G machinery for providing the orchestration services 
based on web-and Grid-based architectures. A new heuristic 
model called HyBD is proposed which exploits both spatial and 
temporal concurrency between workflow components for 
scheduling. The scheduler, in this case, not only allocates 
workflow components to distributed grid resources but also 
specifies the communication mechanism for inter-component 
interaction. We suggest that the runtime communication 
specification gives the proposed model an edge over the currently 
existing workflow scheduling efforts. We leverage the already 
existing flexible IO mechanisms provided by GriddLeS to achieve 
such runtime flexibility.  We believe that our work opens a new 
field of dynamic workflow modeling and scheduling on which 
further research is required. We also propose two novel heuristics 
called HyBD_MAKESPAN and HyBD_DELAY under the HyBD 
model as initial steps towards the new dynamic workflow-
scheduling model. As our proposed model is unlike other 
prevalent approaches, we performed an empirical evaluation of 
our heuristics. The obtained results show that both heuristics 
behaved consistently with their respective objective functions 
whilst scheduling workflow components. HyBD_MAKESPAN 
reduced the application make-span in all the cases whereas 
HyBD_DELAY always reduced the cumulative cost unit of the 
application components, thereby saving a significant amount of 
CPU time. 
Our future efforts include the improvement of the current 
scheduling model and investigation of advanced scheduling 
heuristics. The objective of this investigation is to perform 
efficient scheduling of applications with high communication to 
computation ratios (CCRs). Furthermore, we are interested in 
integrating GridRod with advanced workflow specification tools 
such as Kepler for more comprehensive workflow specification, 
driving us to develop more descriptive models of computation for 
workflow orchestration. 
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