SIAM J. COMPUT. (© 2007 Society for Industrial and Applied Mathematics
Vol. 37, No. 2, pp. 502-521

DEFINABILITY OF LANGUAGES BY GENERALIZED
FIRST-ORDER FORMULAS OVER (N, +)*

AMITABHA ROY! AND HOWARD STRAUBINGT

Abstract. We consider an extension of first-order logic by modular quantifiers of a fixed modulus
q. Drawing on collapse results from finite model theory and techniques of finite semigroup theory,
we show that if the only available numerical predicate is addition, then sentences in this logic cannot
define the set of bit strings in which the number of 1’s is divisible by a prime p that does not divide
q. More generally, we completely characterize the regular languages definable in this logic. The
corresponding statement, with addition replaced by arbitrary numerical predicates, is equivalent to
the conjectured separation of the circuit complexity class ACC from NC!. Thus our theorem can
be viewed as proving a highly uniform version of the conjecture.

Key words. finite model theory, circuit complexity, semigroup theory
AMS subject classifications. 68Q70, 68Q19, 03C98, 68Q17, 20M35

DOI. 10.1137/060658035

1. Background. The circuit complexity class ACC(q) is the family of lan-
guages recognized by constant-depth polynomial-size families of circuits containing
unbounded fan-in AND, OR, and MOD, gates for some fixed modulus ¢ > 0. It
is known that if ¢ is a prime power and p is a prime that does not divide ¢, then
ACC(q) does not contain the language L, consisting of all bit strings in which the
number of 1’s is divisible by p (see Razborov [17] and Smolensky [19]). But for moduli
q that have distinct prime divisors, little is known, and the task of separating ACC,
the union of the ACC(q), from NC' is an outstanding unsolved problem in circuit
complexity.

ACC(q) has a model-theoretic characterization as the family of languages defin-
able in an extension of first-order logic which contains predicate symbols for arbitrary
relations on the natural numbers, and in which special “modular quantifiers” of mod-
ulus ¢ occur along with ordinary quantifiers (see Barrington et al. [3] and Straub-
ing [20]). Since there are languages that are complete for NC! under constant-depth
reductions, in order to separate NC' from ACC, it is sufficient to show that for each
q > 1 there is a language in NC! that does not belong to ACC(q). This suggests
that one might be able to attack the problem by model-theoretic means. However,
the problem has resisted solution by this or any other method, and little progress has
been made since the appearance of Smolensky’s work.

Recently, Krebs, Lange, and Reifferscheid [11] raised the possibility of proving
the separation for logics with a restricted class of numerical predicates. It is already
known (see Straubing, Thérien, and Thomas [21]) that if the only available numerical
predicate is <, then all the languages definable with ordinary and modular quantifiers
of modulus q are regular, and all the groups in the syntactic monoids of these languages
are solvable, of cardinality dividing a power of q. This implies, for example, that if ¢
is odd, then one cannot define the set of bit strings with an even number of 1’s in this
logic. The natural next step is to allow the ternary relation x + y = z on the natural

*Received by the editors April 24, 2006; accepted for publication (in revised form) January 4,
2007; published electronically May 22, 2007.

http://www.siam.org/journals/sicomp/37-2/65803.html

fComputer Science Department, Boston College, Chestnut Hill, MA 02476 (aroy@cs.bc.edu,
straubin@cs.bc.edu).

502

DEFINABILITY OF LANGUAGES 503

numbers. One can prove the analogue of the separation between AC? and NC'! in
this setting by purely model-theoretic means, without recourse to results from circuit
complexity (originally proved by Lynch [14]; the question is discussed at length in
Barrington et al. [5]). In the present paper we extend this to formulas with ordinary
and modular quantifiers over the numerical predicate x+y = z. This can be viewed as
proving the separation between ACC and NC' in a highly uniform setting (recently,
a circuit interpretation of this logic was given by Behle and Lange [9]).

We note that natural uniform versions of AC? and ACC result when one allows
both addition and multiplication as numerical predicates (see Barrington, Immerman,
and Straubing [4]). These formulas behave very differently and are much harder to
analyze by model-theoretic means. So separating ACC from NC" even in this natural
uniform setting still appears to be a very difficult problem.

We find it more convenient to first work in the setting of infinite bit strings that
contain finitely many 1’s. We view such a string as a particularly rudimentary struc-
ture (a linearly ordered finite set of 1’s) embedded in the natural numbers. We are
then faced with the question of how much of the expressive power of the larger struc-
ture (in this case, the integers under addition) is needed to express properties of the
embedded structure (for instance, that the number of 1’s is even). This is precisely
the kind of problem considered in the study of “embedded finite models,” and we are
able to draw upon various collapse results that already appear in the model-theoretic
literature. We obtain our result by first showing, in section 3, that it is sufficient
to consider sentences that only quantify over positions in a bit string that contain
a 1. The underlying quantifier-elimination procedure, while rather complicated in the
case of modular quantifiers, is based on an idea that goes back to Presburger [16].
In section 4, we use another model-theoretic collapse, this one based on Ramsey’s
theorem, to show that it is sufficient to consider sentences in which the only numer-
ical predicate is <, which can be analyzed by known semigroup-theoretic methods.
Semigroup theory has been used in the past to obtain rather weak lower bounds for
computations by circuits and branching programs (see, e.g., Barrington and Straub-
ing [6]). By coupling the algebra in this way with ideas from model theory, we are
able to extend its reach.

Nurmonen [15] establishes different nonexpressibility results for sentences with
modular quantifiers, using a version of Ehrenfeucht-Fraissé games. Schweikardt [18]
proves nonexpressibility results for logics with different generalized quantifiers over the
base (N, +). Extension of the Ramsey property to generalized quantifiers is discussed
in Benedikt and Libkin [10]. We have relied heavily on the account of collapse results
for embedded finite models contained in two expository works by Libkin: the survey
article [12] and the book [13].

Of course, we are most interested in proving the separation over arbitrary numer-
ical predicates or, at the very least, over a class of numerical predicates that includes
both addition and multiplication. In the final section we discuss both the prospects
for generalizing the present work, and the obstacles to doing so.

2. Notation and statement of result. We consider first-order logic FO[+]
with a single ternary relation x + y = 2. Formulas are interpreted in the natural
numbers N. We adjoin to this logic a single unary relation 7. The resulting formulas
are interpreted in bit strings, with 7(z) taken to mean that the bit in position z is 1.
In fact we can consider several such interpretations: in finite bit strings (w € {0, 1}*),
in infinite bit strings (w € {0,1}Y), and in infinite bit strings with a finite number
of I's (w € {0,1}*0%, where 0¥ denotes an infinite sequence of 0’s). A sentence ¢ in

504 AMITABHA ROY AND HOWARD STRAUBING

this logic accordingly defines three sets of strings:
L™ ={w e {0,1}" 1w = ¢},

Ly ={we {0,1}" 1 w |= ¢},

and
LI ={w e {0,1}°0° 1 w |= ¢}.

(The letters “fs” stand for “finite support.”)
For example, let ¢ be the sentence

JrIy((x =y +y) A7(x)),

which asserts that there is a 1 in an even-numbered position. Note that for this
sentence Lf;s is a proper subset of L3°, and that LY = LZ;"LO“’.

We denote this logic by FO[r,+]. More generally, if R is any set of relations on
N, we denote the analogous logic by FO[r, R]. We define the languages Lim, etc., in
exactly the same way.

To this apparatus we adjoin modular quantifiers 3" ™4 4 for a fixed modulus ¢ and
0 < r < g. The interpretation of 3" ™°4 ¢z ¢ is, informally, “the number of positions
x for which ¢ holds is congruent to r modulo ¢q.” More precisely, let ¢(x,y1, ..., yk)
be a formula with free variables =, y1,...,yr. Let w € {0,1}* or w € {0,1}", and let
ai,...,ar < |w|. (If w is infinite, this last condition is automatically satisfied for any
natural numbers a;.) Then we define

wl= (3N, ¢)(ay, ..., ax)
iff
Hb < |w|:w = ¢(b,ar,...,ax)} =7 (mod q).

(In particular, for infinite strings w, this implies that the set {b < |w| : w
¢(b,ay,...,ar)} is finite.) For example, the sentence

E|O mod 2 T 71_(1,)
defines, in all three interpretations, the set of strings with an even number of 1’s.

We denote this logic by (FO + MODg)[r,+].

Here is our main result. Let m > 1, and let L,, denote the set of all finite bit
strings in which the number of 1’s is divisible by m.

THEOREM 2.1. If m is a prime that does not divide q, then there is no sentence
¢ in (FO + MOD,)[r,+] such that L™ = Ly, or L = Ly,,0°.

Remark. If we consider instead the family A of all relations on N, then the family
of languages in {0,1}* definable by sentences in (FO + MOD,)(w,N) is precisely
the nonuniform circuit complexity class ACC(q) (see [3, 20]). If we let x denote
multiplication in N, then (FO + MOD,)[r,+, X] is the natural uniform version of
ACC(q) (see [4]). For these logics, the analogues of Theorem 2.1 are equivalent to
the conjectured separation of ACC(q) and NC' in the nonuniform and uniform cases,
respectively. Thus our theorem can be thought of as establishing this separation in a
highly uniform setting.

DEFINABILITY OF LANGUAGES 505

In our proof of Theorem 2.1, we will use some notions from the algebraic theory
of finite automata: To each regular language L C ¥* there is associated a finite
monoid M (L) (the syntactic monoid of L) and a homomorphism puy, : ¥* — M(L)
(the syntactic morphism of L) such that the value uy,(w) determines whether or not
w € L. That is, there is a subset X of M (L) such that L = p;'(X). (M(L) is the
smallest monoid with this property: It is the monoid of transformations on the states
of the minimal automaton of L induced by elements of ¥*. The homomorphism gy,
maps a word w to the transformation it induces, and X is the set of transformations
that take an initial state to an accepting state.)

If L C X* and A € X, we say A is a neutral letter for L if for any u,v € X%,
ulv € L iff uv € L. In other words, deleting or inserting occurrences of A does not
affect a word’s membership in L. In the algebraic setting, A is a neutral letter for L
iff pr (M) is the identity of M(L). For example, each of the languages L,, C {0,1}*
defined above has 0 as a neutral letter.

3. Collapse to active-domain formulas. While our goal is to prove a result
about definability of sets of finite strings, most of our argument concerns definability
of sets of infinite strings. An easy reduction makes the connection between the two
models. _

LEMMA 3.1. Let ¢ be a sentence of (FO+MODy)[r,+] and let L = Lém. Then
there is a sentence ¢' of (FO+ MODy)[r,+] such that

Ll =Ly = L0“.

Proof. We define a formula ¢[< z] with a single free variable x by rewriting it
from the innermost quantifier outward, replacing each instance of

Qza,
where Q is the quantifier 3 or 3" ™°d ¢ by
Qz((z < z) Aa).
Then L0% is defined by the sentence
Ja(Vy(r(y) =y <z)A¢[<a]). O

Remark. Obviously, Lemma 3.1 holds for any of the logics (FO + MOD,)[r, R]
in which < is definable.

An active-domain formula in (FO+MODy)[r,+] is one in which every quantifier
occurs in the form

Qu(m(z) A),

where @ is either the ordinary existential quantifier or a modular quantifier, and « is
a formula. We call these active-domain quantifiers. In other words, we allow quan-
tification only over positions that contain the bit 1. Libkin [12] sketches a proof that
one can replace every formula in FO[r,+] by an equivalent active-domain formula,
provided one extends the signature (the natural-active collapse). Here we generalize
this result to formulas that contain modular quantifiers. (We should add that the
collapse to active-domain formulas holds for arbitrary finite structures—for instance,
graphs—embedded in (N, +), not just sequences of 1’s. One proves, in general, that

506 AMITABHA ROY AND HOWARD STRAUBING

any formula is equivalent to one in which quantification only ranges over elements of
the embedded structure.)
We consider the logic

(FO + MOD,)[r, +,<,0,1,{=,: s > 1}],

in which + is now treated as a binary function, 0 and 1 are constants, and =, is
a binary relation symbol denoting congruence modulo s. Of course, all these new
constants and relations are definable in FO[+], but we need to include them formally
as part of the language in order to carry out the quantifier elimination.

THEOREM 3.2. Let ¢ be a formula of (FO + MOD,)[r,+,<,0,1,{=s: s > 1}],
with free variables in {x1,...,z.}. Then there is an active-domain formula ¢ in
the same logic such that for all w € {0,1}*0¥ and ay,...,a, € N, we have w =
olay,...,a) iff w = v(ay,... a.).

Proof. The proof is by induction on the construction of ¢. There is nothing to
prove in the base case of quantifier-free formulas. For the inductive step, we assume

(3.1) =09z ¢,

where Q is either an existential quantifier (3) or a modular quantifier (3% ™°4) and
¢’ is a formula such that any quantifier appearing in ¢’ is an active-domain quantifier.

We assume that ¢ has free variables x1, xa, ..., x, and bound variables (hence active-
domain variables) y1,ya, - . ., Ys-
Notation. We shall write ¥™ to denote the tuple (vi,va,...,vy). When m is

obvious from the context or is irrelevant, we simply write ¥ and refer to the ith
coordinate as V;.
Terms in our logic are expressions of the form

ap +ajwy + -+ + apWg,
where the a; are in N and the w; are variables. Atomic formulas have the form
c=71, o<T, 0>T, 0=,7T, x(0),

where o, 7 are terms. We can eliminate atomic formulas of the form 7(o) by intro-
ducing a new active-domain variable y and replacing the atomic formula by

Jy(m(y) Ny = o).

We can rewrite each atomic formula ¢ = 7 in ¢ that involves z as nz = p, where p
does not involve z. Strictly speaking, p is not a term in our logic, since we do not have
subtraction available, so this must be regarded as a shorthand for nz+ p; = ps, where
p1, p2 are genuine terms that do not involve z. Later we will view the expression p
as defining a partial function on N"*%. Similarly, we rewrite other atomic formulas
involving z as

nz<p, nNz>p, NZ=yp,

where p does not involve z.
Let [be the least common multiple of the coefficients of z in these atomic formulas.
Then since
nz=p iff lz=(I/n)p,
nz < p iff lz < (I/n)p,
nz =y p ifflz=,0/m) (I/n)p

DEFINABILITY OF LANGUAGES 507

we can suppose that z always appears with the same coefficient [in every atomic
subformula of ¢’.

Making a change of variable z — [z, we see that ¢ is equivalent to the following
formula:

Qz (2=, 0N),

where if z occurs in an atomic formula, it occurs with coefficient 1, and where each
such formula has the form z = p, z < p, z > p, 2 =, p, where p does not involve z.
Atomic formulas in ¢’ of the form z =, p can be replaced by

m—1

\/(zzmi/\pzmi),

=0

so we may suppose that in every such atomic formula p is a constant in N. Let I’ be
the least common multiple of the moduli occurring in such atomic formulas. Then ¢
is equivalent to

-1

(3.2) Qz \/ [Z =rj A ¢;}7

Jj=0

where ¢;- is the formula obtained from ¢’ upon replacing each congruence z =,, ¢ by
true or false, depending on whether this is consistent with z = j.
If © =3 in (3.2), then we can rewrite it as

-1

(3.3) \/ 3- [z =, j /\qﬂ.

=0

Suppose Q@ = F¥ mod a_ Observe that if oy, . . ., oy are pairwise mutually exclusive,
then we can rewrite

t
ﬂk mod a, \/ a;
1=1

as

t
i=1

where the disjunction is over all t-tuples (k1,...,k;) € Z for which St ki =k
Thus we can rewrite (3.2) as a boolean combination of formulas of the form

E'k/mOqu[ZEl’j /\¢3:|
We can thus assume that ¢ has the form
Qz ((z =4¢) A (;5’),

where Q is an ordinary existential or ordinary modular quantifier and ¢’ is an active-
domain formula in which every atomic formula involving z is either of the form 2z < p,
z=p,0rz>p.

508 AMITABHA ROY AND HOWARD STRAUBING

We now fix an instantiation of X", the free variables of ¢, by a tuple & € N".
To simplify the notation, we will not make explicit reference to & in the remainder
of the proof. Each p appearing on the right-hand side of one of our atomic formulas
accordingly defines a partial function g from N® into N, where s is the number of active-
domain variables. We set p(t1,t2,...,ts) to be the value obtained by substituting
t; € N for the variable y;, 1 <14 < s, in p if this value is nonnegative; p(t1,...,ts) is
undefined otherwise. We let {g; : @ € I'} denote the set of these partial functions.

Let w € {0,1}*0%, and let D C N denote the set of positions in w that contain 1’s.
(That is, D is the active domain of w.) Let

B=|J{g:3)y € D*}.

i€l

Write B as an ordered set {bg,b1,...,bp,—1}, where by < by < by < -+ < b,_1. We
denote by (a,b) the set { € N:a < z < b}. By an interval in B, we will mean either
the leftmost interval (—1,bp), intervals of the form (b;,b;41) for 0 < i < p — 2, or the
rightmost interval (b,_1, 00).

LEMMA 3.3. If there exists an integer zg in an interval in B such that

w = ¢'(20),
then
w = ¢'(2)

for every z{, in the interval. (That is, if an interval contains a witness, then every
point in the interval is a witness.)

Proof. The proof is by induction on the construction of ¢’. We will show that for
every subformula 1) of ¢’ and every instantiation d of the free active-domain variables
by a tuple over D, w = ¥(zo, a) implies w = (2, a)

Since all atomic formulas of ¢’ that involve z have one of the forms z < ¢;(¥),
z = g;(¥), or z > g;(§) for some j € I, and since gj(fl) € B for all tuples d over D,
the claim holds for the atomic subformulas of ¢’. The property clearly is preserved
under boolean operations. Now suppose that the property holds for some subformula
1 of ¢, and that y1,...,y; are the free active-domain variables in ¢. Our hypothesis
applied to ¢ implies that if zp and z{ belong to the same interval of B, then

{de DV :wkEp(z,d)} ={de D :wki(z,d)}.
In particular, for each fixed ds,...,d; € D,
{dl €ED:w |: ’(/}(207(1)} = {dl €eD:w): w(’zéﬂa)}7

so, in particular, these two sets have the same cardinality. Thus if Q is either an
existential or modular quantifier,

w = Qui(m(y1) A (20, da, - .., dj))
iff
w): le(’/r(yl) A w(zé)aan cey dj))

Thus the property is preserved under active-domain quantification. |

DEFINABILITY OF LANGUAGES 509

We define the function X, q : Z — Z as follows:

[(e—a)modd ifa#gec,
Xed(a) = { d otherwise.

COROLLARY 3.4. Let (I,r) be an interval in B such that | =44 a. Then

w = {(20 =4 ¢) A ¢ (20)}
for some zy € (I,7) iff

I+ Xeala) <r and wE ¢'(I+ xcala)).

Proof. Lemma 3.3 implies that if there is a witness at all in the interval (I,r),
then any integer 2y in the interval such that zp =4 ¢ would be a witness. The integer
I+ (¢ —) mod d satisfies this requirement if ¢ Z4 . If ¢ =4 «, then the integer | 4+ d
satisfies the requirement. O

Remark. We count witnesses in two iterations: First, we count the number modulo
g of witnesses z (if they exist) strictly contained in intervals (I,r), where | < z < r
and [, r are successive points in B, and then we separately count points of B which are
themselves witnesses. As a result, we need to distinguish the cases ¢ = [mod d and
¢ # Il mod d in our formulas. The function). q enables us to distinguish between the
two cases.

We also have a special property concerning the infinite interval (b,_1,00), as
follows.

COROLLARY 3.5. Let bp_1 =44 a. If

w=Fmeddy f=1c)n},

then

w e ¢ (bp-1 + Xea())-
Proof. If

w = ¢ (bp—1 + Xea(@)),

then Lemma 3.3 implies that every zp € (bp—1,00) such that zy =4 ¢ would be a
witness. However,

wEIFmeda, (=) A}

implies that there are only a finite number of witnesses. O
We also note the following fact.
LEMMA 3.6. Let l,r € N, where | <1, and let ¢,d,q,a, 3 € N be such that

l=amoddgq and r=p0moddg.

Let ng(a, B) denote the number modulo g of integers x in (I,r) such that x =4 c. Then
nq(a, B) depends only on «, B,¢,d, q.

Proof. Since the number mod ¢ of points =4 ¢ in the interval (I,r) does not
change under the maps r +— r + adg, [— | + bdg (where a,b € Z), ng(a,) is
independent of the actual values of [and 7.]

510 AMITABHA ROY AND HOWARD STRAUBING

Remark 3.1. An explicit formula for ny(c, §) is

B—a—(c—a)modd—(8—c)modd

ng(e, B) =1+ 7 6 (mod g),
where
2 if a =4 cand B =4c,
6= 1 exactly one of a or B is =4 ¢,
0 otherwise.

However, the point of Lemma 3.6 is that n,(«, 3) depends only on the constants
a, B,¢,d, q, and so wherever it appears in our formulas, say, in the form 7,(a, 8) =, v
(see, e.g., the formula CountZero(x,y) below), we can replace this by true or false.
This renders the exact form of the expression n,(c, 3) irrelevant.

We now proceed to the quantifier elimination by building an active-domain for-
mula equivalent to ¢ = FFM°daz((2 =4 ¢) A ¢'(2)). The idea is to write a formula
that counts, modulo ¢, the number of witnesses to (z =4 ¢) A ¢/(2) in each interval
of B. At each step of the argument we show how to express some property of w in
our language. Our initial result will be a formula in which the arbitrary quantifier
is replaced by quantification over elements of B, but in the end we will show how to
rewrite these in terms of active-domain quantifiers.

Membership in B: The formula Member(z) asserts that x € B:

39\ (9:(¥) = 2),
il
where 3%y « is an abbreviation for

Fy1(m(y1) A y2(m(y2) A~ Bys(m(ys) Aa)---)).

(z,y) is an interval: The formula I(x,y) asserts that x and y are successive
elements of B:
(z < y) A Member(x) A Member(y)

(3:4) A=z (Member(z) A {(:1: <z2)V(z< y)})

The interval (x,y) in B has 0 mod q witnesses: This is expressed by the sentence
InteriorPointCountZero(z, y):

I(z,y) A CountZero(z, y),

where CountZero(x,y) is

V [@=wa)ny=as)
0<a<dg—1
0<p<dg—1

A {(x + Xc,d(a) <y) = (—@’(a: + Xe,d(@)) Vng(a, B) = O) }]
Remark 3.2. Since the function x.q(«) depends only on the constants ¢, d,

and a, we can substitute the value of x.q(«) wherever it appears in our formulas,
for example, in the formula for CountZero(xz,y) above. Thus it is not necessary to

DEFINABILITY OF LANGUAGES 511

express X¢,q(@) in terms of a boolean formula. A similar comment holds for n,(c, 8)
(see Remark 3.1).

Interval (x,y) in B contains v mod g witnesses, where v #4 0: This is expressed
by the sentence InteriorPointCountNonZero(z,y,):

I(x,y) A CountNonZero(z,y,),
where CountNonZero(x,y,) is
\/ [(;v =aq @) A (Y =aq 0)
0<a<dg—1
0<B<dg—1

A (24 Xea(@) <y) A @@+ Xeala)) Angle, B) =4 7|

Interval (z,y) in B contains v mod q witnesses: This is expressed by the sentence
InteriorPointCount(z, y, y):
(v =4 0 = InteriorPointCountZero(z,y))
A (v #4 0 = InteriorPointCountNonZero(z, y,)).

Minimum and mazimum elements of B: The formula for Min(z) is
Member(z) A =Jy(Member(y) Ay < x).

We define Max(x) similarly.
The leftmost interval contains v mod q witnesses: The formula W (~y) given by

Jx [Min(x) A {(’y =0 = CountZero(O,x)}
A {(’y #,0) = CountNonZero(0, z, V)H

says that the interval (0,bp) contains v mod ¢ witnesses. We have to modify this
depending on whether or not 0 is itself a witness. Thus if ¢ # 0, we set Cr(7y) to be
W (v); otherwise, we set it to be ¢'(0) A W (v —1).

The rightmost interval contains no witnesses: This is expressed by Cg:

Jz { Max(z) A /\ {(z =44 @) = =¢'(x + xc,a(@))}

0<a<dg—1

Number mod q of intervals (b;, bi11) containing v mod q witnesses: The sentence
H(6,~) asserts that there are § mod ¢ intervals (z,y) with endpoints in B having
~ mod ¢ witnesses:

H(8,~) = 3° m°d 4 3 3y InteriorPointCount (z, y, 7).

Number mod q of witnesses from intervals (b;,b;11): The formula Cin(7y) asserts
that the number of witnesses contained in intervals (b;,b;y1), where b;,b;11 € B, is
congruent to v mod g:

qg—1
V N H(v).
0<v;<q-1 1=0
0<5<q—1

-1 . —
Y920 jvi=v mod ¢

512 AMITABHA ROY AND HOWARD STRAUBING

Number mod q of witnesses from B: The sentence Cp(y) asserts that the number
of witnesses b; € B is congruent to v mod ¢:

3y med a7 (Member(l) A (I =4 ¢) A ¢'(1)).

Total number mod ¢ of witnesses: The sentence Ciot(7y) asserts that the total
number of witnesses is congruent to v modulo g:

\V (Cs(n) ACL(Y2) A Cint(73))-

0<71,72,73<¢—1
Y1it+v2+Y3=47Y

Thus 3¥med92{(z =4 ¢) A ¢(2)} is equivalent to the sentence
T = Ctot(k) A CR.

Note that 7 is almost active-domain. The non-active-domain quantifiers in 7°
are of the form

Jx {Member(z) A T'(x)} or of the form 3% ™49 5 {Member(z) A T'(x)} .

In the first case, we can replace the ordinary existential quantifier in front of x
by the definition of Member(z) to get an active-domain formula of the form

39\ T'(9:3)).
el

Rewriting the second formula with active-domain quantifiers is more complicated.
Let g1,...,9m be the partial functions, and let B; be the set of points in g;(D?) that
are not in g;(D®) for any j > i. Since B is the disjoint union of the B;, we can rewrite

gk mod a4 Member(z) AT’ (z)}
as a boolean combination of sentences of the form
(3.5) I moda 5 {NMember;(z) AT (z)},

where Member;(x) asserts that x belongs to B;. It is easy enough writing an active-
domain formula that asserts that x is in B;, but how do we count the number of
elements in B; with a given property?

Let < denote the lexicographic ordering on D*. We can express §y < y' as a
boolean combination of the formulas y; < y} and y; = y.. Let LL;(§) be the formula

=39 ((9:(%) = 6: () A (F <))
This asserts that ¥ is the lexicographically maximal s-tuple yielding the value g;(§)

under g;. (Implicit in this is the assertion that ¢;(¥) is defined, which is expressed by
a simple inequality.) We can thus rewrite our formula (3.5) as

3 meda(g e D) | LL;(y) AT (9;(9)) A =35\ (9:(3) = ¢;3))

i>7

DEFINABILITY OF LANGUAGES 513

Finally, we note that modular quantification over s-tuples of elements of D is express-
ible in terms of modular quantification over active-domain elements. Indeed,

3k mod Yy, y2) a

is equivalent to the disjunction of

q—1
(36) /\ 32 mod ¢ Y1 Hf(i) mod q Ya o
=0

over all functions f from Z, to itself such that Z;I;Ol if(i) = k, and we can extend
this inductively to quantification over tuples of arbitrary size.

We have said nothing about how to eliminate ordinary non—active-domain quan-
tifiers. This case is treated in Libkin [12], which was the starting point for the present
proof. The argument follows the same pattern, but is much simpler, since we do not
need to count either points in the images of the g; or points in their domains. We
merely have to assert that there exists some u € B such that

{ \ ¢’<u+e>}v{ \ ¢'<u—e>}

0<e<d—1 0<e<d—1
u+e>0 u—e>0
ute=g4c u—e=q4c
holds, and this is easily carried out using the Member formula introduced earlier. 0

4. Collapse to formulas with < as the only numerical predicate.

4.1. Ramsey property. Our discussion here closely parallels that of Libkin [13].
Let R be any set of relations on N, and let ¢(x1,...,xx) be an active-domain for-
mula in (FO + MOD,)[r,R]. We say that ¢ has the Ramsey property if for each
infinite subset X of N there exists an infinite subset ¥ of X and an active-domain
formula ¥(x1,...,2) in (FO + MOD,)[r, <] that satisfies the following condition:
If w € {0,1}*0% and all the 1’s in w are in positions belonging to Y, then for all
a1,...,a5 €Y,

w }:Qb(alv"'vak) iffw|:1/1(a1,...,ak).

LEMMA 4.1. Let N be the set of all relations on N. Every active-domain formula
in (FO + MOD,)[r,N| has the Ramsey property.

Proof. The Ramsey property for an assortment of generalized quantifiers is proved
by Benedikt and Libkin [10] (also in [13, Lemma 13.15, p. 259]) by using induction on
the quantifier depth. While they do not explicitly consider the modular quantifiers
that we use here, there is no essential change in the proof. For clarity, we include the
inductive step for modular quantifiers.

Let ¢()) = FFmoday [x(y) A ¢1(y,%x")] be an active-domain formula in (FO +
MOD,)[r,N]. By the induction hypothesis (from Lemma 13.15 in [13]), for each
infinite subset X of N there exists an infinite subset Y of X and an active-domain
formula ¢4 (y, %) in (FO + MOD,)[r, <] such that if w € {0,1}*0% and all the 1’s in
w are in positions belonging to Y, then for all &” € Y" and b € Y, w = 1 (b, a) iff
w = ¢1(b,&). This implies that for every &,

{beYwl¢i(b,a)} ={beY|wl ¢:(b,a)}.

514 AMITABHA ROY AND HOWARD STRAUBING

Let ¢(%) = 3k meday [r(y) A 1(y,%)]. Then for every w such that its 1’s are in Y’
and 4 € Y, w = ¢(a) iff

{b e Yiw =i (b,a)}| = k.
This happens iff
{b€Y|w k= ¢1(b,a} = k

since the two sets are identical. Thus w [¥(4) iff w = ¢(a). a

The Ramsey property allows us to capture a subset of a language expressible
by a formula ¢ (which satisfies the Ramsey property) using a new formula over a
very limited vocabulary (the only numerical predicate allowed is <). This limited
vocabulary restricts the kind of language that can be expressed.

LEMMA 4.2. Let Ly, = {w|w € {0,1}*} be the set of finite bit strings defined by
an active-domain sentence ¢ € (FO + MOD,)[r, <].

(i) The language Ly, is regular. Moreover, the syntactic monoid M (Ly) contains

only solvable groups whose order divides a power of q.

(ii) Ly has O as a neutral letter.

(iii) Let z € £*. Then z € Ly iff 20¢ |= 9.

Proof. Condition (i) is a result of Straubing, Thérien, and Thomas [21]. Inserting
or deleting 0’s from any string satisfying ¥ does not alter the truth value of any atomic
formula of the form = < y, provided the variables represent positions containing 1,
which is the case here, since v is active-domain. Conditions (ii) and (iii) then follow
by an easy induction on the quantifier depth. 0

4.2. Proof of Theorem 2.1. Let m be a prime that does not divide ¢, and
suppose, contrary to the claim in the theorem, that L,, is defined by a sentence ¢ of
(FO + MOD,)[r,+]. By Lemma 3.1, Theorem 3.2, and Lemma 4.1, there exists an
active-domain sentence ¢ of (FO + MOD,)[r, <] and an infinite subset ¥ of N such
that for all w € {0,1}*0% in which all 1’s are in positions belonging to Y, w | ¢ iff
w € L,0¢. Let L, denote the set of finite bit strings that satisfy 1. We prove the
following lemma.

LEMMA 4.3. L,, = Ly.

Proof. We first show that Ly, C L,,. Let 2’ € Ly. We pad 2z’ with 0’s so that
the 1’s in the new padded string z” appear in positions included in the set Y. Since
2" € Ly (by Lemma 4.2 (ii)), we conclude that 2”’0“ = ¢ (by Lemma 4.2 (iii)). Since
the 1’s in 2”0% appear in positions in Y, 2”0 = ¢. Hence 2”/0¥ € L,,0%, s0 2" € Ly,.
Removing additional neutral letter 0’s introduced while padding 2, we conclude that
Z' € Ly,.

The opposite inclusion (L,, C Ly) is proved by reversing each step above.]

Since the syntactic monoid of L, is the cyclic group Z,, and that of L, has
groups of order dividing a power of ¢ (via Lemma 4.2), we have a contradiction since
(m,q) = 1. Thus L,, cannot be defined by a sentence in (FO + MOD,)[r,+]. This
completes the proof.

4.3. Other nondefinability results. Here we show how to extend Theorem 2.1
to prove nonexpressibility results for other languages. We begin by removing the
restriction to binary alphabets.

Let ¥ be a finite alphabet and let us consider languages definable in the logic
Lgs+ = (FO+MOD,)[{n, : 0 € £},+], where each 7, is a unary predicate: m,x
is interpreted to mean that the letter in position x is . We designate a special letter

DEFINABILITY OF LANGUAGES 515

A € ¥, and say that a formula is active-domain (with respect to A) if every existential
and modular quantifier Q occurs in the form Qz((Voxa mox) A). Note that we
need never use the atomic formula 7z, even in non—active-domain formulas, as it is
equivalent to the conjunction of the -7,z over all letters o not equal to A. All the
preceding results hold in this broader setting, with no changes to their proofs. We
thus have the following theorem.

THEOREM 4.4. Let L C ¥*, with A € ¥ a neutral letter for L. If L is definable
in Lg5.+, then it is definable by a sentence of (FO + MOD,)[{r, : 0 € £},<]. In
particular, L is regular, and every group in M (L) is solvable, with cardinality dividing
a power of q.

The foregoing theorem allows us to give an effective characterization of all the
regular languages in L5 4.

THEOREM 4.5. Let L C X* be regular. L is definable in Ly + iff for allt > 0
every group in pr,(Xt) is solvable and has cardinality dividing a power of q.

The reduction to the neutral letter case is somewhat involved, so we delegate the
proof to the next section. The same property is known to characterize the regular
languages in ACC(q), provided that the conjectured separation of ACC/(q) and NC*
holds [3].

Since L is regular, there exist integers k and [such that pz,(XF*!) = pz (X*) (since
pur (XY € M(L) for all t > 0 and M (L) is finite). Thus we can effectively enumerate
all the sets pr (X!) and all their subgroups. We thus have the following result.

COROLLARY 4.6. Given an integer ¢ > 1 and a regular language L C X%, the
question of whether L is definable in L 5 4+ is decidable.

Here is an application of Theorem 4.5. Let G be a finite group and let ¥ C G be
a set of generators of G. We treat GG as a finite alphabet; to each word w € ¥* we
assign the group element ¢(w) that results by multiplying together the letters of w.
The word problem for G (with respect to) is the language {w € ¥* : ¢(w) = 1}.
Barrington [2] showed that the word problem for any finite nonsolvable group is
complete for NC! with respect to constant-depth reductions, so that the conjectured
separation of ACC from NC' is equivalent to the assertion that no such word problem
belongs to ACC. We can verify directly that no such word problem L is definable in
Ly x,+: L is a regular language, and it is easy to check that M (L) = G and ur, = ¢.
If G is nonsolvable, then its commutator subgroup G’ is also nonsolvable, and thus
every element of G’ is the image of a word over ¥ of length divisible by |G| (each
commutator is an image of a word of the form wvu!1=1vl¢I=1 where u,v € ¥). We
can pad each of these words with a sufficient number of copies of ¢!¢! (for some fixed
o € Y) so that they all have the same length t. Thus G’ C ¢(X!). Since G’ is
nonsolvable, Theorem 4.5 now implies that L is not definable is £, 5 4.

THEOREM 4.7. No word problem of a finite nonsolvable group is definable in any
ﬁq,E,Jr-

Note that it is precisely the nonsolvability of G, rather than the relation between
|G| and ¢, that is at issue here: For instance, a word problem of the alternating
group of degree 5, whose cardinality is 60, is not definable in L3¢ 5; 4 even though the
cardinality and modulus are consistent. On the other hand, the word problem for any
solvable group of order 60 is definable in this logic.

5. Proof of Theorem 4.5.

5.1. Two essential lemmas. Let ¥ be a finite alphabet. We prove that defin-
ability in (FO + MOD,)[{r, : 0 € £},+, <] (which we denote by £ for the rest of
this section) is preserved under inverse length-multiplying morphisms and quotients.

516 AMITABHA ROY AND HOWARD STRAUBING

Remark. Note that we are admitting z < y as an atomic formula, rather than
simply defining it in terms of +. This is largely a matter of convenience; we could
still carry out the proof if we allowed only + as a numerical predicate.

Given a language L C ©* and strings u, v € ¥*, we define the language u ' Lv~—! =
{w € T*luwv € L}.

LEMMA 5.1. Let L C ¥* be definable in L. Then u~'Lv~! is also definable in L.

Proof. Tt suffices to prove that c~!L and Lo~! are definable in £ for each o € X.
We exhibit a proof of the first of these assertions by constructing a formula [¢] for
o~ !L given a formula ¢ for L. (We omit the almost identical proof of the second
assertion.) To accomplish this, we encode each position x in ov by a pair of positions
(x1,22) in v: We map x to (1,2 — 1) if x > 0, and to (0,0) if x = 0. Note that this
requires |v| > 2, so we must treat the case where |v| < 2 separately. The encoding is
clearly injective; let us denote its inverse by «.

We first write a formula 11 [¢] satisfied by all strings v € ¥* of length 0 or 1 such
that ov |= ¢ (such a formula is trivial to write since there are only three strings to
consider). For strings v of length > 2, we show how to construct 13[¢] by recursion
over the term structure of ¢. The final formula ¥[¢@] is 11 [d] A 2[d].

Our inductive hypothesis is the following: Given a formula ¢(z1,zs,...,zk),
there exists a formula ¥2[d](z1,1,221,...,%1k,22,) such that if [v] > 2, then v |
’lbg[(ﬁ](bl’h bg,l, ey bl,Im bg’k) iff ov ': ¢(Oé(b1’1, bg’l), ey Oz(bl’]€7 b2,k>)~ In particulan
the former condition can hold only if all the a(by ,b2x) are defined. When there are
no free variables then ov |= ¢ iff v = 12[¢] as desired (if |v| > 2).

The formula 12[¢] is defined below, depending on the following choices for ¢:

(1) Q-(z): If 7 # o, then 2[p] = (x1 = 1) A Q- (z2); otherwise set 2[¢p] =

(QU(.'EQ) A Tr1 = 1) \Y (1‘1 = O)
(2) =4y = z: We enumerate the subcases depending on the number of x1,y7, 21
equal to 0:

Yol = (x1=y1 =21 = 1) A (T2 + 5o + 1 = 20))

V(@1 =0)A(y1 =21 =1)A(y2 = 22))

V(g =0)A (21 =2 =1) A (22 = 22))
V(zy =y1 =21 =0).

3) —p1: Yod] = —ha[dr].

4) ¢1 A pa: a[p] = a[d1] A a2l
5) Jx ¢1: Po[d] = I (w1, 22) 2[].
6) amodqx ¢1

(
(
(
(

Pal] = (3 ™09 (w1, w2) (21 = 1) A o] A =3 (1, 22) (21 = 0 A 2[g]))
v (3! mod Ux1, z2)(x1 = 1) Apo[o1] Az, z2) (21 = 0 A a[@1])).

Note that both modular and existential quantification over tuples (z1,x2) can be
expressed as a boolean combination of quantification over x; and x5 (see (3.6) and the
remarks preceding it). Also note that we strictly cannot have terms like (x +1) =y
in our logic as we have written above; we still use these as a (clearer) shorthand for
the more elaborate formula =3z((x < 2) A (z < y)) A (x # y). d

LEMMA 5.2. Let X, T be finite alphabets and let f : T* — ¥* be a homomorphism
such that f(T) C X" for some fized r > 0. If L C X is definable in L, then f~*(L) C
T is also definable in L.

DEFINABILITY OF LANGUAGES 517

Proof. Let ¢ be a formula in £, such that w € L iff w | ¢. We construct (via
recursion over the term structure of ¢) a formula ¢[¢] in £ such that for any v € T'*,
v = Y[¢] iff f(v) | ¢. Once again, we do this by encoding each position in f(v) by
a pair of positions in v. In this case, z is encoded by (x mod r, |z/r|). Note that
this requires |v| > r, so again we will have to treat the finite number of exceptions
separately. The inverse of this encoding, (1, z2) = rxy + x1, is defined iff x; < r.

We first write a formula 1)1 [¢] satisfied by the (finite) set of strings v € I'*, where
|v] <r and f(v) E ¢:

b=\ /\Qgi(z’).

V=0001..-05—1 =0
s<r
f)Eo

For strings v of length > r, we show how to construct ¢»[¢] by recursion over the
term structure of ¢. The final formula ¢[@] is 11[d] A P2[d)].

Our inductive hypothesis is the following: Given a formula ¢(z1,zo,...,zk),
there exists a formula 9[¢](z1,1, 22,1, .., %1k, T2,k) such that if |v| > r, then v |=
’lﬁg[(ﬁ](bl’h bg’l, ey bl,k:7 b2,k) iff f(U)): (]5(0[(1)1’1, bg’l), ey Oé(bl}k, bg’k)). In particular,
the former condition can hold only if all the a(by ,b2,x) are defined. When there are
no free variables then f(v) = ¢ iff v = ¢2[¢] as desired (if |v| > 7).

We set ¥[@] = 11]d] A a[¢], where the formula 1)s[¢@] is defined recursively, de-
pending on the following choices for ¢:

(1) Qoa: Then 1s[d] = (V ()., @ (22) Ay = i)

(2) © +y = z: This would imply that x1 + y1 — 21 = (22 — 2 — y2). Since

1<ax1+y1 —2 <2rand r|(x; +y1 — 21), the left-hand side 21 + y; — 21 is
either r or 0 (and this determines the right-hand side’s values). Thus

Yol = (T1+y1 =21 ATa+ Y2 = 22) V(T1 +y1 = 21 + 7 A T2 +ya + 1 = 22).

(3) —¢1: 2[d] = 2]

(4) @1 A @2t ho[@] = tha[d] A Yada].

(5) Jx ¢1: 1#2[(]5} =3 (1’1,1’2) ((.’Kl < 7“) A 1/)2[¢1])

(6) Fomoday ¢y: hofg] = 3™V (24, 29) ((21 < 1) Athaldn]).

As in Lemma 5.1, both modular and existential quantification over tuples (x1, x2)
can be expressed as a boolean combination of quantification over z; and z2 (see (3.6)
and the remarks preceding it). 0

5.2. Reduction to the neutral-letter case. We prove that every group con-
tained in pr(3') (in the statement of Theorem 4.5) is the syntactic monoid of a
(regular) language with a neutral letter definable in £. Then Theorem 4.4 implies
that every such group has to be solvable and has cardinality dividing a power of g.
This reduction to the neutral letter case is done in Lemma 5.3 below. Note that the
reverse direction follows easily from Straubing, Thérien, and Thomas [21]: If every
group in pr(3!) is solvable and has order dividing a power of ¢, then every subgroup
of M(L) is solvable and has order dividing a power of ¢, and this implies that L is
definable in (FO + MOD,)[{r, : 0 € £}, <] and hence is definable in £, 5 ;.

LEMMA 5.3. Let L C X* be regular, and suppose L is definable in L. Then for
every t > 0 and every group G C ur(Xt), there exists a finite alphabet T =Tg and a
language L C T, such that Lg has a neutral letter and is definable in L. Moreover,
L¢ is regular and M (Lg) = G.

518 AMITABHA ROY AND HOWARD STRAUBING

Proof. We define the finite alphabet
I'={v,:weXt u(w) € G}.

The map 7, — w extends to a homomorphism f from I'* into X* such that f(I') C .
We define

Lo ={vel™:u(f(v)) = e},

where e is the identity of G.

Note that L has a neutral letter v, where iy, (v) = e. We will show shortly that
L¢ is definable by a sentence of L. First note that L¢ is regular: It is recognized by
a deterministic finite automaton (DFA) with state set G, initial and accepting state
e, and state transitions

Y : g gpr(w).

Every state of this automaton is accessible from the initial state, and equivalent states
must be identical, because of cancellation in the group. Thus this is the minimal DFA
of Lg, and consequently M(L¢g) = G.

It remains to establish the claim about definability of Lg in £. It is well known
that if K C ¥* is regular, then for each m € M(K), the set yuj*(m) is a finite boolean
combination of languages of the form

uw Kot = {w e ¥ uwv € K},
where u,v € ¥*. We have
Le = [~ (g (e),

so our claim will follow if we can show that definability is preserved under the language
operations

K—u Ky !
and
K — fY(K).

This was established by Lemmas 5.1 and 5.2. O

6. Monadic predicates. In this section, we consider definability of languages
in first-order logic with modular quantifiers when we allow monadic (i.e., arity 1)
numerical predicates. More specifically, we consider the logic MON, = (FO +
MOD,)[<, {75 }sex,01,02,...,0;], where §;, 1 < i < r, are bit-valued functions on N.
We define a map

et o (2 x {0,117)*
as follows:
W=0001...0p_1+— W= (00771,0772,07 cee ,%,0) T (0n71771,n71,72,n—17 cee ,%,nq)y

where v; ; = 0;(j). Given L C ¥*, we denote L={®|we L}

DEFINABILITY OF LANGUAGES 519

LEMMA 6.1. Let ¢ be a sentence in MON,. There exists a language K C
(X x{0,1}")* such that (a) K is reqular, and every group in the syntactic monoid of
K is solvable with order dividing a power of q; (b) if w € ¥*, thenw = ¢ iff w € K.

Proof. We take the formula ¢ and rewrite it by replacing every occurrence of
0;(x) by the disjunction of all 7, ,)x, with 0 € ¥ and v € {0,1}", for which the ith
component of v is 1. Likewise we replace every occurrence of m,x by the disjunction
of (s over all v € {0,1}". By [21], the resulting sentence ¢, interpreted in words
over ¥ x {0,1}", defines a regular language K whose syntactic monoid possesses the
desired property, and it is clear that w = ¢ iff @ | o. (Observe that not every
element of K is w for some w € ¥*.) 0

We need the following lemma, which follows from Ramsey’s theorem.

LEMMA 6.2. Consider a k-coloring of the set {(i,5)] 1 <i < j} CNxN. Then
there is an infinite sequence {i;} with

1<y <ig <o

such that all (i;,1;41) have the same color.

(We note that the full strength of Ramsey’s theorem is not required here, as we
do not need all (ij,i;) with j < k to have the same color. A weaker combinatorial
principle, along the lines of the Erdds—Szekeres theorem on the existence of long
monotone subsequences of arbitrary sequences, will suffice. See [6], which is the
source for the kind of argument that we use in the present section.)

THEOREM 6.3. If L is a language with a neutral letter definable in MON,, then
it is reqular and definable in (FO+ MOD,)[<,{7}sex]. Furthermore, the syntactic
monoid of L is solvable and every group in the syntactic monoid has order dividing a
power of q.

Proof. We let ¥ = {01,02,...,0+} and let A € ¥ be the neutral letter for L (so
that A = o; for some i).

We extend the notation we used to define the function ~: We set (w/,\z) to be the
suffix of length |w| of vw, where v is any string of length i. This is independent of

the choice of the string v. Note that @ = (w, 0).

Suppose L is definable by a sentence ¢ in MON,. Let K C (X x {0,1}")* be
the regular language whose existence is proved in Lemma 6.1. Let M be its syntactic
monoid and let p: (X x {0,1}")* — M be its syntactic morphism. Furthermore let
X C M be such that K = p~(X).

Let w = my7a...7, € ¥* and |w| = n. We color (i,5), 1 < i < j, 4,j € N, by
(Moy, Moys ..., Mg,), Where my, = M(Uk)\jil\,i —1) € M. By Lemma 6.2, there is
a sequence 1 < i1 < i < -+ < ipyq such that (i;,4;41), 0 < j < n, have the same
color. Define

pad(w) _)\21717_1)\12*7/171,7_2 o A'Ln71'7:,71710.”)\27,,«{»171'”71.

Since A is a neutral letter for L, w € L iff pad(w) € L. Observe that

—

p(pad(w)) = mome, Mg, -+ My,

where my = ,u()\/“:) Thus w € L iff mor(w) € X, where v : ¥* — M is the
homomorphism defined by v(0;) = m,, for 1 <4 < t. This implies that there is a set
Y ={m € M| mom € X} such that w € L iff v(w) € Y C M. Thus L is regular, and
its syntactic monoid is a quotient of a submonoid of M, which implies that all the
groups in M (L) are solvable and have order dividing a power of g. The conclusion
about logical definability of L now follows from the results of [21]. |

520 AMITABHA ROY AND HOWARD STRAUBING

7. Directions for further research. In many steps of the algorithm for re-
ducing a sentence defining L,, to an active-domain sentence, we introduced ordinary
quantifiers even when the original formula had only modular quantifiers. If there
were a way to avoid this, we could also prove, by the same techniques, that the lan-
guage 0*1{0,1}* cannot be defined by a formula over (N,+) having only modular
quantifiers. If addition is replaced by arbitrary numerical predicates, this statement
is equivalent to the conjecture that the circuit complexity class CC® does not con-
tain the language 1*. (CCP is the class of languages recognized by constant-depth,
polynomial-size circuit families in which every gate is a M OD, gate for a fixed mod-
ulus ¢. See Barrington, Straubing, and Thérien [7].)

One can ask in general for what classes C of numerical predicates we have that
every language in (F'O + MOD,)[N,C] with a neutral letter is regular and definable
using only the ordering in <. The question is discussed at length in [5], and in [12]
in the more general context of collapse results for embedded finite models. One can
investigate whether, as is the case for first-order logic, finite VC-dimension of (N, C)
implies the collapse. This would require generalizing the results of Baldwin and
Benedikt [1] to modular quantifiers.

But there is a limit to how far we can push this approach. We are really interested
in proving our result over a base of arbitrary numerical predicates, or at the very least
over the base {+, x}. However, with {4, x }, one can express all problems in the arith-
metic hierarchy (section 4 in [5]). Specifically, it is possible in this logic to define the set
of infinite strings with an even number of 1’s in first-order logic without using modular
quantifiers! Let F(x) be the numerical predicate “the binary expansion of = contains
an even number of 1’s,” and B(z,y) the predicate “bit y in the binary expansion of
2 is 1.” Then the set of infinite bit strings with an even number of 1’s is defined by

Az(E(x) AVy(r(y) < B(x,y))).

Both E and B are definable over (4, x). This shows that we cannot extend the col-
lapse arguments to these richer logics. It also shows (since we know, from circuit com-
plexity, that first-order sentences cannot define PARITY for finite strings) that there
are important differences between finite and infinite strings as regards definability.

One possible approach to formulas with more general numerical predicates is to
try to prove some version of the collapse results for sentences interpreted in finite
strings that are known to define regular languages. We do know, for example, thanks
to the circuit lower bounds, that regular languages definable by first-order sentences
with arbitrary numerical predicates are all definable in FO[<,{=;: s > 1}], and the
same holds even when we add modular quantifiers of fixed prime modulus, so we
do indeed have a collapse result, although this has never been proved directly by
model-theoretic means (see [3] and [20]).

Acknowledgments. We acknowledge helpful discussions with Klaus-Jorn Lange,
Denis Thérien, David Mix Barrington, and the late Clemens Lautemann. We also
thank Andreas Krebs for pointing out to us that our original proofs of Lemmas 5.1
and 5.2 were unnecessarily long and complicated, and for supplying the simpler argu-
ments given here.

REFERENCES

[1] J. BALDWIN AND M. BENEDIKT, Stability theory, permutations of indiscernibles and embedded
finite models, Trans. Amer. Math. Soc., 352 (2000), pp. 4937-4969.

g YU © ©

M.

> 2 Qo g g U

DEFINABILITY OF LANGUAGES 521

. M. BARRINGTON, Bounded-width polynomial-size branching programs recognize exactly those

languages in NC1, J. Comput. System Sci., 38 (1989), pp. 150-164.

. M. BARRINGTON, K. CoMPTON, H. STRAUBING, AND D. THERIEN, Regular languages in

NC?t, J. Comput. System Sci., 44 (1992), pp. 478-499.

. M. BARRINGTON, N. IMMERMAN, AND H. STRAUBING, On uniformity in NC1, J. Comput.

System Sci., 41 (1990), pp. 274-306.

. M. BARRINGTON, N. IMMERMAN, C. LAUTEMANN, N. SCHWEIKARDT, AND D. THERIEN,

First-order expressibility of languages with neutral letters or the Crane Beach conjecture,
J. Comput. System Sci., 70 (2005), pp. 101-127.

. M. BARRINGTON AND H. STRAUBING, Superlinear lower bounds for bounded-width branching

programs, J. Comput. System Sci., 50 (1995), pp. 374-381.
M. BARRINGTON, H. STRAUBING, AND D. THERIEN, Nonuniform automata over groups,
Inform. and Comput., 89 (1990), pp. 109-132.

. M. BARRINGTON AND D. THERIEN, Finite monoids and the fine structure of NC1, J. ACM,

35 (1988), pp. 941-952.

. BEHLE AND K.-J. LANGE, FO[<]-uniformity, in Proceedings of the IEEE Conference on

Computational Complexity, 2006, pp. 183-189.

. BENEDIKT AND L. LIBKIN, Relational queries over interpreted structures, J. ACM, 47 (2000),

pp. 644-680.

. KrEBs, K.-J. LANGE, AND S. REIFFERSCHEID, Characterizing TCO in terms of infinite

groups, in Proceedings of the 22nd International Symposium on Theoretical Aspects of
Computer Science (STACS’05), Lecture Notes in Comput. Sci. 3404, Springer, Berlin,
2005, pp. 496-507.

. LIBKIN, Embedded finite models and constraint databases, in Finite Model Theory and Its

Applications, E. Gradel et al., eds., Springer, New York, 2005.

. L1BKIN, Elements of Finite Model Theory, Springer, New York, 2004.
. F. LyNCH, On sets of relations definable by addition, J. Symbolic Logic, 47 (1982), pp.

659-668.

. NURMONEN, Counting modulo quantifiers on finite structures, Inform. and Comput., 160

(2000), pp. 183-207.

PRESBURGER, Ueber die Vollstaendigkeit eines gewissen Systems der Arithmetik ganzer
Zahlen, in welchem die Addition als einzige Operation hervortritt, in Comptes Rendus du
I congres de Mathématiciens des Pays Slaves, Warsaw, Poland, 1929, pp. 92-101.

. A. RAZBOROV, Lower bounds for the size of circuits of bounded depth with basis {A, @},

Math. Notes Soviet Acad. Sci., 41 (1987), pp. 333-338.

. SCHWEIKARDT, Arithmetic, first-order logic, and counting quantifiers, ACM Trans. Comput.

Log., 6 (2005), pp. 634-671.

. SMOLENSKY, Algebraic methods in the theory of lower bounds for Boolean circuit complexity,

in Proceedings of the 19th ACM Symposium on Theory of Computing (STOC), 1987, pp.
77-82.

. STRAUBING, Finite Automata, Formal Logic and Circuit Complexity, Birkhaduser, Boston,

1994.

. STRAUBING, D. THERIEN, AND W. THOMAS, Regular languages defined with generalized

quantifiers, Inform. and Comput., 118 (1995), pp. 289-301.

