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Monte Carlo Calculations of Turbulent Diffusion Flames 
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Engineering, Cornell University, lthaca, NY 14853 

(Received February 14, 1984; in final fornz June 7, 1984) 

Abstract-Calculations of turbulent diffusion flames are  presented and compared with experimen- 
tal data. In the calculation procedure, the mean continuity and momentum equations are solved 
by a finite-difference method, and the k-E turbulence model is used to model the Reynolds stresses. 
The conserved-scalar approach is used so that the local, instantaneous, thermochemical properties 
of the flame are uniquely related t o  a single conserved scalar f ( x ,  1)-the mixture fraction. A 
modelled transport equation for the probability density function (pdf) of  / is solved by a Monte 
Carlo method. 

The results of calculations are compared with experimental data for three turbulent flows: an 
inert methane jet; a hydrogenlair diffusion flame; and a hydrogen-argonlair diffusion flame. In 
general there is good agreement between calculated and measured quantities, including pdf's. 
Numerical tests of the Monte Carlo method are also reported. These demonstrate the con- 
vergence of the method and provide an  estimate of the statistical error. 

1 INTRODUCTION 

Turbulent jet diffusion flames have been the subject of several experimental studies: 
Hawthorne, Weddell and Hottel (1949), Kent and Bilger (1973), and Driscoll, Schefer 
and Dibble (1982), for example. Such flames are of direct practical importance and 
at the same time are well suited to the study of fundamental turbulent combustion 
processes. 

Lockwood and Naguib (1975) and Kent and Bilger (1976) have made turbulence- 
model calculations of diffusion flames. In these calculations, the Reynolds stresses 
are determined from the turbulent-viscosity hypothesis, with the turbulent viscosity 
p~ being obtained from the equation 

Here k is the turbulent kinetic energy, E is its rate of dissipation, ( p )  is the mean 
density, and the coefficient C, is taken to be a constant. Standard modelled trans- 
port equations (see Launder and Spalding, 1976) are solved for k and E .  Thus, if 
the mean density (p) is known, the continuity, momentum and k-E equations form 
a closed set. 

Both Lockwood and Naguib (1975) and Kent and Bilger (1976) treated the thermo- 
chemistry of the flame by the conserved scalar approach with the assumption that 
reaction is very rapid compared to the smallest flow or turbulence time scale. I n  
this approach i t  is assumed that all molecular diffusion coefficients are equal, that 
the Lewis number is unity, that there is negligible heat loss by radiation, and that the 
Mach number is low. For then the enthalpy and the mass fraction of each element 
(in whatever molecular form) are linearly related to a conserved scalar f(x, t ) .  This 
can be taken to be the jet nozzle fluid concentration (or mixture fraction), and hence 
f=  1 in the nozzle, andf=O in  the surrounding airstream. 

I3 
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14 T. V. NGUYEN A N D  S. B. POPE 

The rapid-reaction assumption implies that, locally, there is chemical equilibrium. 
The equilibrium state is a function of the pressure, enthalpy and elemental compo- 
sition. In view of the assumed low Mach number, turbulent pressure fluctuations 
are very small compared to the mean pressure and hence have a negligible effect on 
the thermochemical state. Thus for a given mean pressure, the local thermochemical 
state is uniquely determined by f (x ,  t), since f uniquely determines the enthalpy and 
element mass fractions. For any thermochemical quantity-the density, for example- 
we can then write 

where p* is the equilibrium density as a function off at the given mean pressure. 
In order to determine the mean density (p(x, I ) )  a knowledge of the mean (J(x, I)) 

is insufficient. But (p(x, 1))-or the mean of any other function ofJ-can be deter- 
mined from the probability density function (pdf) o f f ,  p(f'; x, I). [This is defined 
as the probability density of the event f(x, t)=f.]  In terms of the pdf, the mean 
density is 

(Henceforth the asterisk is omitted; the arguments suffice to indicate whether p is 
being considered a function o f fo r  of x and I . )  

Lockwood and Naguib (1975) assumed p(f; x, t )  to be a clipped Gaussian: that 
is, a Gaussian for 0 <f< 1, with the tails of the Gaussian ( f < O  and f> I) lumped 
into delta functions a t f=0  andf= 1. Such an assumed distribution,can be uniquely 
determined from its mean (j) and variance (y2) for which Lockwood and Naguib 
solved modelled transport equations. Other authors (e.g. Kent and Bilger, 1976; 
Kolbe and Kollmann, 1980; Rhodes, Harsha and Peters, 1974) have made other 
assumptions about the shape of the pdf. 

Janicka, Kolbe and Kollmann (1978) used a finite-difference method to solve a 
modelled transport equation for the pdf p ( f i  x, t). This removes the need to assume 
a pdf shape and is potentially more accurate. In the present work we also use a 
modelled transport equat~on for the pdf but solve it by a Monte Carlo method 
(Pope, 1981a). In contrast to the assumed-pdf method, the pdf-equation approach 
is readily extended to several reactive (i.e. non-conserved) scalars (Pope, 1981b). 
The Monte Carlo method is essential to such extensions since finite-difference methods 
are computationally impracticable for joint pdf's of large dimensionality. Conse- 
quently an important component of the present work is a numerical study of the 
Monte Carlo method. 

In the next section the model equations are presented. The numerical method is 
outlined in Section 3 and numerical tests are reported. These tests confirm the con- 
vergence of the Monte Carlo method and determine its accuracy and computational 
cost. In Section 4 results of calculations (including pdf's) are compared with exper- 
imental data from three flows: a non-reacting methane jet is quiescent air (Birch, 
Brown, Dodson and Thomas, 1978); a hydrogenlair diffusion flame (Kent and Bilger, 
1973); and, a hydrogen-argonlair diffusion flame (Driscoll, Schefer and Dibble, 
1982). 
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MONTE CARL0 CALCULATIONS O F  FLAMES 

2 MODEL EQUATIONS 

We first present the modelled equations for the mean flow and turbulence fields. 
These equations are for the density-weighted mean velocities 

for the density-weighted turbulent kinetic energy 

and for its rate of dissipation E .  Angled brackets denote means, tildes denote density- 
weighted means, and primes and double primes, respectively, denote the fluctuations 
about these means. (The equations are presented in their general form, although it is 
the steady-state boundary-layer equations that are solved.) 

The mean equations for the conservation of mass and momentum are 

and 

where P is the pressure. The effects of body forces and viscous stresses have been 
neglected which is acceptable for the flows considered. The Reynolds stresses are 
modelled by 

where the turbulent viscosity is given by Eq. ( I ) .  
The modelled transport equations for k and E are 

and 

where G is defined by 
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16 T. V. NGUYEN AND S. B. POPE 

and ok, a,, C,l, Cc2 and C,, are model constants whose values are given below. The 
use of these equations in turbulent reactive flows is discussed by Jones and Whitelaw 
(1982). They suggest the addition of the last term in Eq. ( I  1) to account for the 
interaction of mean density and pressure gradients. It is found that, for the three 
flows considered, the additional term has an insignificant effect on the results. 

The density-weighted pdf of f is 

For any function o f 5  QCf), the density-weighted mean is then given by 

while the mean density can be obtained from 

For each flame considered, all therrnochemical properties are determined as functions 
of,pfrom the equilibrium code of Gordon and McBride (1971). 

The modelled transport equation for bfl x, t )  is the same as that used previously 
by Pope (1 98 1 a, b) and by Givi, Sirignano and Pope (1984): 

The rate-of-change and mean-convection terms on the left-hand side are exact. 
Convection by the fluctuating velocity field is modelled as gradient diffusion with 
coefficient pT/ol where uj is ascribed the value 0.7. In general, the use of gradient- 
diffusion models in variable-density reactive flows is highly dubious. It can be 
avoided by considering the joint pdf of velocity and the scalar (Pope, 1981~) for 
then the turbulent transport term appears in closed form. But for a conserved scalar 
in a simple shear flow, direct measurements (Driscoll et al., 1982) suggest that the 
gradient-diffusion model may be acceptable. 
, The final term in Eq. (15) represents mixing by molecular diffusion. It is n~odelled 

by Curl's (1 963) coalescence-dispersal model : 

where the mixing frequency is 
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MONTE CARL0 CALCULATIONS OF FLAMES 17 

and the constant C+ is ascribed the value 2.0. The modelling of the mixing term has 
received considerable attention (Dopazo, 1979; Janicka et a!., 1979; Pope, 1982) 
mainly because all the simple models suggested to date have serious deficiencies. In 
the present context, the principal deficiency of Curl's model is that it overestimates 
the flatness factor (and higher normalized moments of the pdf). Pope (1982) has 
shown that,. for the case of decaying scalar fluctuations in homogeneous turbulence, 
Curl's model causes the flatness factor to increase without limit rather than to tend 
to the Gaussian value of 3 .  

In order to compare the present approach to moment methods, it  is useful to note 
that modelled equations for,f and g f "2 can be obtained from Eqs. (1 5)-(17): 

and 

These equations are identical to those used by previous investigators (e.g. Lockwood 
and Naguib, 1975; Kent and Bilger, 1976), and consequently the pdf model constants 
a, and C,:, can be related to model constants in thefand g equations. 

Our principal aim here is to investigate the performance of the pdf equation and 
of the Monte Carlo method-not to propose a universal model. Consequently we 
follow Lockwood and Naguib in selecting one set of model constants for inert flows 
and another set for reacting flows: these are shown in Table I. (That difTerent con- 
stants are needed to produce agreement with experimental data indicates a lack of 
universality in the model.) A detailed study of the influence of the model constants 
is given by Nguyen (1984). 

In summary, modelled transport equations are solved for 0, k,  E and $, and the 
mean density is determined from Eq. (14). 

TABLE I 

Turbulence model constants 

C,. Cc I CQ Co ak 

Inert floe 0.09 1.45 1.9 2.0 1 .O I .3  0.7 
Reacting flows 0.09 1.44 1.789 1.789 I .O 1.3 0.7 

3 SOLUTION PROCEDURE 

I n  the first two subsections we briefly describe the finite-difference method used to 
solve the equations for 0, k and F ,  and the Monte Carlo method used to solve the 
equation for /). Extensive numerical tests were performed: some results on the 
accuracy of the Monte Carlo method are presented in  Section 3.3.  
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18 T. V. N G U Y E N  AND S. B. POPE 

The finitc-dirercncc nict hod uscd hns been fully dcscribcd by Pope (1977a, 1977b). 
We dcscribc herc just the coordinate system and grid arrangement in order to provide . 
the rcquired background to the next two subsections. 

Considcr thc polar-cylindrical coordinates x, r-, 0 i n  which x is the dominant flow 
direction and r is the radial direction. All statistical quantities are independent of 
the circumferential coordinate 8. I n  the flows considered, the jet half-width rllz(x) is 
defined as thc radial position at which the axial velocity o(x, r )  is equal to the average 
of the centerline and free stream velocities: that is, 

The half-width is used to define the normalized axial and radial coordinates 

and 

Starting fro111 initial conditions at X=Xo=O, the solution at successive axial locations 
Xi=XL-,- t-  AX is obtained by a marching procedure. Boundary conditions are imposed 
on the centerline (q=0) and in the freestream or ambient (q=lmns). In the cross- 
stream direction, finite-difference nodes are located a distance AT) apart. A complete 
dcscriptio~i of the method is provided by Pope (1977a, b). 

The finite-difference scheme contai~is three numerical paranleters: AX, AT and 
?mas. Nguyen (1984) investigated the influence of these parameters and confirmed 
the convergence of the scheme as AX, AT) and qm,,-l tend to zero. 

3.2 Monte Carlo Method 

The Monte Carlo method uses the same grid as the finite-difference method. At 
each node, the pdf ,G(f; X, T))  is represented indirectly by an ensemble of N rep- 
resentative values of f, f (I1) (n = 1, 2, . . ., N). For any function of f, QCf), the 
ensemble average is defined by 

This ensemble average corresponds to the density-weighteaean of Q(f) in that, 
as N tends to infinity, (QC/)>N converges i n  probability to QCf). 

Initial conditions are specified at x=Xo: if the node is in the jet then f(") = 1 (all n), 
or if it is in the freestream or ambient then f(n)=O. At the axial location XI, the 
representative values f(*) at a given node (at T=T)~ ,  say) are obtained as a linear 
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MONTE CARL0 CALCULATIONS OF FLAMES 19 

combination of the values at the three nearest upstream nodes: these are located 
at (Xi-1, 7, - A?), (Xi-1, 71) and (Xi-,, q j  + Aq). Of course, the precise way in which 
this is performed defines the Monte Carlo method and the pdf equation that i t  
simulates. Pope (l98la) for the general case, and Nguyen (1984) for the particular 
case in hand, have described the details of the Monte Carfo method and proved 
convergence. 

The Monte Carlo method introduces the additional numerical parameter N. Thc 
above-mentioned convergwe proof shows that the ensemble average (QC/))N con- 
verges in probability to QCf) as N tends to infinity. But for finite N, (QC/))N is a 
random variable whose standard deviation can be expected to be proportional to 
N-112. Thus in the Monte Carlo method, the ensemble average at each node con- 
tains some statistical error. This error can be reduced by smoothing the profile 
across the flow. For the calculations reported in Section 4, mean profiles are deter- 
mined as least-squares cubic splines (de Boor, 1978) with 20 basis functions. For the 
calculations reported in Section 3.3, a more sophisticated smoothing cubic spline 
(Reinsch, 1967) is used with a cross-validation procedure to determine the smoothing 
parameter. Again, 20 basis functions are used. 

3.3 NumericaI Tests 

Numerical tests of the finite-difference scheme have been reported by Pope (1977a) 
and by Nguyen (1984). Here we report tests to determine the effect of the numerical 
parameter N in the Monte Carlo method. Calculations were made for Kent and 
Bilger's hydrogen-air diffusion flame with AX=O. I ,  Aq =O. 154 and vmax=4.0, and 
with various values of N. About 600 axial steps were needed to reach the selected 
output station of 80 diameters (i.e. x/d=80). At this location the jet half-width rl,? 

is approximately 3.2d. 
At a given location ( X ,  ?) the ensemble average ( f ) ~  is a random variable. If the 

Monte Carlo calculation is performed M times (using different random numbers), 
then the resulting ensemble averages ( f )N.m (m = I ,  2, . . ., M) are different. Thc 
expectation of ( f ) ~  can be estimated by 

Y 

Similarly the ensemble average variance ( r2)~ (which approximates 7 2 )  is also a 
random variable and its expectation can be approximated by 

In order to determine the dependence o f j ~  and IN' on N, calculations were made 
for the different values of N, 40, 100,400, 1,000,4,000 and 10,000. The corresponding 
number of runs was M =  125, 50, 13, 5, 2 and 2. The number of runs was chosen so 
that the product N x M  is approximately the same in each case, and consequently 
the accuracy of the approximations in Eqs. (24) and (25) are about the same. 
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20 T. V. NGUYEN A N D  S. B. POPE 

Radial profiles of and f ~ '  at x/d= 80 are shown on Figure 1.  It may be seen 
that the centerline value of,& is about 6 percent of its initial value. I t  appears that 
for N $100, thc expectations of ( j ) ~  and ( r2)~ depend little upon N, whereas for 
the smallest number of elements ( N = 4 0 )  a difference can be discerned. 

FIGURE I Expectations of ensemble-average mean and standard deviation o f f  against nor- 
malized radial distance. N-40 ---, ~ = j 0 0 -  ----; N=400 - - -; N=],000 
N=4,000 ------, N=]O,WO 

The standard deviation of ( f ) ~  is called the standard error and is approximated 
by 

Figures 2 and 3 show ESL plotted against 77 at x/d=80 for different values of N .  As 
expected, the standard error decreases with increasing N. (The statistical error in 
estimating the standard error is proportional to M -112. For this reason there is far 
more scatter in Figure 3 than in Figure 2.) 

In order to examine more precisely the effect of the number of elements, Figcre 4 
showsf~r f :  P ~ L  plotted against N-'I2, for three radial locations at x/d=80. Jt appears 
that the method is slightly biased: that is, /;v depends (weakly) on N. This is in 
contrast to the finding of Pope (1981a) who used the same method but on different 
flows. The reason for the difference is, most likely, that in the present case the mean 
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MONTE CARL0 CALCULATIONS O F  FLAMES 

7 
FIGURE 2 Standard error against normalized radial distance. 

FIGURE 3 Standard error against normalized radial distance. 

density is determined from ensemble averages and is therefore subject to statistical 
error. These statistical errors affect the calculation of the flow field and hence per- 
meate through the whole calculation procedure. However, the small bias is of little 
consequence since it appears to be negligible for N >  100. 
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T. V. NGUYEN AND S. B. POPE 

FIGURE 4 Expectation of ensemble-average o f f  against N-lI2 at different radial locations: 
(a) 7=0.0, (b) 1=0.692, (c) 7=1.615. Error bars show plus and minus the standard error. 

Figure 4 also shows that, as expected, increases linearly with N-1/2_Simple 
statistical arguments suggest that the standard error in ( f ) ~  scales with lf"2/N]1/2. 
In order to examine this suggestion, the normalized standard error 

E ~ L *  N1/2/ f~', - (27) 

is plotted against 17 in Figure 5. Jt appears that does scale with Lf"2/N]l/2, and 
the normalized standard error is of order 3. For N=4,000 and N= 10,000, 
&,t* is estimated from just two samples (M=2). The scatter seen on the figure is not 
surprising therefore. 

These numerical results confirm the convergence of the Monte Carlo method (as 
N +  a) and allow the statistical error to be estimated.Jnverting Eq. (27), dividing 
by fo (the centerline value off) ,  and replacing f ~ '  by Lf"2]'/2, we, obtain 
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MONTE CARL0 CALCULATIONS OF FLAMES 23 

FIGURE 5 Normalized standard error against normalized radial distance: N=40, 0 ;  
N=100, 0; N=400, A; N=l,OOO, v ;  N=4,000, x ; N=IO.OOO, +. 

And taking ~ , ' * 2 3  and lfTj1/?/&=:0.3 we obtain the estimate 

For the different values of IV, Table I 1  shows this estimate and also the calculated 
value of c,r/fon the centerline. It may be seen that Eq. (29) provides a good (slightly 
conservative) estimate. 

TABLE I 1  
Statistical error estimates and coniputer run times 

(ESI/~O) ~ ~ l / f o  CPU time per 
N calculated Eq. (29) run (minutes) 



D
ow

nl
oa

de
d 

B
y:

 [C
or

ne
ll 

U
ni

ve
rs

ity
 L

ib
ra

ry
] A

t: 
03

:1
9 

20
 D

ec
em

be
r 2

00
7 

24 T. V. NGUYEN AND S. B. POPE 

Also shown in the table are the CPU times required to perform the Monte Carlo 
calculations on an IBM 4341. Apart from a small overhead, the CPU time increases 
linearly with N. 

(After these test calculations were performed, a mistake in implementing the small 
mean axial pressure gradient was detected in the code. This error has a small effect 
on the mean velocity but is of no consequence in the context of these numerical 
tests. The error was corrected prior to the performance of the calculations reported 
in the next section.) 

4 RESULTS A N D  DISCUSSION 

Calculations were made for three flows: an isothermal, inert methane jet discharging 
into quiescent air (Birch el al., 1978); a hydrogenlair diffusion flame (Kent and 
Bilger, 1973); and a hydrogen-argonlair diffusion flame (Driscoll et al., 1982). For 
each flow, the Monte Carlo calculation was performed three times (using different 
random numbers) and the results reported were obtained by averaging over the 
three runs. There were 1,000 elements at each of 28 grid nodes. The grid extended 
to ~mnx=4.0 and the axial step size was AX=O.l. Based on the numerical results 
of the last section, the statistical error is estimated to be about 2 percent. Each run 
required about 15 min CPU time on an IBM 4341. 

4.1 Inirial Conditions 

Initial conditions for the dependent variables 0, k, E and ~ ( f )  are specified at x=O. 
In the jet, f= 1 and hencep'(j) is a delta function a t f=  1. Similarly, in the quiescent. 
surroundings or co-flowing airstream, ~ ( 3 )  is a delta function at f=O. For the two 
diffusion flames, the initial profile of 0 is taken from the experimental data of Kent 
and Bilger (1973), while for the inert methane jet, a one-seventh power law is assumed 
corresponding to fully-developed turbulent pipe flow. 

There is always some uncertainty and ambiguity in specifying initial profiles of 
k and E .  Here, k and E are determined from the ordinary differential equations 

and 

where 

The time scale T is specified by a two-step procedure. First, these equations are 
solved with T set to infinity. Then t is specified to be the value of klG' (obtained from 
the first solution) at the radial location at which G' is maximum. The equations are 
solved a second time with this value of t and the resulting profiles of k and e are 
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FIGURE 6 Mean centerline mixture fraction and mixture fraction half-width against normal- 
ized axial distance: 0, a experiments. Birch et a/. (1978), --- calculations. 

FIGURE 7 Normalized mean mixture fraction against normalized radial position at x/d=20 
and x/d=40. (Symbols as Figure 6.) 
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26 T. V. NGUYEN AND S. B. POPE 

taken as the initial conditions. This procedure yields plausible initial conditions 
and removes the ambiguity in their specification. 

In order to investigate the sensitivity of the Monte Carlo solutions to the initial 
conditions, Nguyen (1984) performed two calculations for the methane jet-one 
with the initial conditior~s described above, and one with top-hat profiles of k and E .  

At x / d =  10 the differences in  mean quantities between the two calculations are 
typically 10 percent: beyond x / d =  30 the differences are negligible. 

4.2 Inert Merlione Jet 

Birch et 01. (1978) used a laser-Raman technique to measure the methane concen- 
tration in a turbulent jet of methane discharging into quiescent air. The experimental 
data are of conventionally-averaged quantities-(f), (('J')"), ( n = 2 ,  3, 4 )  and / ~ ( j ) .  
Consequently the calculations are also reported as conventional averages. 

Figure 6 shows the axial variation of (f)o-the mean mixture fraction (f) on 
the jet centerline-and it may be seen that there is excellent agreement between the 
calculations and the experimental data. (Here and henceforth the subscript 0 denotes 
a centerline value.) Also shown is the axial variation of the mixture fraction half- 
width rf which is defined as the radial distance a t  which (f) is half of its centerline 
value. The calculated spreading rate drf /dx  is about 15 percent greater than the 
measured value of 0.095. This discrepancy is most likely due to the known inaccuracy 
of the k-E turbulence model in calculating the spreading rate of axisymmetric jets 
(Pope, 1978). The calculated normalized profiles or (f) are in good agreement with 
the data, Figure 7, except at the edge of the jet where the measured profiles extend 
beyond those calculated. 

FIGURE 8 Standard deviation of centerline mixture fraction against normalized axial distance. 
(Symbols as Figure 6.) 
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FIGURE 9 Standard deviation of mixture fraction against normalized radial distance at 
x/d= 20 and x/d=40. (Symbols as Figure 6.) 

Axial and radial profiles of the standard deviation o f f  are shown in Figures 8 
and 9. In general there is good agreement with the data. 

Radial profiles of the skewness S i ( f ' 3 ) / ( f ' ) 3 / 2  and the flatness or kurtosis 
K = ( f ' 4 ) / ( f 1 * ) 2  are shown in Figures 10 and 11.  In accord with the data, the calcu- 
lations show a small negative skewness close to the centerline and large positive 
values at the edge. But at the edge, the magnitude of the calculated skewness is two 
to three times greater than that measured. On the centerline the measured kurtosis 
is close to the Gaussian value of 3 whereas the calculated value is about 4.0. The 
value of K rises towards the edge of the jet and, again, the calculated values are 
significantly greater than those measured. 

The calculations of the skewness and flatness factor are a sensitive test of the 
mixing model. It is known that for the case of decaying fluctuations in homogeneous 
turbulence, Curl's mixing model predicts that K grows without bound, rather than 
tending to the Gaussian value of 3 (Pope, 1982). Thus the discrepancies at the edge 
of the jet are to be expected. I t  is likely that the use of an improved mixing model 
(Pope, 1982) would substantially reduce these discrepancies. 

Calculated and measured pdf's of methane mole fraction p ( f )  at x/d=lO are 
compared in Figure 12. Since there are small discrepancies between calculated and 
measured profiles of (f) and ( f ' z ) ,  the calculated pdf's are reported, not at the 
same radial location as the measurements, but at the location where the calculated 
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FIGURE 10 Skewness of fagainst normalized radial distance at x/d=20 and x/d=40. 
bols as Figure 6.) 

and measured values of (f) and (f'2) are about the same. This provides a better 
comparison of pdf shapes. 

There is good agreement between the calculated and measured pdf's. On the 
centerline the pdf is a bell-shaped curve, but at r l d z  1.7 it is bimodal. At the outer- 
most location there is a spike at [=O corresponding to ambient fluid. 

4.3 HydrogenlA ir Diffusion Flame 

Kent and Bilger (1973) made measurements in a flame formed by a hydrogen jet 
burning in a co-flowing stream of air. Measurements were made for the four velocity 
ratios (jet to co-flowing stream) of 2, 5, 8 and 10 to 1. Additional measurements on 
the same apparatus have been made by Glass and Bilger (1978), by Bilger and Beck 
(.1975), and by Kennedy and Kent (1981). Calculations are reported for the velocity 
ratio 10: 1 for whish most data are available. 

Figure 13 shows the mean centerline velocity normalized by the jet exit centerline 
velocity Uj. There is good agreement between calculated and measured profiles. 
[The calculated profile appears to have a discontinuous slope and a potential core is 
not evident. These are artifacts of the plotting: although the calculations were made 
with a small axial step size (AX=0.1), the axial profiles are plotted as straight lines 
between calculated points some distance apart.] 
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FIGURE 1 I Kurtosis of / against normalized radial distance at x/d=20 and x/d=40. (Sym- 
bols as Figure 6.) 

Figure 14 shows the axial variation of the centerline mean temperature and mole 
fractions. Radial profiles of these quantities at x/d=40 are shown in Figure 15. Axial 
and radial profiles offare shown in Figures 16 and 17. The half-width r, at x/d=40 
(used in the normalization i n  Figure 17) is calculated to within a few percent of the 
measured value. All these profiles show a close agreement between caldulations and 
measurements. 

Figure 18 shows the calculated normalized standard deviation offon the centerline 
compared to three different sets of data. Kennedy and Kent (1981) using Mie scat- 
tering measured values at least twice of those calculated. On the other hand, the 
data of Kent (1972) and of Drake e! al. (1982) (albeit for a different flame) are in  
fair agreement with the calculations. These observations add weight to Drake 
et al.'s suggestion that the Mie-scattering measurements are in error. In spite of 
this, the calculated normalized radial profile at x/d= 55 (Figure 19) agrees well with 
Kennedy and Kent's data. 

Calculated pdf's at x/d=55 are compared with Kennedy and Kent's data in 
Figure 20. In this case the calculations are reported at the grid node closest to the 
measurement location. It is apparent that the measurements show a greater prob- 
ability of small values off than do the calculations. The large measured values of 
~ ( f )  for smallfmost likely account for the larger standard deviation (see Figure 18). 
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FIGURE 12 Pdf's of methane mole fraction at x/d=IO: measurements of Birch ef 01. (1978). 

Additional results are reported by Nguyen (1984). These include profiles of mean 
velocity, mean momentum flux ( p U 2 ) ,  and turbulence intensity, as well as profiles 
of quantities reported here. but a t  other axial locations. The level of agreement 
between these calculations and measurements is comparable to that exhibited in 
Figures 13-20. 

4.4 Hydrogen-A rgonl Air Diffusion Flame 

Dibble et al. (1982) and Driscoll el al. (1982) report measurements of a jet diffusion 
flame that is geometrically similar to that of Kent and Bilger but in which the fuel 
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FIGURE 13 Normalized centerline mean velocity against normalized axial distance: 0 exper- 
iments, Kent and Bilger (1973); -- calculations. 

FIGURE 14 Centerline mean temperature and mole fractions against normalized axial distance: 
symbols, measurements of  Kent and Bilger (1973); lines, calculations. 
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FIGURE 15 Mean temperature and mole fractions against normalized radial distance at 
x/d=40. (Symbols as Figure 14.) 
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FIGURE 16 Mean centerline mixture fraction against normalized axial distance: measurements 
0, Kent and Bilger (1973), A, Kennedy and Kent (1981); - , calculations. 
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FIGURE 17 Normalized mean mixture fraction against normalized radial distance at x/d=40. 
(Symbols as Figure 13.) 

FIGURE 18 Normalized mixture fraction rms against normalized axial distance: measurements 
0, Kennedy and Kent (1981), A, Drake er at. (1982), v, Kent (1972); ---, calculations. 
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FIGURE 19 Normalized mixture fraction rms against normalized radial distance at x/d=55:  
measurements 0, Kennedy and Kent (1981); ----, calculations. 

is a mixture of 78 percent hydrogen and 22 percent argon. The jet to co-flowing 
stream velocity ratio is 18.1 : 1. Compared to pure hydrogen, this fuel has a higher 
density and a higher stoichiometric mixture fraction (0.162 compared to 0.028). 

There are questions concerning the reliability of some of the data of Driscoll 
et al. First, the centerline velocity in the jet nozzle Ut is reported to be equal to the 
bulk flow velocity 0: but for the geometry of the apparatus one would expect fully 
developed turbulent pipe flow with Uj/075 1.2. Second, at x/d= 5, the centerline 
mean velocity and density are reported to be 20 and 30 percent less than their initial 
values. Even though the length of the potential cores in low density jets are known 
to be shorter than the constant-density value of 8 diameters, such rapid decreases in 
00 and <p)o are nevertheless surprising and in need of confirmation. 

In an attempt to compensate for these problems, Kollmann (1982) shifted the 
experimental data by 5 diameters when comparing them to his calculations (Koll- 
rnann, private communication): we follow this practice. Thus we compare our 
calculations at x/d= 15, for example, with the data reported at x/d= 10. (The x/d , 
values given below and in the figures refer to the calculations). 

Figure 21 shows the mean excess centerline velocity 00- Urn, where Urn is the 
velocity of the co-flowing airstream. Except far downstream, the agreement between 
calculations and measurements is poor. For example, a t  x/d=35 the calculated 
excess velocity is almost twice that measured. The radial profiles at x/d=55 (Figure 
22) also show poor agreement. At other axial locations (not shown) the agreement is 
similar, except a t  x/d= 15 where it is yet worse (see Nguyen, 1984). 
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FIGURE 20 Mixture fraction pdf's at x/d=55:  measurements of Kennedy and Kent (1981). 

The centerline rms velocity fluctuations are plotted in Figure 21. (The calculated 
value is obtained by assuming that the normal stresses are equal.) It appears that 
the calculations fall slightly below the data, although there is some scatter, at x/d=75 
in particular. (It should be noted that the calculated quantities in Figures 21 and 22 
are density weighted, while the measurements are conventional averages: but it is 
estimated that the difference between the two averages is quite small.) 

The axial variation of the mean centerline density is shown in Figure 23, and 
radial profiles are shown in Figures 24 and 25. The agreement between calculations 
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FIGURE 21 Normalized excess centerline mean and rms velocity against normalized axial 
distance: measurements, Driscoll et 01. (1982), 0. 0 from axial profiles, A from radial profiles; -- , calculations. 

FIGURE 22 Normalized mean axial velocity at x/d=55 against normalized radial position: 
0, measurements, Driscoll er al. (1982); -- , calculations. 
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FIGURE 23 Normalized mean centerline density against normalized axial distance. (Symbols 
as Figure 22.) 

FIGURE 24 Normalized mean density against normalized radial distance at x/d=15 and 35. 
(Symbols as Figure 22.) 
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FIGURE 25 Normalized mean density against normalized radial distance at x/d=55,  75 and 
155. (Symbols as Figure 22.) 

and measurements is poor at x/d= 15, but is quite good thereafter. The profiles at 
x/d=55 and 75 (and, to a lesser extent, those at x/d=35 and 155) show that the 
width or  the flame is calculated quite accurately at these axial locations. 

Radial profiles of the standard deviation of the density are shown in Figure 26. 
At the two farthest locations (x/d=75 and 155) the agreement between calculations 
and measurements is good. At x/d=35 and 55, two discrepancies are apparent: the 
maximum value of (p'2)112/(p) is calculated to be about 50 percent greater than 
that measured (although the location of the peak is calculated correctly); and in the 
center of the flame ( r /d  < 2), the calculated values of (p12)1/2/(p) fall significantly 
below the measured value of 0.2. The latter discrepancy could be due to experimental 
error from a variety of sources in this low density region-shot noise, background 
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FIGURE 26 Normalized rms density against normalized radial distance. (Symbols as Figure 22.) 
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FIGURE 27 Mean temperature against normalized radial distance at x/d=SS: 0, A, rneasure- 
ments, Dibble er a / .  (1982); - , calculations. 

FIGURE 28 Mean temperature against normalized radial distance at x/d=55: 0, A, measure- 
ments, Dibble et 01. (1982); - , calculations. 
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FlGURE 29 Mean atomic mixture mole fraction against radial distance at x / d = 5 5 .  (Symbols 
as Figure 27.) 

FlGURE 30 Rms atomic mixture mole fraction against radial distance at x /d=55 .  (Symbols 
as Figure 27.) 
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FIGURE 31 Probability density functions of normalized density at x / d = 5 5 :  measurements of  
Driscoll et 01. (1982). (Cotrril~ued on p. 43). 

scattering, for example (Dibble, private communication). As with other quantities, 
the agreement at x/d= 15 is poor. 

Figures 27-30 show the radial profiles at x/d= 55 of the mean and rms temperature 
T and mixture mole fraction 6. There is reasonable agreement between calculations 
and measurements. 

Probability density functions of density are shown in Figure 31. These are at 
x/d= 55 and, again, the calculated pdf's are reported at the grid node closest to the 
measurement station. The pdf's show a variety of shapes. From the centerline out- 
ward the pdf's are: a spike at p/pmr0.13; positively skewed pdf's; fairly flat pdf's; 
a negatively skewed pdf; and a spike at p/pco= 1. The spike on the centerline arises 
because p varies little with f (or Z) for the range of f  (or [) values found at that 
location. The broadness of the measured pdf at r/d=9.58 is most likely due to 
measurement noise (see Bilger, Antonia and Sreenivasan, 1976). There is at least a 
qualitative agreement between the calculated and measured pdf's. 
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FIGURE 31 (continued) 

CONCLUSION 

A numerical model has been used to calculate the properties of turbulent diffusion 
flames. The mean continuity and momentum equations are solved by a finite-differ- 
ence.'method, as are the modelled transport equations for k and E.  The conserved 
scalar approach is used with the assumption of rapid reaction so that the thermo- 
chemical state is uniquely related to the mixture fractionf(x, t ) .  A modelled transport 
equation for the mixture fraction pdf is solved by a Monte Carlo method. 

Numerical tests have been performed on the Monte Carlo method to determine 
the statistical error as a function of N-the number of representative elements at 
each grid node. The test results confirm that the statistical error decreases as I V - l / 2 .  

For N=3,000 the statistical error is about 2 percent and the CPU time required is 
45 minutes on an JBM 4341. 

The calculations for an inert methane jet, in general, show good agreement with 
the data of Birch er al. (1978). However, the mixture fraction skewness and kurtosis 
are significantly overpredicted at the edge of the jet, due to the inadequacy of Curl's 
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mixing model. Nevertheless there is good qualitative agreement between calculated 
and measured pdf shapes. 

For the two turbulent diffusion flames considered, the level of agreement with data 
is quite good and comparable to that obtained i n  previous modelling studies (Kent 
and Bilger, 1976; Kollmann, 1982, for example). Again there is good qualitative 
agreement between calculated and measured pdf shapes. 

The modelling could be improved in three respects: the use of an improved mixing 
model (Pope, 1982) would decrease the discrepancies in skewness and kurtosis; 
gradient-diffusion assumptions could be avoided by solving a modelled equation 
for the joint pdf of velocity and mixture fraction (Pope, 1981~); and, the edges of 
the jets could be treated more realistically by taking explicit account of intermittency 
(Pope, 1984). 

For the pdf of a single variable, the modelled transport equation could be solved 
by a finite-difference method as easily as by a Monte Carlo method-indeed this has 
been done by Janicka et a/. (1978). But for joint pdf's of several variables, Monte 
Carlo methods remain computationally practicable whereas finite-difference methods 
do not. Thus, the present method can readily be extended to treat finite-rate reactions 
and unequal diffusivities, in which case several scalar variables are required. 

This work was supported by the National Science Foundation (Engineering Energetics Program) 
grant numbers CPE 8000026 and CPE 8207790. The present address of T. V. Nguyen is Boeing 
Aerospace Co., P.O. Box 3999, Seattle, WA 98124. 
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