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Figure 1. Image model generation. I1 and I2 are the original data, α is matting factor and g is the observed image.

Abstract

We present a Markov Random Field model for image bi-
nary segmentation that computes the probability that each
pixel belongs to a given class. We show that the compu-
tation of a real valued field has noticeable computational
and performance advantages with respect to the computa-
tion of binary valued field; the proposed energy function
is efficiently minimized with standard fast linear order al-
gorithms as Conjugate Gradient or multigrid Gauss-Seidel
schemes. By providing a good initial guesses as starting
point we avoid to construct from scratch a new solution, ac-
celerating the computational process, and allow us to nat-
urally implement efficient multigrid algorithms. For appli-
cations with limited computational time, a good partial so-
lution can be obtained by stopping the iterations even if the
global optimum is not yet reached. We present a meticu-
lous comparison with state of the art methods: Graph Cut,
Random Walker and GMMF. The algorithms’ performance
are compared using a cross–validation procedure and an
automatics algorithm for learning the parameter set.

1. Introduction

Two–classes image segmentation [image binary segmen-
tation (IBS)] is an important task in image analysis and in
image editing tasks. There are many problems in which
the core solution algorithm is an IBS method; for instance:

interactive image segmentation (trimaps) [2, 5, 13, 23, 24],
organs segmentation in medical imaging (e.g. skull strip-
ping) [4,9], foreground extraction (image matting) [23,25],
motion computation [6, 14], among others. Multiclass im-
age segmentation is also commonly implemented by suc-
cessive applications of IBS methods [3, 6, 14]. Last listed
applications show that any improvement to the convergence
ratio, memory requirements or error reduction of IBS meth-
ods will have an important impact in many image process-
ing and computer vision applications. In this paper we
present a novel IBS method that improves the procedures of
the state of the art with respect to the three above listed is-
sues. Our method is based on a new Markov Random Field
(MRF) model and computes the probability (memberships)
that a pixel belongs to a given class. It is based on the mini-
mization of a quadratic energy function archived by solving
a linear system with standard iterative algorithms, as Gauss-
Seidel (GS) or Conjugate Gradient (CG) [21]. As it is well
known, the convergence ratio of such algorithms can be im-
proved by providing a good initial guess (starting point).
Moreover gradient descent based algorithms produce a par-
tial solutions sequence (a new partial solution at each itera-
tion) that reduces successively the energy function. Thus,
for applications with limited computational time, a good
partial solution can be obtained by stopping the iterations
even if the global optimum is not yet reached. These char-
acteristics lead us to, naturally, implement computationally
efficient multigrid algorithms [7].

We organize this paper as follows. In section 2 we



present a new derivation of the recently reported method
in [22] for soft (probabilistic) images multiclass segmen-
tation. The here presented derivation is rigourously justi-
fied within the Bayesian regularization theoretical frame-
work. In section 3 we particularize the method derived
in section 2 for the IBS case. In this case the class mem-
berships (probabilities) are represented by a single Markov
Random Field (MRF) and our positive definite quadratic en-
ergy function incorporates effectively the constraints of be-
ing a probability field. In section 4 we present a discussion
about related formulation for images multilabel segmenta-
tion. In section section 5 we evaluate the performance of
the proposed IBS method in the interactive color IBS task
based on trimaps. For such a purpose we follow the imple-
mentation by Boykov and Jolly [5] and only replacing the
IBS method. We used the popular Lasso’s bench database,
such database is used in [2] and available online [28]. The
experimental results demonstrate a superior performance of
our method compared to popular methods of the state of
the art for IBS. We conduct a careful performance evalua-
tion based on a cross-validation technique. For such pur-
poses the algorithms hyper-parameters were automatically
adjusted (optimized) and a standard benchmark data were
used. In section 6 we demonstrate (by numerical experi-
ments in both real and synthetic data) the method capabil-
ities for the simultaneously estimation of the segmentation
and of the model parameters. Finally, section 7 presents our
conclusions.

2. Quadratic Markov Measure Field Models

MRF models are a well-accepted and powerful approach
for solving problems in early computer vision and image
processing [1,2], [3,5,6,8,13,14], [16,18,22], [23–25]. Re-
cently Rivera et al. [22] proposed the Entropy Controlled
Gauss Markov Measure Fields (EC-GMMF) models for im-
age multiclass segmentation. Such an algorithm is compu-
tationally efficient and produces “soft” segmentations of ex-
cellent quality. In [22] the algorithm is derived in the frame-
work of Gauss Markov Measure Fields (GMMF) models
[18], an early work of the EC-GMMF’s authors. In the
GMMF framework [18], if no prior knowledge is available,
the posterior probability marginals must be equal to the nor-
malized likelihoods. However, in the derivation presented
in [22] such a constraint neither it is satisfied nor its relax-
ation is theoretically justified. In this section we present an
alternative derivation to the formulation in [22] rigourously
based on the framework of Bayesian regularization (BR)
with prior MRF models. We directly derive the formula-
tion from the observation model illustrated in Fig. 1. We
assume that the image g is generated with the model

g(x) = α(x)I1(x) + (1 − α(x))I2(x), (1)

where x ∈ R ⊆ L denotes a pixel position in the region of
interest (the pixel set R) into the regular lattice L; I1 and
I2 are two general images and α is a matting factor [23,25].
We can generalize the model (1) for the case of multiple
regions as:

g(x) =
∑

k

αk(x)g(x), (2)

for k = 1, 2, . . . , K; where

αk(x)g(x) = αk(x)(Ik(x) + ηk(x)); (3)

where ηk is a noise image with known distribution and the
matting factors satisfy:

K∑
k=1

αk(x) = 1, x ∈ R; (4)

αk(x) ≥ 0, k = 1, . . . , K, x ∈ R; (5)

αi(x)αj(x) ≈ 0 if i �= j, (6)

α(x) ≈ α(y), x ∈ R, y ∈ Nx; (7)

where Nx denotes the set of first neighbors of x: Nx =
{y ∈ R : |x−y| = 1}. Note that, because (4) and (5), α can
be interpreted as a probability measure field where αk(x) is
understood as the probability of the observed pixel g(x) is
taken from the data Ik(x). Additionally (6) introduces the
constraint on the probability vectors α(x) to have a low en-
tropy: together with (4) and (5), constraint (6) indicates that
only one α(x) vector entry has a value close to one and the
others entries are close to zero. The constraint (7) promotes
the probability measure α to be spatially smooth.

The segmentation of the composed image, g, can be seen
as the solution to the ill–posed inverse problem stated in (2)
and (3) subject to the hard constraints (4) and (5) and to the
soft constraints (6) and (7). This is, to compute the matting
factors αk and the original images Ik, or at least the im-
age fractions αkIk. In the BR framework, with MRF model
priors, one computes the solution (α∗, I∗) as an estimator
of the posterior distribution P (α, I|g). Then, by using the
Bayes rule, the posterior distribution can be expressed as:

P (α, I|g) =
1
Z

P (g|α, I)P (α, I); (8)

where P (g|α, I) is the conditional probability of the data by
assuming given the unknowns (α, I), P (α, I) is the prior
distribution and Z = P (g) is a normalization constant (in-
dependent on (α, I)). In this framework, the conditional
probability P (g|α, I) is derived from the noise distribution;
the observation model [(2) and (3)] and the prior P (α, I)
expresses the parameters’ Markovian property.

In general, the inference of the images Ik from the data
g is a complex inverse problem: even if α is given, we
could recover the fraction αkIk of the whole image. Thus
important assumptions (priors) need be used: for instance,
we can consider that such images can be represented by a
parametric function: Ik(x) = Φ(x, β), with parameters β.



For simplifying the notation, we express our derivation in
terms of I instead of the parameters β. Parametric forms,
although limited, have successfully been used for defining
layered models for segmenting gray scale images or optical
flows [17, 22]. User interaction is a popular form for intro-
ducing prior (high level) knowledge for segmenting images
with complex scenes. In that paradigm the user labels by
hand a subset of pixels and then the unknown labels are esti-
mated with a segmentation algorithm that takes into account
the distribution of the labeled pixels and the smoothness of
the spatial segmentation.

To derive P (g|α, I) we assume that ηk is i.i.d. Gaussian
noise with mean zero and variance σ2

k, i.e.:

P (ηk(x)) = Gσk
(ηk(x)) (9)

where we define Gσ(z)
def
= 1/

√
2πσ exp

[−|z|2/2σ2
]
.

From (3) we have: αk(x)ηk(x) = αk(x)(g(x)− Ik(x)).
As αk is almost binary [because (6)], then for αk(x) ≈ 1
one can expect a similar distribution for both αk(x)ηk(x)
and ηk(x). Therefore (by defining rk(x) = g(x) − Ik(x)):

P (αkg|αkIk, σ2
k) =

∏
x

Gσk

(
αk(x)rk(x)

)

=
∏
x

Gσk

(
rk(x)

)α2
k(x)

. (10)

Now we remove the assumption of Gaussian noise. First
we consider that any smooth density distribution vk can be
expressed with a Gaussian mixture model [12]:

vk(x, θk) =
M∑
i=1

πkiGσk
(rk(x) − mki) , (11)

with θk = (σk, πk,mk); where πki ≥ 0 are the mixture
coefficients (with

∑
i πki = 1); where the mixture para-

meters are assumed known: the Gaussians centers mk =
(mk1,mk2, . . . , mkI) variances σk and the number (maybe
large) of Gaussians M . Then we have

P (αkg|αkIk, θk) =
∏
x

[ M∑
i=1

πkiGσ (rk(x) − mki)
α2

k(x)

]

(12)

and in the low entropy limit we can approximate :

P (αkg|αkIk, θk) ≈
∏
x

[ M∑
i=1

πkiGσ (rk(x) − mki)
]α2

k(x)

=
∏
x

vk(x, θk)α2
k(x). (13)

If independency between αiIi and αjIj (for i �= j) is as-
sumed, then the likelihood of the observed (composed) im-
age g is given by

P (g|α, I, θ) =
∏
k

P (αkg|αkIk, θk). (14)

In particular, such an independency occurs if (6) is satisfied.
In order to impose an explicit entropy control we introduce
the Gini’s potential µ

(
1 − ∑

k α2
k(x)

)
, with µ > 0 we pro-

motes low entropy [12]. Additionally the region smooth-
ness is promoted using a Gibbsian distribution based on
MRF models. We finally obtain the prior P (α):

1
Z

exp
[∑

x∈R

(
µ‖α(x)‖2 − λ

∑
y∈Nx

‖α(x) − α(y)‖2

)]
; (15)

where Z is a constant. If a prior uniform distribution
on I and independence among I and α are assumed
(P (α, I) ∝ P (α)) then the posterior distribution takes the
form P (α, θ|g) ∝ exp [−U(α, θ)] and the MAP estimator
is computed by minimizing the energy function:

U(α, θ) =
∑
x∈R

{ K∑
k=1

α2
k(x) [− log vk(x, θ) − µ]

+
λ

2

∑
y∈Nx

|α(x) − α(y)|2
}

, (16)

subject to the constraints (4) and (5). This quadratic pro-
gramming problem can efficiently be solved by incorporat-
ing the equality constraints (4) in a Lagrangian (in the La-
grange multipliers method) and using a projection strategy
for the non-negativity constraint (5). The convergence of
the algorithm is guaranteed to a local minima, see [22].

3. Quadratic Markov Probability Fields

For the particular case of IBS [i.e. for the case in model
(1)], the resultant energy function has remarkable computa-
tional and performance advantages over standard IBS meth-
ods. Let be the normalized likelihoods corresponding to the
first and second classes:

v̂k(x, θ) =
vk(x, θk)
s(x, θ)

, (17)

for k = 1, 2; with

s(x, θ)
def
=

∑
k

vk(x, θk), (18)

then we define the distances:

dk(x)
def
= − log v̂k(x, θk). (19)

Then our IBS method can be formulated as the minimiza-
tion of the unconstrained quadratic cost function:

Q(α) =
∑
x∈R

{
α2(x) [d1(x) − µ]

+(1 − α(x))2 [d2(x) − µ]

+λ
∑

y∈Nx

(α(x) − α(y))2
}

. (20)



The minimization convergence properties of (20) are estab-
lished in the following theorem.

Theorem 1. Binary QMPF convergence.

(i) If µ < mink,x dk(x), then (20) has a unique global
minimum that satisfies α(x) ≥ 0,∀x ∈ R.

(ii) Otherwise a local minima can be computed with an
energy descend algorithm if the additional constraint
α(x) ≥ 0, ∀x ∈ L, is enforced.

Proof of (i). Assuming µ < mink,x dk(x).

(a) Q(α) a convex quadratic potential with a unique
global minima. Thus the linear system that results
of equaling to zero the gradient of (20) w.r.t. α can be
solved with the Gauss-Seidel (GS) scheme

α(x) =
a(x)
b(x)

(21)

with

a(x)
def
= d2(x) − µ + λ

∑
y∈Nx

α(y), (22)

b(x)
def
= d1(x) + d2(x) − 2µ + λ�Nx; (23)

where �Nx denotes the cardinality of Nx.

(b) If α0(x) ∈ [0, 1], ∀x, is provided as initial guess then
the sequence generated by the GS scheme (21) satis-
fies {αt(x)}t=1,...,T ∈ [0, 1], for any iteration num-
ber t (given that b(x) ≥ a(x) ≥ 0). Therefore the
unique global minimizer is also in the interval [0, 1].

Finally, from (a) and (b), any minimization algorithm
converge to the unique global minima, α∗(x) ∈ [0, 1], inde-
pendently of the initial point α0.
Proof of (ii). It follows from the fact that any descent algo-
rithm that produces a feasible sequence, {αt}t=1,...,T , for
solving an indefinite quadratic (linearly constrained) prob-
lem converge to, at least, a local minima, [21].

The formulation of the IBS problem as the minimization of
an unconstrained positive definite quadratic energy function
has the advantage of being achieved by computational effi-
cient algorithms, as CG or a multigrid implementation of
the GS scheme in (21). Although an initial guess does not
determine the convergence to the global minima, a good
starting point can accelerate the convergence rate. For in-
stance, we initialize α(x) = v̂1(x, θ1) in this work. More-
over, descend algorithms produce sequences {αt}t=1,...,T

such that: Q(α0) ≥ . . . ≥ Q(αi) ≥ Q(αi+1) ≥ . . . ≥
Q(α∗) ≥ 0; where the superscripts i and i + 1 indi-
cate consecutive iteration numbers (GS can be seen as a
particular case of a coordinate descent that converges if

b(xt) ≥ a(xt) ≥ 0,∀t). The feasibility of providing initial
guesses and having partial solutions (by stopping the algo-
rithm iterations before convergence) allow us to implement
fast multigrid algorithms.

4. Relationship with other Markov Measure
Fields Models for Soft Segmentation

A Markov measure field (MMF), α, is a random vector-
ial field that satisfies (4) and (5) with a Gibbsian prior dis-
tribution P (α) in terms of MRF models [16]. In its original
formulation, the image segmentation task is a combinatorial
problem: to assign a class label to each pixel. Differently to
hard segmentation schemes that directly compute the label
map, the MMF paradigm propose to compute the probabil-
ity (posterior marginals) that a pixel can be generated with
a particular intensity model. In this study we discuses rela-
tionships between MMF models. Such algorithms are im-
plemented by the minimization of posterior energies of the
form:

U(α) = D(α, g) + λR(α). (24)

The potential D corresponds to the negative log-likelihood
of the data given the labels and it is determined by the ob-
servation model and the noise distribution. The potential R
is the negative log-prior, also known as the regularization
term. We focus our discussion in variants for the potential
D for MMF models:

Gaussian MMF (GMMF) [18]. In this framework the
posterior marginals are directly modelled and estimated.
Such framework construct of fact that if not prior knowl-
edge is provided then Maximized of the Posterior Mar-
ginal, or MPM estimator, of a posterior distribution coin-
cides with the Maximum Likelihood (ML) estimator [19]
[P (α|g) = P (g|α) ⇐⇒ P (α) is the uniform distribu-
tion]. In particular the GMMF potential,∑

k

∑
x

(αk(x) − v̂k(x, θk))2 + λR(α), (25)

is chosen such that, for λ = 0, the posterior marginals are
equal to the likelihoods, i.e. the consistence condition:

αk(x) = v̂k(x, θk)
def
=

vk(x, θk)
s(x)

(26)

is satisfied, see (17).
Random Walker (RW) [10, 11]. Although introduced in

terms of random walks of particles, RW is a variant of the
GMMF formulation (see the diffusion process in [18]). The
consistence condition is reformulated as:

s(x)αk(x) = vk(x, θk). (27)

Then the corresponding potential is a quadratic one such
that the minimum for λ = 0 results in (27) and consequently
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Figure 2. Selected trimaps segmentations.

satisfies the GMMF consistence condition (26). The image
coloring procedure proposed Levin et al. [15] is close re-
lated with the GMMF diffusion process with space-varying
weights [18].

Quadratic MMF [This work]. Differently to GMMF
models, the minimum of the QMPF potential (16) for the
case of λ = 0 corresponds to:

αk(x) =
1
K

H(d(x))
dk(x)

; (28)

where H(d)
def
= K(

∑K
i=1 d−1)−1 is the harmonic mean of

d. As the GMMF–consistence condition is not satisfied by
(16), it does not corresponds to a GMMF model.

Params. AIC Training Testing

Graph cut λ, γ 8.58 6.89% 6.93%
Rand. Walk. λ, γ 6.50 5.46% 5.50%
GMMF λ, γ 6.49 5.46% 5.49%
QMPF λ, γ 6.04 5.02% 5.15%
QMPF+EC λ, γ, µ 5.39 3.13% 3.13%

Table 1. Cross-validation results. Parameters, Akaike information
criterion, training and testing error.

5. Image Binary Interactive Segmentation

In this section we compare the performance of the pro-
posed probabilistic method (based on QMPF models) with
of popular IBS segmentations methods: maximum flow
(minimum graph cut), GMMF and Random Walker. The
task is the binary interactive segmentation of color images
(segmentation by trimaps). A cross-validation procedure
was implemented for comparing the methods generalization
capabilities [12]. The benchmark data is the set of 50 im-
ages in the Lasso’s database used in [2] and available on-
line in [28]. Such a database contains a natural images set

with their corresponding trimaps and the ground truth seg-
mentations. Actually, a Lasso’s trimap is an image of class
labels: no–process mask (M), definitively background (B),
unknown (R) and definitively foreground (F). Note that
each pixel x ∈ L has a unique label. First column in Fig.
2 shows images in the Lasso’s database and second col-
umn the corresponding trimaps; the gray scale corresponds
with the above class enumeration. In this case, the region
to process is labeled as “unknown” and the boundary con-
ditions are imposed by the foreground and background la-
beled regions. The regularization term in (20) is replaced
by:

λ
∑

y∈Ñx

[α(x) − α(y)]2 lxy, (29)

where Ñx = {y ∈ R ∪ B ∪ F : |x − y| = 1} and

lxy =
γ

γ + ‖g(x) − g(y)‖2
(30)

is an affinity measure that takes a value close to one if
the neighbor pixels x and y have similar colors and close
to zero otherwise. This affinity measure leads the bor-
der regions (classes) to follow the color edges and γ is a
method’s hyper–parameter that controls the edge sensibil-
ity. We noted that the color image, g, is previously trans-
formed to the CIE–Lab color space with the Ruzon’s C-code
library [27]. Recent reported matting computation methods
have focused in variants of the intra–pixel affinity measure
with improved results w.r.t. the basic one in (30) [23] [9].
However, in our experiments, we use the simple form (30)
for comparing directly the methods performance.

In this task, empirical likelihoods are computed from the
histogram of the labeled by hand pixels. Following [5],
the empirical likelihoods are computed from the smoothed
(with 10 iterations of a homogeneous diffusion filter) color



histograms of the foreground, h1, and background, h2, la-
beled pixels. Then the normalized likelihoods are computed
with:

v̂k(x) =
hk(g(x)) + ε

h1(g(x)) + h2(g(x)) + 2ε
, (31)

for k = 1, 2; where ε = 10−4 is a small positive constant
that introduces a contaminant uniform distribution that sta-
bilizes the likelihoods and it avoids the undefined compu-
tation of log 0. We initialize α with (28). The normal-
ized histograms can be seen as 3D Look-Up-Table with
50 × 100 × 100 dimensions for the Lab coordinate space.

A hard segmentation can be computed by labelling each
pixel x with the class 1 if α(x) > 0.5, otherwise with
the class 2. For implementing the cross validation we fol-
low the recommendation in [12] and part the data set in
5 groups of 10 images. The parameters set were trained
by minimizing the mean of the segmentation error (com-
puted according to [2]) in groups of 40 images by using
the Nelder and Mead simplex descent [20]. Table 1 shows
the training and testing error averages. Figure 2 shows ex-
amples of the segmented images. Additionally, the Akaike
information criterion (AIC) is computed for the optimized
(trained) parameters with the 50 image in the database [12].
Note that the AIC is consistent with the cross-validation re-
sults: the order in the methods performance is preserved.
Note that the QMPF algorithm has the best performance
in the group. For our implementation, the learned pa-
rameters were: (λ = 4.7 × 103, γ = 9 × 10−6) and
(λ = 3.8 × 10−4, γ = 1.3 × 10−6, µ = −123) for QMPF
and QMPF+EC, respectively. We note that the learned pa-
rameter µ for QMPF+EC promotes large entropy, such pa-
rameter was appropriated for the trimap segmentation task
and should not produce the expected results in other tasks.
However the entropy control allows one to adapt the algo-
rithm for different tasks, for instance, we compute the mat-
ting factors for the example illustrated in Fig. 1 and the
results are shown in Fig. 3. In particular the matting factor
shown Fig. 1 was computed with QMPF with µ = 0.

6. Model parameters estimation

The method has a noticeable advantage if Gaussian like-
lihoods are assumed and the parameters, θk = [mk, σk]
(mean and standard deviation, respectively), are unknown.
Then the parameters can efficiently been estimated by us-
ing an alternated minimization scheme of the cost function
(20) w.r.t. the MMF, α, and the parameters, θ. For illus-
trating this capability, we consider the task of computing a
binarization of a synthetic image (Fig. 4a) generated with
model (1); where Ik are constant values for all x (actually
white and black in gray values), and ηk(x) ∼ N (0, σ2

k)
i.i.d. Gaussian noise. Such a segmentation task (i.e. the
estimation of the indicator variables bk(x) ∈ {0, 1} with

αk(x) ≈ bk(x)) requires of the simultaneously estimation

of α and θk =
[
Ik, σ2

k

]T
for k = 1, 2. As ηk(x) is Gaussian,

we have:

− log vk(x, θ) =
1

2σ2
k

|g(x) − Ik|2 + log
√

2πσk. (32)

Then, by assuming a uniform distribution as prior for θ,
from the partial derivatives w.r.t. the parameters, we have:

Ik =
∑

x α2(x)g(x)∑
x α2(x)

(33)

and

σ2
k =

∑
x α2(x)|g(x) − Ik|2∑

x α2(x)
. (34)

Formulas (33) and (34) are similar to the ones ob-
tained in an Expectation-Maximization (EM) proce-
dure; except by the α2(x) weighting factor instead of
α(x). Such a factor is also changed for estimating
the covariance matrix of multivariated Gaussian models.

(a) QMPF µ = 10. (b) µ = 0. (c) µ = −123.

(d) GMMF. (e) Rand. Walk. (f) Graph Cut.

Figure 3. First row, results computed with the proposed method
with a) low-entropy, b) without entropy control and c) high en-
tropy. Second row, results computed with methods of the state of
the art.

(a) Synthetic. (b) Speckle.

Figure 4. Test Images.

I1 σ1 I2 σ2

Real values 1.000 0.500 0.000 0.300
Initial condition 2.760 0.100 -1.013 0.100
λ = 4, µ = 0.0 1.002 0.477 0.005 0.325
λ = 4, µ = 0.3 0.999 0.488 0.002 0.308

Table 2. Computed parameters for Fig. 5.



(a) α with µ = 0.0. (b) Segmentation.

(c) α with µ = 0.5. (d) Segmentation.

Figure 5. Entropy control.

(a) α with QMPF. (b) QMPF Segmentation.

(c) α with GMMF (RW). (d) GMMF Segmentation.

Figure 6. Effect of the data term.

Figure 4 shows the pair of images used in this experi-
ment. The synthetic binary image, in Fig. 4(a), was pre-
cluded with Gaussian noise with zero mean and σ1 = 0.5
and σ2 = 0.3 for the white and black regions, respec-
tively. Fig 4(b) shows a metallic real piece illuminated with
laser (coherent) light and thus corrupted with speckle (mul-
tiplicative) noise. The effect of the entropy control para-
meter, µ, is showed in Fig. 5. The computed α field with
µ = 0 (without entropy control) and the corresponding bi-
narization are shown in Figs. 5(a) and 5(b). Figs. 5(c)
and 5(d) show the results computed with µ = 0.5. Table 2
summarizes the experiment results. We noted that, for the
IBS case, the results (segmentation and the estimated para-
meters) are robust to the exact value of the entropy control.
The models (I1 and I2) where initialized with the maximum
and minimum image gray values, respectively.

Fig. 6 shows the corresponding results to the speckle im-
age. Fig. 6(a) shows the computed α field with the proposed
QMPF method (with µ = 0 and λ = 1× 103) and Fig. 6(b)

shows the corresponding segmentation. Second row shows
the computed results with GMMF. The computed α field
with the GMMF algorithm has, evidently, larger entropy
than the QMPF solution. This is consistent with the re-
sults reported in Refs. [17] and [22]. If such a high–entropy
α field were used in an EM kind scheme for estimating
the model parameters then the algorithm may converge to
a single value. Such a limitation of the GMMF model is
discussed in [17]. As it is expected, we observed a similar
behavior for the Random Walker algorithm than for GMMF.

7. Discussion and Conclusions

We started our paper by presenting a new derivation
of the Markovian models for multi–class image segmen-
tation presented in [22]. Our derivation is accord with
the Bayesian Regularization framework. We have named
Quadratic Markovian Measure Fields (QMMF) such mod-
els and have exposed the relationship (and difference) with
the GMMF models (or Random Walker). The algorithm
computes a low entropy (almost binaries) and regularized
(smooth) vector field, α. Such that αk(x) that can be in-
terpreted as the probability of the pixel x were generated
with the distribution k. We have theoretically proof and
experimentally demonstrate that the QMMF models accept
generic likelihood distribution. For instance empirical like-
lihoods were used in the trimaps assisted segmentation.

We have presented a new quadratic energy function for
IBS. For evaluating the proposed model performance, we
implemented an interactive binary segmentation tool (seg-
mentation by trimaps) and compare the results by replac-
ing our algorithm with state of the art methods: Graph Cut,
Random Walker and GMMF. In such a evaluation the re-
maining implementations details were unaltered. As bench-
mark data we used the Lasso’s trimap set of 50 natural im-
ages.

We have achieved a meticulous comparison of the algo-
rithm by using a cross–validation procedures and a simplex
decent algorithm for learning the parameter set. Such a
comparison showed that our proposal have a superior per-
formance than the compared methods and illustrate the im-
portance of the entropy control introduced in [22]. Accord-
ing with our experiments the interactive IBS task is better
achieved with high entropy probabilities, however, the mat-
ting computation (as the simultaneous estimation of the seg-
mentation and parameter) requires of low-entropy fields.

In the interactive IBS task is common that once a so-
lution is computed then the user refine such a solution by
retouching the initial trimap. Our method can use as initial
guess for a subsequent refining the previous final solution
(a feasible point for the next problem). That accelerates the
interactive process by avoiding to construct from scratch the
new solution.

Our algorithm demonstrated a superior performance than



graph cuts in the IBS task and is easier to implement. Al-
though graph cuts algorithms are computationally efficient
(low polynomial order algorithms), our approach is substan-
tially faster given that can be implemented with algorithm
of lineal order [say conjugate gradient (CG)] or multigrid
Gauss-Seidel (MGS) schemes. In particular, we found that
the Lassos trimaps are faster segmented with MGS than CG.
The reason maybe that the cardinality of the set of unknown
labeled pixels is relatively small w.r.t. the size of the im-
age. But for a trimap provided for a common user (only few
pixels are labeled) CG shown a faster performance. In our
experiments, the Lasso’s database was processed an about a
half of the time with MGS than with graph cut. We can ex-
pect that, given the computational order of such algorithms,
as the size of the unknown label pixels set grows, such dif-
ference would be more noticeable. While in this work we
have evaluate the algorithms’ accurateness, in future work
we will focus in evaluate the computational time efficiency.

Future work consider to extend our trimap based com-
parison to other IBS methods as, for instance, the based on
the Maximum of the Posterior Marginal (MPM) estimator.
Such estimator is now possible to be computed with fast
methods based on graph cuts [26].
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