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Abstract

This paper describes a computational framework for constructing point clouds using

digital projection patterns. The basic principle behind the approach is to project known

patterns on the object using a digital projector. A digital camera is then used to take

images of the object with the known projection patterns imposed on it. Due to the

presence of 3-D faces of the object, the projection patterns appear distorted in the

images. The images are analyzed to construct the 3-D point cloud that is capable of

introducing the observed distortions in the images. The approach described in this

paper presents three advances over the previously developed approaches. First, it

is capable of working with the projection patterns that have variable fringe widths

and curved fringes and hence can provide improved accuracy. Second, our algorithm

minimizes the number of images needed for creating the 3-D point cloud. Finally, we

use a hybrid approach that uses a combination of reference plane images and estimated

system parameters to construct the point cloud. This approach provides good run-time

computational performance and simplifies the system calibration.
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Figure 1: Schematic diagram of a PCCDFP system with one projector and one camera

1 Introduction

Point cloud construction based on digital fringe projection (PCCDFP) is a technique for non-

contact shape measurement. Due to its fast speed, flexibility, low cost and potentially high

accuracy, PCCDFP has shown considerable promise in 3-D shape measurement, especially

for applications that require acquisition of dense point clouds. The simplest PCCDFP system

contains one projection unit and one camera (as shown in Fig. 1). The basic principle behind

the approach is to project known patterns on the object using a digital projector. A digital

camera is then used to take images of the object with the known projection patterns imposed

on it. Due to the presence of 3-D faces of the object, the projection pattern appears distorted

in the images. The images are analyzed to construct the 3-D point cloud that represents the

shape of the object. Usually multiple projection patterns are used in a single measurement

step to enhance accuracy.

PCCDFP technique uses a set of projection patterns to obtain an absolute phase map

of the object being measured. The measurement speed is determined by the hardware per-

formance of the PCCDFP system as well as the number of projection patterns used in a

measurement. Therefore, given similar measurement accuracy, algorithms using fewer pro-

jection patterns are favorable. A popularly used projection pattern for PCCDFP technique is

sinusoidal fringe pattern (as shown in Fig. 2(a)), in which the fringe width is fixed. However,

in certain situations, the fixed width fringe pattern does not give ideal results. Figure 2(c)

shows the image of a cylinder under the projection of a sinusoidal fringe pattern. As can
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(a) Sinusoidal fringe pattern
(fixed fringe width)

(b) Projection pattern with vari-
able fringe width

(c) Image under the sinusoidal
fringe pattern shown in (a)

(d) Image under the variable
width fringe pattern shown in (b)

Figure 2: Measuring a cylinder using different fringe patterns: fixed fringe width vs. variable
fringe width

be seen that, at the side of the cylinder fringes are crowded together and indistinguishable,

which will cause significant error in the acquired phase map. On the other hand, with the

use of variable fringe width in the pattern, the resulting image shows uniformly distributed

fringes and the accuracy of measurement can be improved (see Fig. 2(b) and 2(d)). We

should note that the problem with crowding of fringes in the image cannot be simply solved

by using sinusoidal fringe pattern with a much larger fringe width since that will reduce the

measurement accuracy in the middle portion of the object. Hence, in this paper we describe

new model and algorithms for using variable width fringe patterns.

2 Related Work

The generation of point clouds using PCCDFP technique requires a mathematical model of

the PCCDFP system, as well as associated algorithms for the computation of the 3-D coor-

dinates of the points. Such mathematical models usually consist of a number of parameters

which need to be acquired from calibration procedures. Two major types of mathematical
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models exist for PCCDFP systems, namely optical geometry based and calibration matrix

based [1].

The optical geometry based models describe the relationship between the image and the

surface shape of the object using a number of equations and parameters that are derived

from the optical geometry models of the camera and the projector. Early work in this field

include the model proposed by Toyooka and Iwaasa [2] and the model by Hu et al. [3, 4].

Recently, Legarda-Sáenz et al. [5] adopted a full pinhole camera model with consideration of

lens distortion in the modeling of PCCDFP systems. The model consists of 32 parameters

in total, which allows maximal flexibility in system configuration and provides an accurate

modeling of the system’s optical geometry.

Calibration matrix based models use coefficients matrices to describe the measurement

volume, which is defined as the intersection of the camera’s field-of-view and the projection

space of the projector. In the model proposed by Sitnik et al. [6], the coefficients matrices

have the same dimensions as the images taken by the camera. Corresponding to each pixel

in the image, there are three polynomial functions defined. One function is to convert phase-

shift values to Z-coordinates of points in the point cloud. The other two functions are used to

compute the X- and Y-coordinates from the Z-coordinates of points. The acquisition of the

coefficients matrices is done by measuring a special calibration plate at a number of parallel

positions (typically over 12). Compared to optical geometry based approach, calibration

matrix based approach is simpler and easier to implement. However, it has two major

disadvantages: 1) By representing the measurement volume using polynomial functions with

limited orders, the model introduces truncation errors; 2) The calibration procedure needs

to be completely redone each time the optical setup of a system changes, even if the changes

take place locally.

Besides the mathematical model and the associated algorithms for point cloud generation

and parameter estimation, another important part of the PCCDFP technique is the acqui-

sition of absolute phase maps of objects. The accuracy of phase maps directly affects the
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accuracy of the point clouds generated. Research in this area has been focused on the phase

shifting and the phase unwrapping methods. A desired method should be able to obtain an

accurate absolute phase map using as few projection patterns as possible.

Hibino et. al. [7] studied the design of phase shifting algorithms for the suppression

of phase errors caused by the imperfect sinusoidal waveform and inaccurate phase-shifting

of fringe patterns. They pointed out that a (2j + 3)-step phase shifting is required to

eliminate the effects of harmonic components in the waveform up to the jth order. Surrel [8]

studied the same problem but from a different perspective. The projection patterns generated

by LCD/DMD based digital projectors are pixelated. For sinusoidal fringe patterns, this

pixelation effect causes a zigzag sinusoidal waveform, which in turn causes errors in the

phase map acquired from phase shifting. Coggrave and Huntley [9] studied this problem

by conducting experiments and found out that, by purposely defocusing the projection in

the measurement volume the phase errors caused by the pixelation of fringe patterns can be

reduced significantly.

Phase maps obtained from the phase shifting technique are “wrapped” phase maps,

i.e. the phase values are wrapped in a 2π range and the fringe order information is lost.

Phase unwrapping algorithms are used to recover the fringe order information and convert

wrapped phase maps to absolute phase maps. Saldner and Huntley [10] proposed a temporal

phase unwrapping algorithm which is able to deal with complicated phase jumps caused by

surface discontinuities or shadows on surface. Zhao et al. [11] improved the temporal phase

unwrapping approach by using fewer fringe patterns to achieve similar performance. An

extension of Zhao’s algorithm by using three different fringe frequencies is able to achieve

both high accuracy and robustness in the acquisition of absolute phase maps [12, 5].
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3 Overview of Approach

Our mathematical model for PCCDFP systems uses a full pinhole camera model (with

consideration of lens distortions) for both the camera and the projector [5]. Using this model,

we developed the following algorithms for shape measurement and system calibration:

• Algorithm for construction of absolute phase map: The phase map construction

algorithm generates a set of fringe patterns for projection and constructs an absolute

phase map of the object surface from the corresponding images that have been taken.

The algorithm we developed uses multiple fringe frequencies but requires fewer pro-

jection patterns than conventional methods. It is defined on a generalized concept of

phase shifting and hence is able to deal with fringe patterns with curved fringes and

continuously varying fringe width.

• Algorithm for construction of point cloud: The point cloud construction algo-

rithm converts the absolute phase map of the object into a dense 3-D point cloud that

represents the object’s surface. Although the mathematical model contains a large

number of parameters, the point cloud construction algorithm does not require all

of them. For the projector parameters, only the position of the projection center is

needed. An absolute phase map of a (flat) reference plane, as well as the position and

orientation of the plane, are needed in addition.

• Algorithm for estimation of parameters: The functionality of the parameter

estimation algorithm is to accurately evaluate the parameters in the mathematical

model, since most of them are related to optical characteristics and hence cannot be

measured directly. The algorithm consists of two parts, camera calibration and the

estimation of the position of the projector’s projection center.
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Figure 3: Pinhole camera model

4 Mathematical Model

4.1 Pinhole Camera Model

The pinhole camera model has been shown to be an accurate model for cameras and is widely

used in areas such as photogrammetry and machine vision. A complete pinhole model with

consideration of lens distortions can be described by a series of transformations presented

below (see Fig. 3):

1. Transformation from world coordinates to camera coordinates: Camera coor-

dinate frame (Cartesian) is defined by a camera’s optics and image formation hardware

(e.g. the CCD). The transformation of a 3-D point M ’s coordinates from the world

coordinate frame to the camera coordinate frame can be described by the following

equation:
[

x
(C)
M , y

(C)
M , z

(C)
M

]T

= RW2C ·
[

x
(W )
M , y

(W )
M , z

(W )
M

]T

+ T W2C (1)

where RW2C is the rotation matrix and T W2C is the translation vector.

2. Perspective projection to the image plane: As a convention, the camera’s image

plane is defined to be perpendicular to Z(C)-axis and intersecting it at z(C) = −1. The

two axes of the image plane, u and v, are parallel to X(C)- and Y (C)-axis respectively.

Let MI denote the projection of point M on the image plane. The coordinates of MI
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in the camera coordinate frame, i.e.
[

x
(n)
M , y

(n)
M ,−1

]T

, can be calculated as follows:

[

x
(n)
M , y

(n)
M

]T

=

[

x
(C)
M

−z
(C)
M

,
y

(C)
M

−z
(C)
M

]T

(2)

3. Lens distortion model: Due to distortions of optical lenses, the true position of MI is

usually off its nominal position
[

x
(n)
M , y

(n)
M ,−1

]T

. According to the “Plumb Bob” model

proposed by Brown [13], the true position of MI ,
[

x
(d)
M , y

(d)
M ,−1

]T

, can be calculated

from the nominal position as follows:







x
(d)
M

y
(d)
M






=
(

1 + k1r
2 + k2r
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6
)







x
(n)
M

y
(n)
M






+









2k3x
(n)
M y

(n)
M + k4

(
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(

x
(n)
M

)2
)

k3

(

r2 + 2
(

y
(n)
M

)2
)

+ 2k4x
(n)
M y

(n)
M









(3)

where r2 =
(

x
(n)
M

)2

+
(

y
(n)
M

)2

and ks (s = 1, . . . , 5) are the radial and tangential

distortion coefficients of the lenses.

4. Transformation from camera coordinates to pixel coordinates: For digital

cameras, the position of MI is spatially digitized and presented in pixel coordinates.

The homogeneous pixel coordinates of MI , denoted by
[

x
(p)
M , y

(p)
M , 1

]T

, can be calculated

as follows:





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y
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M

1
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
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
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
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




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



fx αfx u0
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0 0 1













(4)

where A is the camera’s intrinsic matrix, in which (u0, v0) is the pixel coordinates of

the principal point, fx and fy are the scale factors for axes u and v respectively, and

α is a coefficient describing the skewness of the axes u and v.

5. Inverse transformations (from pixel coordinates to world coordinates): Shape

reconstruction is a process of computing the world coordinates of points from image(s).
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Figure 4: Mathematical model for PCCDFP system

Therefore, the inverse operations of the above procedures are required. We construct

this model by computing inverse of the above four transformations.

4.2 Mathematical Model for the System

The mathematical model we used for the system consists of two parts, a camera model and

a projector model. The camera model is a complete pinhole model with consideration of

lens distortion, as explained above. Since a computer projector (LCD or DMD based) acts

as an inverted digital camera from the optical geometry perspective, it can also be modeled

accurately by a pinhole model as the camera does. In the system model (see Fig. 4), a

Cartesian coordinate frame X(P )Y (P )Z(P ) is defined for the projector. The image plane

defined by ξ–η axes represents the LCD/DMD chip of the projector. The pixel coordinates

of the principal point in the image plane is (ξ0, η0). All transformations related to the

projector model are analogous to the ones defined for the camera (see Section 4.1).
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5 Algorithm for Construction of Absolute Phase Map

5.1 Phase Shifting Using Generalized Fringe Patterns

The concept of generalized fringe pattern is introduced to distinguish itself from sinusoidal

fringe pattern. A sinusoidal fringe pattern contains straight fringes and has a sinusoidal

intensity profile at cross-sections, as the one shown in Fig. 2(a). A generalized fringe pat-

tern is a fringe pattern in which the fringes may be curved and the fringe width may vary

continuously throughout the pattern. The projection patterns shown in Fig. 2(b), 11(b) and

10(b) are all examples of generalized fringe patterns.

The algorithm we developed for absolute phase map construction uses generalized fringe

patterns. The conventional phase shifting technique is revised to incorporate the use of

generalized fringe patterns. By using a new mathematical description, generation of a set

of fringe patterns for absolute phase measurement using phase shifting technique can be

presented as a two-step process as follows:

• Step 1: A phase function Φ(ξ, η) is defined in the image plane of the projector, i.e.

the ξ–η plane. Φ(ξ, η) must be continuous in the ξ–η plane and monotonic in either

ξ or η direction, depending on the position of the camera w.r.t. the projector. These

two constraints are required by the point cloud construction algorithm, which will be

explained later.

• Step 2: The phase function Φ(ξ, η) is converted to light projection pattern(s) by some

encoding method. Light properties that can be used for encoding include intensity,

color, etc. In practice, light intensity, without the involvement of color, is most pop-

ularly used since the intensity of light can be measured accurately by photo sensors

such as CCD. A widely used modulation function for converting phase values to light

intensities is the sinusoidal function. For digital projectors, in which light intensity is

presented in gray-levels, the sinusoidal modulation can be described using the following
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equation:

I(P )(ξ, η) =
I

(P )
max

2
[1 + sin(Φ(ξ, η))] (5)

where I(P )(ξ, η) is the gray-level in the projection pattern and I
(P )
max is the maximum

gray-level of the projector.

By using the sinusoidal modulation, a large variety of fringe patterns can be defined by

appropriately constructed phase functions. For example, a vertical sinusoidal fringe pattern

(as the one shown in Fig. 2(a)) can be defined by the following phase function

Φ(ξ, η) = c · ξ (6)

where c is a constant.

5.2 Construction of Absolute Phase Map

The functionality of the phase map construction algorithm is to generate an absolute phase

map from a set of images obtained from phase shifting. As mentioned in the Related Work,

the phase map construction algorithm with the use of multiple fringe frequencies has been

used in many latest research work on PCCDFP technique [5, 12]. For brevity, we will refer

to this algorithm as MFF in the following context. This algorithm provides high accuracy in

phase measurement, is robust to noises (in projections and images) and can handle all sorts of

surface discontinuities. Here we propose a modified version of this approach, which achieves

similar performance but uses fewer projection patterns. By using extended mathematical

definitions, our algorithm is also able to deal with generalized fringe patterns.

A common scheme of the conventional MFF algorithm uses 4-step phase shifting and 3

fringe frequencies, meaning a total number of 12 phase-shifted fringe patterns. Our algorithm
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uses 8 projection patterns instead, which can be defined using the following equation:

I(P ),k
n (ξ, η) =

I
(P )
max

2

[

1 + sin

(

ck · Φ
(P )(ξ, η) +

(n − 1)π

2

)]

(7)

where k = 0, 1, 2 represent different levels of fringe patterns, n = 1, . . . , 4 represent different

phase-shift values, (ξ, η) is the pixel coordinates in the projection pattern, Φ(P )(ξ, η) is the

phase function, ck is a scale coefficient, I
(P )
max is the maximum intensity in the patterns, and

I
(P ),k
n (ξ, η) is the intensity value of pixel (ξ, η).

For any phase function Φ(P )(ξ, η), Eqn. 7 defines a set of 8 fringe patterns. An example

of such fringe pattern set is shown in Fig. 5. The 8 patterns are divided into 3 levels by phase

sensitivity (corresponding to the scale coefficient ck). Level-0 has the lowest phase sensitivity

(i.e. c0 is the smallest in {ck}, k = 0, 1, 2) and contains two patterns with 0 and π/2 phase-

shift respectively (corresponding to n = 1, 2). Level-2 has the highest phase sensitivity

and contains four patterns corresponding to n = 1 to 4. Level-1 has the intermediate phase

sensitivity and also contains two patterns (n = 1, 2). The concept of different “level” of fringe

patterns is an analogy to the “fringe frequency” in the MFF algorithm. We introduced the

“level” concept to avoid confusion with “fringe frequency”, since in a generalized fringe

pattern the fringe width, and hence “fringe frequency”, may vary continuously throughout

the pattern.

Projecting the 8 fringe patterns as defined above onto the object surface sequentially, the

corresponding images of the object can be described using the following equation:

I(k)
n (i, j) = A(i, j) + B(i, j) sin

(

Φ(k)(i, j) +
(n − 1)π

2

)

(8)

where (i, j) is the pixel indices in the image, k = 0, 1, 2 represent different levels of fringe

patterns and n = 1, . . . , 4 represent different phase-shift values. For each pixel (i, j), I
(k)
n (i, j)

is its gray-scale intensity in the image that corresponds to the projection pattern at level k
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Figure 5: A set of 8 (generalized) fringe patterns used in phase map construction

and n-th phase-shift; Φ(k)(i, j) is the absolute phase value of the pixel’s corresponding point

on the object surface. Assuming that both the camera and the projector have a fairly large

depth-of-view and the reflection of the object surface is linear, A(i, j) and B(i, j) are both

constants for pixel (i, j) in all 8 images.

The procedure to compute the absolute phase map of the object surface by using the 8

images is described below, in which we use Φ for absolute phase maps and φ for wrapped

phase maps.

Firstly, the wrapped phase map φ(2) is computed using the following equation:

φ(2)(i, j) = arctan

(

I
(2)
1 (i, j) − I

(2)
3 (i, j)

I
(2)
2 (i, j) − I

(2)
4 (i, j)

)

(9)

The coefficients A(i, j) can be calculated by

A(i, j) =
1

4

[

I
(2)
1 (i, j) + I

(2)
2 (i, j) + I

(2)
3 (i, j) + I

(2)
4 (i, j)

]

(10)

Using the A(i, j) calculated, phase map φ(0) and φ(1) can be computed from

φ(k)(i, j) = arctan

(

I
(k)
1 (i, j) − A(i, j)

I
(k)
2 (i, j) − A(i, j)

)

, k = 0, 1 (11)
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Notice that φ(0) is an absolute phase map because it is obtained from the level-0 fringe

patterns, which are designed to have a low phase sensitivity, e.g. phase range within [−π, π],

to avoid phase wrapping. To make the notations consistent, we depict the fact as Φ(0) = φ(0).

From the relationship between the fringe patterns at different levels (see Eqn. 7), we can get

that, for any pixel (i, j)

Φ(1)(i, j) = (c1/c0) · Φ
(0)(i, j) ,

Φ(2)(i, j) = (c2/c1) · Φ
(1)(i, j)

(12)

where c0, c1 and c2 are coefficients defined in Eqn. 7. It can also be known from the rela-

tionship between an absolute phase map and its wrapped counterpart that

Φ(k)(i, j) = φ(k)(i, j) + 2π · nk(i, j) , k = 1, 2 (13)

where nk(i, j) are unknown integers. By combining Eqn. 12 and 13, the absolute phase

map Φ(1)(i, j) and Φ(2)(i, j) can be solved one after another. Φ(2)(i, j) has the highest phase

sensitivity and will be provided to the point cloud construction algorithm as input.

The idea to reduce number of projection patterns required in phase map construction by

utilizing A(i, j) can be applied to any phase shifting strategy. For the generic N -step phase

shifting, whose images can be described by the following equation

In(i, j) = A(i, j) + B(i, j) sin

(

Φ(i, j) + 2π
n − 1

N

)

, n = 1, . . . , N (14)

the corresponding equation for computing A(i, j) is as follows:

A(i, j) =
1

N

N
∑

n=1

In(i, j) (15)

Notice that although assumed to be a constant for all 8 images, B(i, j) (as defined in

Eqn. 8) is not utilized to further reduce the number of patterns required in phase map
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construction. This is because, in practice, the value of B(i, j) may vary slightly for different

level of fringe patterns due to the out-of-focus projection on the object surface. However,

this does not affect the value of A(i, j) at all.

6 Algorithm for Construction of Point Cloud

The point cloud construction algorithm converts the absolute phase map of an object to

a dense 3-D point cloud that represents the object’s surface. The algorithm requires the

following data to be known a priori:

• All intrinsic parameters of the camera, i.e. the intrinsic matrix A and the lens dis-

tortion coefficients ks (s = 1, . . . , 5). Definitions of the parameters can be found in

Section 4.1.

• The position of the projector’s projection center, P (Px, Py, Pz), with respect to the

camera coordinate frame. (All spatial coordinates referred in this section are w.r.t.

the camera’s coordinate frame if not otherwise declared)

• The absolute phase map of a reference plane, denoted by ΦR(u, v), and the position

and orientation of the reference plane, which is represented by a point on the plane,

OR, and the plane’s normal vector nR.

Let Φ(u, v) denote the absolute phase map of the object being measured. For each

pixel (u, v) with a valid absolute phase value, a 3-D point can be possibly generated. The

algorithm for computing the 3-D coordinates of point M , corresponding to pixel (u, v), is

described at below. Figure 6 shows an illustration of the geometric relationships involved in

the computation.

Let point MI denote the idealized position of the center of pixel (u, v) on the image plane

of the camera. It can be known from the pinhole camera model that point M lies on line
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Figure 6: Construction of point cloud

CMI . Let point MR denote the intersection of line CMI with the reference plane. Similarly,

let point NR denote the intersection of line PM with the reference plane and let NI denote

the intersection of line CNR with the image plane of the camera. Define point Q as the

intersection of line CMI with the plane that is parallel to the reference plane while passes

through point P . It can be seen from the definitions that, points C, P , Q, MI , NI , MR, NR

and M are coplanar.

The procedure to compute the 3-D position of point M is as follows:

1. As a first step, locate the pixel coordinates of point NI by searching in the reference

phase map ΦR(u, v) along line PIMI for a point with phase value Φ(M) (see Fig. 7),

in which PI is the projection of point P on the camera’s image plane u–v. Due to the

restrictions imposed on the projection patterns used in phase-shifting (see Section 5.1),

the distribution of phase values along line PIMI is guaranteed to be monotonic. Hence,

the location of point NI is unique if one exists.

2. The 3-D coordinates of points MI and NI are calculated from their pixel coordinates, by

using the pinhole camera model and the camera’s intrinsic parameters (see Section 4.1).

Accordingly, the 3-D coordinates of points MR and NR can be calculated from line-
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Figure 7: Find the pixel coordinates of NI in the reference phase map ΦR(u, v)

plane-intersections by using the following equations:

MR = C +

(−−→
COR · nR

−−−→
CMI · nR

)

−−−→
CMI , NR = C +

(−−→
COR · nR

−−→
CNI · nR

)

−−→
CNI (16)

where OR and nR represent the position and orientation of the reference plane. Simi-

larly, the 3-D coordinates of point Q can be calculated from the following equation:

Q = C +

( −→
CP · nR

−−−→
CMI · nR

)

−−−→
CMI (17)

3. Finally, the 3-D position of point M can be calculated from the triangular similarities

between △MMRNR and △MQP as follows:

M = Q +





∣

∣

∣

−→
PQ
∣

∣

∣

∣

∣

∣

−−−→
QMR

∣

∣

∣

∣

∣

∣

−→
PQ +

−−−−→
MRNR

∣

∣

∣

∣

∣

∣

−−−→
CMI

∣

∣

∣





−−−→
CMI (18)

The point cloud construction algorithm proposed here is a hybrid of the optical geome-

try based approach and the calibration matrix based approach. It requires full knowledge

of the camera parameters, as well as the geometric information of the reference plane. For

the projector parameters, only the position of the projection center, P , is needed explicitly.

The rest of the geometric information about the projector is given by the reference phase
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Figure 8: Estimation of the projector’s projection center

map in an implicit manner. Compared to the pure optical geometry based approach, this

hybrid approach requires fewer parameters (9 parameters less compared to Legarda-Sáenz’s

method [5]). As a result, the parameter estimation algorithm becomes simpler and numer-

ically more stable, since there are fewer variables in the nonlinear minimization process.

Although a reference phase map is required in addition, it can be easily acquired by pro-

jecting sinusoidal fringe patterns to a flat plane. The hybrid approach does not lose any

generality or accuracy by ignoring the majority of projector parameters, as all system pa-

rameters are reflected in the algorithm, explicitly or implicitly. Compared to the calibration

matrix based approach, this hybrid approach is more accurate since it utilizes an accurate

camera model instead of approximate polynomial interpolations for the construction of the

point cloud. Moreover, it requires much less memory (and storage space) for the computation

and the calibration process is made easier and more flexible.

7 Algorithm for Estimation of System Parameters

The parameter estimation algorithm can be divided into two parts, the estimation of camera

parameters and the estimation of the position of the projector’s projection center. We

used a camera calibration toolbox developed by the computer vision group at the California

Institute of Technology [14] for the acquisition of camera parameters.

18



(a) One of the images
for acquiring ΦV

(b) Contours of the phase
map ΦV

(c) One of the images
for acquiring ΦH

(d) Contours of the phase
map ΦH

Figure 9: Acquisition of the absolute phase maps ΦV (u, v) and ΦH(u, v) by using vertical
and horizontal fringe patterns respectively

As mentioned earlier, a projector is very similar to a camera in terms of optical geometry

and can be described accurately by a pinhole camera model. The parameter estimation

algorithm for projector can hence be developed by adapting the existing camera calibration

methods. However, such algorithms have rarely been discussed in the research of PCCDFP

technique until recently in a paper by Legarda-Sáenz et al. [5]. We propose an algorithm for

the estimation of the position of the projection center (point P (Px, Py, Pz) as shown in Fig. 6),

since it is the only projector parameter that is required by the point cloud construction

algorithm. This algorithm requires all camera parameters to be known, therefore a camera

calibration needs to be performed beforehand. The calibration procedure, which involves

measuring a flat plane at two or more parallel positions, is described in details below.

• At the first step, a flat calibration plate is placed at the farther side of the measurement

volume. The position and orientation of the plate, denoted as (O
(S)
P , nP ), can be

estimated by using the calibrated camera. Two absolute phase maps of the calibration

plate, Φ
(S)
V (u, v) and Φ

(S)
H (u, v), are obtained by projecting a set of patterns with vertical

and horizontal fringes respectively (as shown in Fig. 9). For each pixel (i, j) in the

camera’s image plane, its corresponding point on the plane (O
(S)
P , nP ), denoted as

Si,j, can be located by using the camera model and parameters (see Fig. 8). By the

acquisition of phase map Φ
(S)
V and Φ

(S)
H , each point Si,j is associated with two phase

19



values, Φ
(S)
V (i, j) and Φ

(S)
H (i, j). The phase value pair (Φ

(S)
V , Φ

(S)
H ) determines a single

point on the image plane of the projector.

• At the second step, the calibration plate is translated to (O
(T )
P , nP ), which is at the

nearer side of the measurement volume. The precise values of O
(T )
P can be either

obtained directly from the camera or calculated from the translation which can be

measured by other means. Again, two absolute phase maps of the calibration plate are

acquired, namely Φ
(T )
V (u, v) and Φ

(T )
H (u, v).

• For each point Si,j on plane (O
(S)
P , nP ), whose phase value pair is (Φ

(S)
V , Φ

(S)
H ), we can

locate a point on plane (O
(T )
P , nP ), who has the same phase value pair as Si,j does.

Denote this point as Ti,j and its projection on the camera’s image plane as T
(I)
i,j . Notice

that the subscripts (i, j) of Ti,j is for reference to point Si,j, not the corresponding pixel

coordinates of T . The location of T
(I)
i,j in the image plane u–v is done by finding the

intersection of the two contour lines, ΦV = ΦV (Si,j) and ΦH = ΦH(Si,j). Once T
(I)
i,j is

located, the position of Ti,j can be calculated from the camera model and parameters.

• Since point Si,j and point Ti,j share the same phase value pair, line Si,jTi,j must pass

through the projection center P , according to the pinhole camera model. Therefore, the

position of projection center P can be located by the intersection of all such lines that

connect a point on plane (O
(S)
P , nP ) with its corresponding point on plane (O

(T )
P , nP ).

The points on plane (O
(S)
P , nP ) that do not have corresponding points due to the

shifted phase range at different plane positions, are skipped. Since the intersection of

multiple lines is an over-constrained problem, the position of point P is computed in

a least-square manner.
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8 Implementation and Results

Based on the proposed mathematical model and algorithms, a software system was devel-

oped for shape reconstruction. A PCCDFP hardware was also built, which consists of a

commercial computer projector (BenQ PB2220, DMD based, 1024 × 768 resolution, 1700

ANSI lumens) and a B/W digital camera (1/3” Sony CCD, 640×480 resolution). Using the

developed system, a number of shape measurement experiments were performed on various

objects. We will describe few representative results.

Fig. 10 shows CAD model of a spline surface. Shape measurements were performed on

this spline surface by generating simulated images under structured lighting. We have also

developed an algorithm for automatically generating adaptive projection patterns for ob-

jects of different shapes to optimize measurement performance. A detailed description of

this algorithm will be presented in a future paper [15]. Fig. 10(c) shows the measurement

performance results, in terms of the size of unresolvable area and the RMS value of measure-

ment errors. For fixed-pitch fringe patterns (shown in blue crosses), a high fringe number

(nF , which corresponds to a smaller fringe pitch) can achieve good measurement accuracy

but sacrifices measurement coverage; while a low fringe number has excellent measurement

coverage but the accuracy is poor. With the use of adaptive projection pattern (shown in

red triangles), the overall performance both in terms of accuracy and measurement coverage

is improved.

Fig. 11 shows measurement results on a physical flower pot. The height of this flower pot

was approximately 155mm. As shown in this figure, the performance in terms of measure-

ment coverage again improves as a result of using adaptive patterns. However, in this case

the comparison of measurement accuracy is not available since we do not have an accurately

measured model of the flower pot.

The system worked very well in dealing with objects with significant surface discontinu-

ities. For example, the measurements of a plastic drill housing and the base of a telephone,
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are presented in Fig. 12 and 13. Our system is capable of correctly constructing the model

of the all the visible surfaces on these complex objects. We have achieved similar results on

two dozen other parts of comparable complexity. For the sake of brevity those results will

not be reported in this paper.

To formally assess the measurement accuracy of our system, two gauge parts with ac-

curately known geometry were measured (see Fig. 14 and 15). Before performing the mea-

surements, a paint coating was applied to these metal parts to avoid specular reflections. A

photograph of the first gauge part after painting is shown in Fig. 14(a). The point cloud

acquired from the measurement was aligned to the CAD model of the part (see Fig. 14(b))

and the divergence between the two was analyzed (see Fig. 14(c)). The result shows that

the developed system reaches an average accuracy of 75µm over a measurement volume of

280mm × 220mm × 250mm, which we believe can be further improved by a more accurate

system calibration.

Currently, the average time to acquire images and construct point clouds is 5 seconds.

In these experiments, the computation was performed on a Pentium M (1.6GHz) computer

with 512MB memory. By using the new phase map construction algorithm, the time required

for one measurement is reduced by 33% comparing to the traditional method, since fewer

projection patterns are needed.

9 Conclusions

This paper describes a computational framework for constructing point clouds using digital

projection patterns. The approach described in this paper presents three advances over

the previously developed approaches. First, it is capable of working with generalized fringe

patterns that have variable fringe widths and hence can provide improved accuracy. Second,

by fully exploiting the information in the images obtained from phase-shifting, our algorithm

for phase map construction uses fewer projection patterns than existing algorithms without
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(a) Picture of the spline sur-
face

(b) Automatically generated
adaptive projection pattern
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(c) Measure performance: adaptive
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Figure 10: Measurement of a spline surface

compromising performance. Finally, the algorithm for point cloud construction requires fewer

sensor parameters than similar algorithms in its class, e.g. algorithm proposed by Legarda-

Sáenz et. al. [5]. Hence, it simplifies system calibration without compromising accuracy. The

new algorithm also handles projector’s lens distortions automatically. Our tests also show

that the approach described in this paper provides good run-time computational performance

and is capable of handling objects with complex surfaces that involve discontinuities and

shape corners.

The approach described in the paper generates accurate and dense point clouds on a

regular grid. Potential applications of the algorithms described in this paper include the

following. First, the point clouds can be used for performing inspection and hence performing

quality control. Second, the point clouds can be used to perform surface reconstruction for

virtual and physical prototyping. Third, the point clouds can be used for designing molds

and patterns for replicating artwork. Finally, the point clouds can be used for machining a

replacement part for a broken or damaged part for which a CAD model does not exist.

In future, we plan to characterize the effects of system and operational parameters on

the achieved accuracy. This characterization will allow us to select the patterns to optimize

the accuracy. In addition, this information will be used for designing system to optimize its
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(a) Photograph of the flower
pot

(b) Automatically generated adap-
tive projection pattern

(c) Rendering of the point cloud ac-
quired

(d) Enlarged view of a mesh rendering
of the point cloud
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Figure 11: Measurement of a plastic flower pot
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(a) Photograph of the drill hous-
ing

(b) Rendering of the point cloud ac-
quired

Figure 12: Measurement of a plastic drill housing

(a) Photograph of the tele-
phone

(b) Rendering of the point cloud acquired

Figure 13: Measurement of the base of a telephone
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(a) Photograph of the gauge
part

(b) The acquired point cloud after
being aligned with the CAD model
of the part

(c) Distribution of the divergence be-
tween the point cloud and the CAD
model

Figure 14: Measurement of gauge part #1

(a) Photograph of the gauge part (b) Rendering of the point cloud acquired

Figure 15: Measurement of gauge part #2
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versatility and performance.
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