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Abstract.  In this paper, we use multi-objective techniques to compare different
genetic programming systems, permitting our comparison to concentrate on the
effect of representation and separate out the effects of different search space
sizes and search algorithms. Experimental results are given, comparing the
performance and search behavior of Tree Adjoining Grammar Guided Genetic
Programming (TAG3P) and Standard Genetic Programming (GP) on some
standard problems.

 1      Introduction

Since Koza's initial book on genetic programming (GP) [19], a wide range of new
systems have been proposed. Typically, when each new system is introduced, it is
compared with existing GP systems. The comparisons usually report on the new
system's better performance over standard GP when solving particular problems. The
reports contain descriptive statistics, such as cumulative frequencies, number of
independent runs and the number of individuals that must be processed to yield a
success with 99% probability. However, it is generally the case that the new system
differs from previous systems over a number of dimensions (search space size,
structure and representation, evolutionary operators, feasibility constraints, search
algorithm, genotype-to-phenotype map, decoding, evaluation etc). While reporting the
above statistics is important, we agree with [7, 8, 15] that it is also necessary to
understand the causes of the differences. It is all too easy to assign the improvement
from a new system to differences in representation or operators when simple changes
in search space size may be more important. In particular, later in the paper we will
show how different types of bounds for chromosome complexity in bounded search
spaces can be an important contributor to differences between GP systems, potentially
masking the effects of the underlying representation changes.

In this paper, we argue that the multi-objective framework can help to solve some
of these difficulties. As a test case, we compare a fairly new genetic programming
system, Tree Adjoining Grammar Guided Genetic Programming Systems (TAG3P)
[12], with standard GP on two standard problems from the literature. The paper



proceeds as follows. In Section 2, a brief introduction to TAG3P is given. Section 3
contains our discussion of the use of multi-objective techniques to compare TAG3P
and standard GP in search spaces of equivalent size. Our experiments and discussion
are presented in Section 4. Finally, Section 5 concludes this paper.

2 Tree Adjoining Grammar Guided Genetic Programming

In this section, we briefly review tree adjoining grammars and the new GP system,
TAG3P (see [11,12] for more details). We also raise concerns about the difficulties of
making meaningful comparisons between TAG3P and GP.

2. 1     Tree Adjoining Grammars

Tree Adjoining Grammars (TAGs) are tree-rewriting systems, originally proposed
for natural language processing [17]. [18] gives a standard algorithm for converting
any Context Free Grammar (CFG) G into a (lexicalised) TAG Glex. Briefly, a TAG
system consists of a set of elementary trees E = I »  A (initial and auxiliary
respectively, denoted by a and b). All nodes are labeled grammar symbols, interior
labels being restricted to non-terminals. The frontier of an auxiliary tree must contain
a ‘foot node’, with the same label as the root (signified by *). All other non-terminal
symbols on the frontier of an elementary tree are available for substitution.

An X-type tree has a root labeled X. TAG systems generate conventional CFG
trees (the ‘derived’ tree) from a derivation tree, encoding the history of substitutions
and adjunctions generating the derived tree. Starting from an a tree at the root, each
branch records the address for adjunction or substitution, and the elementary tree used

Adjunction takes a tree g with an interior label A, and an A-type auxiliary tree b,
producing a new tree g’ by disconnecting the sub-tree a1 rooted at A, attaching b to
replace it, and finally re-attaching a1 to the foot node of b.

TAGs have a number of advantages for GP:
- Derivation trees in TAGs are more fine-grained structures than those of CFG.
- They are compact (each elementary node encodes a number of CFG derivations).
- They are closer to a semantic representation [6].
- Derivation and derived trees provide a natural genotype-to-phenotype map.
- In growing a derivation tree f, one can stop anytime and have a valid derived tree.

We call the last property “feasibility”. Feasibility helps TAG3P (described in next
subsection) control the exact size of its chromosomes, and also to implement a wide
range of genetic operators. A number of them are bio-inspired [12].

2.2    Tree Adjoining Grammar Guided Genetic Programming (TAG3P)

To relate TAG3P to previous systems using CFGs [26], we frame the discussion in
terms of a CFG G and corresponding LTAG, Glex. TAG3P evolves the derivation trees
in Glex (genotype) instead of the derived trees (the derivation trees in G – phenotype),



creating a genotype-phenotype map, usually many-to-one. TAG3P may be specified
as follows [19]:

Program representation: the derivation trees in LTAG Glex.
Parameters: minimum size of genomes (MIN_SIZE), maximum size of genomes

(MAX_SIZE), size of population (POP_SIZE), maximum number of generations (MAX_GEN)
and probabilities for genetic operators.

Initialization procedure: Each individual is generated by randomly growing a
derivation tree in Glex to a size randomly chosen between MIN_SIZE and MAX_SIZE
(unlike most GP systems, which use depth bounds). Because of TAG feasibility, this
always generates valid individuals of exact size. An alternative ramped half-and-half
initialization generates half of the derivation trees randomly but of full shape.

Fitness Evaluation: an individual derivation is first mapped to the derived CFG
tree. The expression defined by the derived tree is semantically evaluated as in grammar
guided genetic programming (GGGP) [26].

Main Genetic operators: sub-tree crossover and sub-tree mutation.
In sub-tree crossover, two individuals are selected based on their fitness. Points

with the same adjunction label are randomly selected within each tree and the two
sub-trees are exchanged. If no such points are found, the two individuals are discarded
and the process is repeated until a bound is exceeded.

In sub-tree mutation, a point in the derivation tree is chosen at random and the sub-
tree rooted at that point is replaced by a newly generated sub-derivation tree.

2.3 Difficulties in Making Meaningful Comparison Between TAG3P and GP

TAG3P differs in many ways from standard GP. It uses grammars (a LTAG and a
CFG), can solve typed problem domains; can handle context-sensitive information;
has a genotype-to-phenotype map (therefore different search space); has different
genetic operators and a different type of bound on chromosomal complexity (length
rather than depth).  If TAG3P and GP performance differ, it could be a result of any
or all of these differences. Consequently, understanding the relationship between
TAG3P and GP performance is very challenging.

Firstly, to ensure the grammars give no favorable bias for TAG3P they are chosen
as follows. From a description of a GP set of functions and terminals, a context-free
grammar, G, is created according to [26] (page 130) thus ensuring G is bias-free and
the correspondence, between derivation trees of G and parse trees of GP, is one-to-
one. Glex is then derived from G using the algorithm in [18]. Secondly, in order to
evaluate fitness of an individual (derivation tree in Glex), it is decoded first into a
derivation tree in G, then to the equivalent parse tree in GP. On this final parse tree
the evaluation is systematically processed in the same way as in GP.  Next, tunable
parameters in the two systems are set as uniformly as possible.

However GP systems usually use a bounded search to limit chromosome
complexity. In TAG3P, the bound is the maximum number of nodes, whereas in
standard GP it is the maximum allowed depth (although some recent GP systems use
a maximum number of nodes [20]). It is virtually impossible to adjust these bounds to
give the same phenotype space in each, because there is no systematic mapping
between nodes in TAG3P – elementary trees – and nodes in GP (see examples in the



next section). This problem is not restricted to TAG3P; we believe it applies equally
to a range of other GP systems, especially those that use grammars and/or genotype-
to-phenotype maps (eg Linear GP [1], GE [24], and GEP [14]). Therefore, while the
work in this paper relates only to the problem of making comparison between TAG3P
and GP, it has clear implications for other GP systems.

3 The Use of Multi-objective Techniques for Comparisons

To solve the problem of adjusting chromosome complexity bounds, one option
might be to remove the bounds. However, unbounded GP systems usually bloat,
which is why bounds on the chromosome complexity are usually set. Bloat is a well-
documented phenomenon in GP [3, 20, 25]; [20] suggests that code bloat is inevitable
for all evolutionary systems that use length-variant chromosomes. But code bloat has
serious effects on search performance [3,20,25]; and there is no reason to expect that
these effects are invariant between different GP systems. Hence removing bounds
simply adds one more confounding variable. Equally, when solving inductive learning
problems, one is not indifferent to solution size - short solutions are preferred [23].

One alternative is to use a combined objective. Although there are many ways to
combat bloat with single objective selection by integrating chromosome complexity
into the fitness function [4, 16, 27], this introduces significant problems for our
purpose. When using chromosome complexity as part of a single objective fitness
function, some tunable parameters must be defined to determine how much the
chromosome complexity of an individual will affect its fitness. It is at least difficult
and time-consuming to find an optimal setting for these parameters; it is virtually
impossible to find one, which is fair to both systems. Hence we argue that multi-
objective selection is more appropriate for this purpose, especially since in [2] it is
shown that multi-objective selection can outperform single objective selection in
combating bloat. To understand the effect of the difference in search space
representation and operators between TAG3P and standard GP, we use an unbounded
search space, but apply multi-objective selection, with chromosome complexity as the
second objective, to combat bloat. This has two main advantages. Searching with this
multi-objective selection pressure can solve the problem of code bloat [2, 5, 9, 10,
21], therefore permit a more meaningful comparison. Moreover, multi-objective
selection can unify very different GP-search spaces into a single objective space,
providing a common ground for looking into the search performance and behavior of
GP systems that use different representations and different genetic operators.

In this paper, we use the strength Pareto evolutionary algorithm (SPEA2) [28, 29],
a state-of-the-art evolutionary multi-objective optimization (EMO) algorithm, to
implement the comparison between GP and TAG3P. We chose SPEA2 because of its
superior performance over other EMO algorithms [28, 29] and its efficiencies in
reducing bloat in GP [2]. Moreover, Pareto fitness calculation in SPEA2 uses density
estimation techniques, helping to promote diversity in the objective space. In turn,
that reduces the common effect whereby the whole population may converge to the
individual with minimal chromosome complexity [9]. This was sufficiently effective



that in our experiments using SPEA2, we did not observe the effect. It is also possible
to use other EMO algorithms, and we intend to investigate alternatives in the future.

4 Experiments

Using the SPEA2 multi-objective selection, we compared TAG3P with standard GP
on two standard test problems: the 6-multiplexer, and symbolic regression. In the 6-
multiplexer problem [19], a 6-multiplexer uses two address lines to output one of four
data lines and the task is to learn this function from its 64 possible fitness cases using
function set F={IF, AND, OR, NOT} and terminal set {a0, a1, d0, d1, d2, d3}. In the
symbolic regression problem [19], the task is to learn the quadratic function:
X4+X3+X2+X from 20 sample points in [-1..1]; the function and terminal set are
F={+,-,*,/,sin, cos, exp, rlog} and T={X}. They were chosen as frequently-used GP
test-beds, the (shortest) solutions being known. The fitness values of the first are
discrete and finite; of the second, continuous and infinite.

4.1 Experimental Design

As in [2], we use weak Pareto non-domination selection. The second objective is
the size (in number of nodes) of the parse trees, on which fitness is evaluated. To
study the effect of population initialization, for each problem, we ran three systems.
The first was TAG3P, the second was GP with the initial population translated from
the initial population of TAG3P (GP-I) such that they had the same initial population
in the phenotype space, and the third was GP with Ramped-Half-and-Half
initialization (GP-RHH). The range of size in the initial population of TAG3P and the
maximum depth of the initial population in GP-RHH was calibrated so that on
average the size of the final parse trees (phenotype) in the TAG3P initial population
was the same as the size of parse trees (genotype) in GP. To investigate the effect of
variance in population size, and number of generations, for each problem, we
experimented with three settings of population and number of generations. All other
parameters (such as genetic operator rates) are the same for all three systems. We can
summarize the parameter settings in two categories:

Fixed common settings: Genetic operators – subtree crossover and subtree
mutation; crossover rate=0.9; mutation rate=0.1; Calibrated initial size for TAG3P:
10-60 (for 6-multiplexer problem) and 2-60 (for symbolic regression); Calibrated
maximal depth for initial population of GP-RHH: 6 (for 6-multiplexer problem – GP-
RHH6) and 8 (for symbolic regression – GP-RHH8). In SPEA2 settings, weak
dominance was used and the size of the archive was set equal to the size of the main
population. No maximal limits were set on the depth or size of any tree. All runs only
finished when the maximum number of generations was reached.

Varied common settings: On each problem, three varied settings on population size
and number of generations were given to all three systems (TAG3P, GP-I and GP-
RHH). The experimented population sizes were 250, 500, and 1000, while the
maximum numbers of generations were 101, 51, and 26 respectively.



There were 100 runs allocated for each system for each varied setting, making the
total number of runs 1800. The ith run of each setting used the same initial random
key as every other ith run. The keys themselves were generated at random. All the
runs used the same random generator. The grammars for TAG3P were generated
using algorithms in [26] (page 130) and in [18].

The grammars for the 6-multiplexer problem were: G={V={B}, T={a0, a1, d0, d1,
d2, d3, d4, and, or, not, if}, P, {B}}, where the rule set P is defined as follows:

B Æa0| a1| d0| d1| d2| d3.
B ÆB and B| B or B | not B | if B B B
 Glex={V={B, TL}, T={a0, a1, d0, d1, d2, d3, and, or, not, if}, I, A}, where I » A is

depicted in Figure 2. TL is a lexicon that can be substituted by one lexeme in {a0, a1,
d0, d1, d2, d3}.

Fig. 1. Elementary trees for Glex

The grammars for the symbolic regression problem were: G = (V={EXP, PRE, OP,
VAR,},T= {X, sin, cos, log, ep, +, -, *, /, (, )},P,{EXP}} where ep is the exponential
function, and the rule set P is as follows

EXPÆEXP OP EXP | PRE (EXP) | VAR
OPÆ+ | - | * | /
PREÆcos | sin | rlog | ep
VARÆ X
Glex= {V={EXP, PRE, OP,VAR},T={X, sin, cos, log, ep,+, -, *, /, (, )}, I, A) where

I» A is as in Figure 3.
a:   EXP   b1:         EXP               b2:     EXP              b3:       EXP        b4:          EXP        
 
     VAR       EXP    OP    EXP*   EXP   OP   EXP*    EXP OP    EXP*        EXP   OP    EXP* 
 
         X         VAR   +                  VAR    -     VAR      *             VAR    / 
 
                       X     X                              X                                  X   
                b5:         EXP               b6:       EXP              b7:       EXP        b8:          EXP        
 
                   EXP*  OP    EXP     EXP*    OP   EXP     EXP* OP    EXP         EXP*   OP    EXP 
 
                               +      VAR                    -    VAR                  *     VAR             /     VAR 
 
                                          X         X                              X                                     X   
 
               b9:   EXP                   b10:   EXP                       b11:  EXP         b

12:   EXP 
 
                       PRE (  EXP* )            PRE  ( EXP* )               PRE  ( EXP*  )           PRE  ( EXP*   ) 
 
                        sin                               cos     ep                         log 

Fig. 2. Elementary trees for Glex.



4.2 Results

For the 6-multiplexer problem, Table 1 summarizes the results of the three systems
(TAG3P, GP-I, GP-RHH6) based on 900 runs for three settings. Column 4 contains
the percentage of runs that found a solution (i.e first objective value is 0). Column 5
gives the number of runs that found an optimal-size solution. In this problem the
optimal size of solutions is 10. An example of such solutions is IF(a0, IF(a1, d3, d2),
IF(a1, d1, d0)). Column 6 depicts the average size of solutions, and column 7 is the
standard deviation of the data used to calculate column 6.

For the symbolic regression problem, Table 2 summarizes the results of the three
systems (TAG3P, GP-I, GP-RHH6) based on 900 runs for three settings. The columns
are as above. For this problem, the optimal solution size is 13, (X+X*X)*(X/X+X*X)
being an example.

Table1. 6-Multiplexer Results

GEN POP System      Succ No perfect Avg sol. S ize Std

101 250 TAG3P 58 35 11.45 2.51

101 250 GP-I 45 35 11.05 3.30

101 250 GP-RHH6 43 15 16.28 9.22

51 500 TAG3P 82 45 11.97 3.27

51 500 GP-I 74 52 11.80 4.05

51 500 GP-RHH6 63 27 18.62 12.62

26 1000 TAG3P 87 59 11.56 4.28

26 1000 GP-I 75 38 13.13 5.85

26 1000 GP-RHH6 62 25 32.37 46.00

 Table2. Symbolic Regression Results

Gen Pop Systems      succ No perfect
sol.

Avg sol. Std

101 250 TAG3P 46 35 13.85 1.74

101 250 GP-I 34 23 13.74 1.24

101 250 GP-
RHH6

18 16 13.17 0.50

51 500 TAG3P 57 39 14.37 3.12

51 500 GP-I 39 30 14.00 2.34

51 500 GP-
RHH6

15 11 13.53 0.96

26 1000 TAG3P 53 23 15.87 4.33

26 1000 GP-I 43 21 15.19 2.71

26 1000 GP-
RHH6

17 8 17.24 9.40



Figures 3, 4, 5 depict the cumulative frequencies and time series of average fitness
of the population in six systems. Due to limited space, only those of the first setting of
population and number of generations (population = 250, generations = 101) are
given. The corresponding figures for other settings are quite similar.

4.3 Discussion of Results

On the two standard problems, TAG3P was better than GP-I and GP-RHH in
finding solutions with (first objective) fitness 0. Moreover, it was also better than the
others at finding solutions with optimal size (except one case – table 1, row 4). One
reason is TAG3P’s faster convergence in the size objective. For GP–I and GP-RHH,
the average size also converges to the size of optimal solution in the 6-multiplexer
problem but not in the symbolic regression problem. This is explained by the
discreteness (only 64 values) of the first objective in the 6-multiplexer problem, so
that any large individual has little chance to survive under the multi-objective
selection pressure. Therefore, the convergence in average size was common for all
three systems. On the other hand, the first objective in symbolic regression problems
is continuous, so that a large individual has more chance to survive under the multi-
objective selection pressure. Since TAG3P converges faster than the others, it finds
solutions more frequently in the subspace of smaller trees, whereas GP-I and GP-H
search more frequently in the subspace of bigger trees. It can also be seen from the
different results of GP-I and GP-RHH, that the method for seeding the initial
population is important for the search performance and behavior of GP. This result is
contrary to the results found in [22], where the seeding method used to generate the
initial population had no significant impact on the search performance and behavior
of GP, in a bounded search space and under single objective selection pressure. We
see better performance from GP-I than GP-RHH. Since in TAG3P the initial
population could be uniformly distributed in size (due to TAG feasibility), the initial
population in GP-I (and in TAG3P) was more spread in the objective space than in
GP-RHH. The discussions above are also supported by the distribution of tree size
over time for all 1800 runs. However, due to limited space, those detailed results are
omitted here. In [13], the comparative results on symbolic regression, using single
objective and bounded search space, we reported that TAG3P was far better than GP.
At that time, we believed that it was because of the new representation and/or
operators. The results above show that while those factors did contribute to the better
performance of TAG3P, the bound on search spaces in [13] was a greater contributor
to TAG3P’s better performance compared with GP.

5 Conclusion

In this paper, we have introduced and discussed an alternative type of comparison
between different GP systems. In particular, we pointed out that different types of
bounds on chromosome complexity, which might derive from different
representations, makes it hard to determine the causes of different performance



between GP systems. We have argued that the use of multi-objective selection,
coupled with an unbounded search space, can help to understand the effects of search
space size. Thus, by using an EMO algorithm (SPEA2), we were able to make this
alternative type of comparison between our GP system (TAG3P) and standard GP on
two standard problems. The results show the differences in search performance and
behavior between TAG3P and standard GP. We have also found that setting different
types of bounds on search spaces was the prime factor in the better performance of
TAG3P compared with GP in [13]. Moreover, the method for seeding the initial
population in GP is very important, contrary to previous results.

We now plan to use the same technique to make meaningful comparison between
TAG3P and other grammar guided genetic programming systems on typed problems.
We also plan to compare other EMO algorithms with SPEA2.
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Fig. 3. Cumulative frequencies of success. POP_SIZE=250, MAX_GEN=101. 6-multiplexer
results on left, symbolic regression on right.
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Fig. 4. Time series of average (first) fitness. POP_SIZE=250, MAX_GEN=101; 6-multiplexer
results on left, symbolic regression on right.
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Fig. 5. Time series of average phenotype size. POP_SIZE=250, MAX_GEN=101; 6-
multiplexer results on left, symbolic regression on right.
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