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Introduction

In this paper I shall first, sketch, or recall from [La 3] a noncommutative defor-
mation theory for modules on some k-algebra A, k a field. Then, in §3-4 I shall
apply it to construct a noncommutative algebraic geometry. The final paragraphs
of the paper are concerned with the application to invariant and moduli theory,
and to some examples.

The basic idea of noncommutative deformation theory is very simple. Let ar
denote the category of r-pointed not necessarily commutative k-algebras R. The
objects are the diagrams of k-algebras,

kr
ι→ R

ρ→ kr

such that the composition of ι and ρ is the identity. Any such r-pointed k-algebra R
is isomorphic to a k-algebra of r×r-matrices (Ri,j). The radical of R is the bilateral
ideal Rad(R) := kerρ. The dual k-vectorspace of Rad(R)/Rad(R)2 is called the
tangent space of R.

For r = 1, there is an obvious inclusion of categories

l ⊆ a1

where l, as usual, denotes the category of commutative local artinian k-algebras
with residue field k.

Fix a not necessarily commutative k-algebra A and consider a right A-module
M . The classical deformation functor

DefM : l → Sets

is then defined. Assuming ExtiA(M,M) has finite k-dimension for i = 1, 2, it is
well known, see [Sch], or [La 2], that DefM has a noetherian prorepresenting hull
H, the formal moduli of M . Moreover, the tangent space of H is isomorphic to
Ext1A(M,M), and H can be computed in terms of ExtiA(M,M), i = 1, 2 and their
matric Massey products, see [La 1], [La 2].

In the general case, consider a finite family V = {Vi}ri=1 of A-modules and define
a deformation functor,

DefV : ar → Sets
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generalizing the functor DefM above. Given an object ρ : R = (Ri,j) → kr of ar,
consider the k-vectorspace and R-left module (Ri,j ⊗k Vj). ρ defines a k-linear and
left R-linear map,

ρ(R) : (Ri,j ⊗k Vj) → ⊕r
i=1Vi,

inducing a homomorphism of R-endomorphism rings,

ρ̃(R) : (Ri,j ⊗k Homk(Vi, Vj)) → ⊕r
i=1Endk(Vi).

The right A-module structure on the V ′
i s is defined by a homomorphism of k-

algebras, η0 : A → ⊕r
i=1Endk(Vi). Let DefV(R) ∈ Sets be the set of isoclasses of

homomorphisms of k-algebras,

η′ : A → (Ri,j ⊗k Homk(Vi, Vj))

such that, ρ̃(R) ◦ η′ = η0, where the equivalence relation is defined by inner auto-
morphisms in the k-algebra (Ri,j⊗kHomk(Vi, Vj)). Assume that for all 0 ≤ i, j ≤ r
we have

dimkExt1A(Vi, Vj) < ∞.

Then it is easy to see that DefV has the same properties as the ordinary deformation
functor:

Theorem 2.3. The functor DefV has a prorepresentable hull, i.e. an object H(V)
of the procategory âr, together with a formal versal family,

Ṽ = (Hi,j ⊗ Vj) ∈ lim←−
n≥1

DefV(H/mn)

such that the corresponding morphism of functors on ar,

ρ : Mor(H,−) → DefV

is smooth, and an isomorphism on the tangent level. Moreover, H is uniquely
determined by a set of matric Massey products of the form

Ext1(Vi, Vj1) ⊗ · · · ⊗Ext1(Vjn−1
, Vj) · · · → Ext2(Vi, Vj).

Finite families of A-modules, V satisfying,

dimkExt1A(Vi, Vj) < ∞,

and for which there exists a natural right action of A on Ṽ will be called swarms,
see (2.4). Any swarm defines a homomorphism of k-algebras,

η : A −→ O(V) := EndH(Ṽ ) = (Hi,j ⊗Homk(Vi, Vj)),

and the k-algebra O(V) acts on the family of A-modules V = {Vi}, extending
the action of A. If dimkVi < ∞, for all i = 1, ..., r, the operation of associating
(O(V),V) to (A,V) turns out to be a closure operation.

An important result, needed for the construction of the structure sheaf in non-
commutative algebraic geometry, is the following,
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Theorem (2.6) (A generalized Burnside theorem). Let A be a finite dimen-
sional k-algebra, k an algebraically closed field. Consider the family V = {Vi}ri=1

of simple A-modules, then

A 
 O(V) = (Hi,j ⊗Homk(Vi, Vj))

Based on this notion of noncommutative deformations, we propose a general
definition of an affine noncommutative prescheme, and scheme, generalizing the
classical notion of an affine algebraic scheme in the commutative case.

The construction is dependent upon the choice of a reasonable abelian category
of objects C, the universe. Since the process of generalizing will be clear, I shall
assume that we are given an algebraically closed field k, a k-algebra A, and that
we pick as our universe C, the category A−mod of right A-modules.

As a model we shall take the classical construction of the structure sheaf OX ,
of the scheme X := Spec(A), when A is a commutative finite type k-algebra. A
point of X is a prime ideal p of A, or rather the right (or left) A-module A/p. A
closed point x ∈ X is a simple module k(x) = A/mx corresponding to a maximal
ideal mx ⊂ A. Moreover, X is obviously the moduli space of its closed points,
implying that the hull H(k(x)) of the deformation functor Defk(x) : a1 → Sets, is

the completion Âmx of the local ring OX,x at the point x ∈ X. The regular functions
f of X, i.e. the sections of the structure sheaf OX , are analytically determined by

the family of Taylor series f̂x ∈ Âmx at the different points x ∈ X, therefore by
their (right multiplicative) actions on the hull of the different deformation functors
Defk(x).

This completion process, and the corresponding identification of a regular func-
tion f on X as a (multiplicative) operator in the k-vectorspace A as well as in Âx,
for every x ∈ X, is going to replace the localization process of classical scheme
theory.

Recall that to recover the affine ring A from the scheme,

(i) (X,OX)

we are dependent upon the Zariski topology of X and upon the sheaf property of
OX , both stemming from the process of localization in commutative rings. We find,

(ii) A = H0(X,OX)

Recall also that for noncommutative rings, the localization process functions only
for Ore-sets, which are scarce. To obtain a good noncommutative theory we shall
therefore have to change the notion of space, conserving the notion of points and
incidences, but (for the moment) leaving out the topology. The notion of structure
sheaf must therefore be modified.

Let c be any reasonable diagram of objects and morphisms in C, and let |c| be
the family of objects. We shall assume, for the rest of this paper, that for any
Vi, Vj ∈ |c|,

dimkExt1A(Vi, Vj) < ∞.

Let
π : C → k −mod.
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be the obvious forgetful functor.
Assume first that |c| = {Vi}ri=1 is a finite swarm. Let H(|c|) = (Hi,j) be the hull

of the noncommutative deformation functor of this family of A-modules. To the
diagram c we now associate, see §3, a subalgebra,

OA(c, π) ⊆ (Hi,j(|c|) ⊗k Homk(Vi, Vj))

of preobservables, together with a restriction of the canonical homomorphism η,

η(c) : A −→ OA(c, π),

such that OA(c, π) acts on c, extending the action of A. Moreover, if for all i
dimkVi < ∞, the O-construction is a closure operator, i.e.

(iii) OA(c, π) 
 OO(c, π).

Notice that we shall, abusing the notations, write ⊗ where one should have
written ⊗̂, i.e. when H(Vi) ∈ âr but H(Vi) /∈ ar and where we therefore have to
work with complete tensor products.

To extend this O-construction to infinite swarms, we have to ”sheafify” the
O-construction, obtaining for every finite swarm c a smaller k-algebra, O(c, π) con-
taining the image of η(c). This new k-algebra of observables has good functorial
properties and may be extended to the permissible infinite swarms, see (3.15). The
final noncommutative structure sheaf Oπ, a certain quotient of this O(−, π), see §3,
is a presheaf of k-algebras on the ordered set of sub-swarms of a given swarm c. We
then proclaim,

Definitions 3.8 and 3.17. A permissible swarm c of C will be called a prescheme
for A, if

η(c) : A −→ O(c, π)

is an isomorphism. If this is the case, (c, A) is called an affine prescheme and we
shall refer to A as the affine ring of this prescheme. The swarm c will be called a
scheme for A, if

η(c) : A −→ Oπ(c)

is an isomorphism. If this is the case, (c, A) is called an affine scheme and we shall
refer to A as the affine ring of this scheme.

In particular, if c is a finite swarm of A-modules, the pair,

(iv) (c,OA(c, π))

is, by (3.7), an affine (noncommutative) prescheme. Thus, (ii) in the commutative
scheme theory, is replaced by (iii) in the general case.

Notice that we are now talking about a scheme for A, not about the scheme for
A. In fact it is easily seen that there may be several useful schemes for a given
algebra A, depending upon what kind of properties of the algebra one would like
to study.
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The noncommutative algebraic geometry we propose, is concerned with these
affine schemes, and their globalizations. The categorical properties of our universe
C replace the topology, and the classical structure sheaf OX is replaced by the
Oπ-construction.

As an example, let us consider the 0-dimensional case. If A is a commuta-
tive k-algebra of finite k-dimension, then A = ⊕r

i=1OX,xi where X = Spec(A) =
{x1, . . . , xr}. In general, let A be a finite dimensional k-algebra, k algebraically
closed, and V = {Vi} the (finite) family of all simple modules. We shall consider
each module of this family as a point, and we shall consider the obvious forgetful
functor π : A−mod → k−mod. The local ring (or the infinitesimal neighbourhood)

of a point Vi of V, the analogue of the completion ÔX,x of the local ring OX,x of a
closed point x ∈ X = Spec(A), is the algebra

(v) H(Vi) ⊗k Endk(Vi)

where H(Vi) is the hull of the deformation functor DefVi . The affine ring A is,
however, no longer isomorphic to the sum of these local algebras.

Here is where the notion of noncommutative deformation enters. Let H(V) =
(Hi,j) be the hull of the noncommutative deformation functor of the family V =
{Vi}, see [La 3], then the infinitesimal interactions of the points of V, translates
into the components,

(vi) Hi,j(V) ⊗k Homk(Vi, Vj), i �= j

of the ring of observables O(V) := O(V, π). Hi,j(V) is, as a Hi,i(V) − Hj,j(V) bi-
module generated by a dual base of the tangent space Ext1A(Vi, Vj) of the point Vi

into the point Vj . There is a natural morphism of k-algebras,

η : A −→ O(V) := (Hi,j(V) ⊗k Homk(Vi, Vj))

which, according to the Generalized Burnside Theorem is an isomorphism.
This is the Serre theorem, i.e. the analogue of (ii), in the 0-dimensional noncom-

mutative algebraic geometry. The discrete swarm,

(V := {Vi}ri=1, A)

is a scheme for A.
Notice that in the construction of H(V) we only use the structure of the abelian

category C (of A-modules) in which we consider our family of objects V. H(V) is
therefore an invariant of the Morita equivalence class of A. To recover A, i.e. in
the construction of the ring of observables, we must also know the dimensions of
the different points Vi of the noncommutative scheme c := V, i.e. we must know
the values of the forgetful functor π on V. However, as one easily shows, H(V) is
Morita equivalent to A.

-Now, to call something a geometry, one should certainly have the possibility of
defining some kind of hierarchy among the geometrical subobjects, something like
a quiver of incidences. Given a geometrical subobject we should at least be able
to decide which points sit on the subvariety. In our case, if c is an affine scheme



      

6 O.A.LAUDAL

for A, the morphisms of c correspond to incidences among the points. Moreover,
as we have seen in the 0-dimensional case discussed above, there may also be some
infinitesimal incidences between the points Vi and Vj , corresponding to a k-basis of
Ext1A(Vi, Vj). And these are essential in the (re)construction of the affine ring of
observables.

-To qualify as a geometry, a model should include a dynamical element, i.e. either
a topology and a differential structure, including vectorfields, or something taking
its place. This is, in our case, provided by a differential calculus induced by the
deformation theory, see (3.32), where the basic notions are introduced.

-To be taken seriously, a noncommutative algebraic geometry must certainly
include the classical algebraic geometry as a special case. To see that our model
satisfies this condition, let A be a commutative k-algebra of finite type. The points
of the affine scheme Spec(A) may be identified with the members of the family
of indecomposible modules V = {A/p}p∈Spec(A). We shall consider this family of
A-modules together with the obvious canonical morphisms, obtaining a (usually
infinite) diagram (really an ordered set) c = Spec(A), of A-mod. Notice that
Spec(A) as a set, contains the set of closed points, Simp(A), the simple A-modules,
together with all the irreducible subvarieties of Spec(A), considered both as points
in their own right, and as defining subschemes, with the corresponding points as
their generic points. This induces a notion of incidence among different points in
the geometry, just as we have done above. Recall, however, that in classical scheme
theory, a scheme is the moduli space of its closed points, but not necessarily of the
non-closed points. There is, in fact, a dicotomy between the set of closed points,
and the set of non-closed points, between the scheme and its Hilbert schemes.

In our noncommutative geometry, the general notion of scheme is an intermediate
version, providing us with a set of points and incidences, such that all points are
on equal footing, see section §3.

These considerations lead us to the swarm of A-modules, Simp∗(A), consisting
of A, the projective generator, and all the simple A-modules, together with the
obvious incidences.

The embedding of the classical algebraic geometry (defined on an algebraically
closed field k), into the proposed noncommutative algebraic geometry, is then taken
care of by the following results,

Proposition 3.20. Let A be any k-algebra of finite type, k algebraically closed.
Assume the natural homomorphism,

η(Simp(A), π) : A → O(Simp(A), π)

is injectiv, then the canonical morphism of k-algebras

η(Simp∗(A), π) : A → Oπ(Simp∗(A))

is an isomorphism, i.e. Simp∗(A) is a scheme for A.

Theorem 4.1. Let A be any commutative k-algebra of finite type, k algebraically
closed. Then Simp∗(A) is a permissible swarm, and the canonical morphism of
k-algebras

η(Simp∗(A), π) : A → Oπ(Simp∗(A))
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is an isomorphism, i.e. Simp∗(A) is a scheme for A.

Here toplogy and localizations comes back in. Using the Jacobson topology on
Simp(A), we shall see that there is a natural way of localizing in noncommutative
k-algebras, obtaining a structure presheaf Oπ defined on this Jacobson topology,
generalizing the commutative case.

We shall look at invariant theory, in this general setting and, in particular, we
shall see that many problems of moduli in algebra, which cannot be treated in the
classical framework of schemes, or of ringed spaces, have very satisfactory solutions
expressible in the language of this generalized scheme theory, see section §8.

Now, a noncommutative version of differential geometry has been around for
decades, spured by the needs of quantum mechanics and by the needs of invariant
theory. In fact, there is a flora of proposed noncommutative geometries. The
first ones were based on the notion of operator algebras. Von Neumanns work on
quantum mechanics created a geometry where points, in some sense, were replaced
by states or pure states in C* -algebras. Working on foliations, Connes has, in a
most convincing way developed a theory of quotientspaces, or orbitspaces, related
to the theory of moduli, which trancends the classical geometry. However, the
basic notion of space as a set of points with a topology and a structure defined by
a structure sheaf, disappeare in this model, see [Connes].

There are also purely algebraic attempts at the construction of a noncommu-
tative geometry see e.g.[Manin], [Artin],[A-T-vdB] and [Rosenberg]. The common
aspect of these models have been that they do not include non-reduced schemes,
and therefore cannot treat 0-dimensional schemes, and, subsequently contain no
infinitesimal theory. However, noncommutative geometry is a field in progress,
and there are hopes for a future convergence of views, and a common ground for
noncommutative algebraic geometry.

Earlier versions of this paper has appeared in the preprints [La 3-5].

1. Homological preparations.

Exts and Hochschild cohomology. Let k be a (usually algebraically closed) field,
and let A be a k-algebra. Denote by A-mod the category of right A-modules and
consider the exact forgetful functor

π : A−mod −→ k −mod

Given two A-modules M and N, we shall always use the identification

σi : ExtiA(M,N) 
 HHi(A,Homk(M,N)) for i = 0, 1, 2,

where Homk(M,N) is provided with the obvious left and right A-module struc-
tures. If L∗ and F∗ are A-free resolutions of M and N respectively, and if an element

ξ ∈ Ext1A(M,N)

is represented by the Yoneda cocycle,

ξ̂ = {ξn} ∈
∏
n

HomA(Ln, Fn−1)
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then σ1(ξ) is gotten as follows. Let σ be a k-linear section of the augmentation
morphism

ρ : L0 −→ M

and let for every a ∈ A and m ∈ M , σ(ma) − σ(m)a = d0(x). Put,

σ1(ξ̂)(a,m) = −µ(ξ1(x))

where
µ : F0 −→ N

is the augmentation morphism of F∗. Then,

σ1(ξ̂) ∈ Derk(A,Homk(M,N))

and its class in HH1(A,Homk(M,N)) equals σ1(ξ).
Recall the spectral sequence associated to a change of rings. If π : A −→ B is

a surjective homomorphism of commutative k-algebras, M a B-module and N an
A-module, then Ext∗A(M,N) is the abuttment of the spectral sequence given by,

Ep,q
2 = ExtpB(M,ExtqA(B,N)).

There is an exact sequence,

0 −→ E1,0
2 −→ Ext1A(M,N) −→ E0,1

2 −→ E2,0
2 ,

which, for a B-module N, considered as an A-module, implies the exactness of

0 −→ Ext1B(M,N) −→ Ext1A(M,N)

−→ HomB(M,HomB(I/I2, N)) −→ Ext2B(M,N)

where I=ker π. The corresponding exact sequence,

0 → HH1(B,Homk(M,N)) → HH1(A,Homk(M,N))

→ HomA⊗Aop(I,Homk(M,N))

in the noncommutative case is induced by the sequence

0 → Derk(B,Homk(M,N)) → Derk(A,Homk(M,N))

→ HomA⊗Aop(I,Homk(M,N)).

Notice that in general we do not know that the last morphism is surjective. This,
however, is true if B=A/rad(A), where rad(A) is the radical of A, and A is a finite
dimensional, i.e. an artinian, k-algebra. In this case, B is semisimple and the
surjectivity above follows from the Wedderburn-Malcev theorem. Notice also that
in the commutative case,

HomA⊗Aop(I,Homk(M,N)) 
 HomB(I/I2, HomB(M,N))
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as it must, since for φ ∈ HomA⊗Aop(I,Homk(M,N)), a ∈ A, and i ∈ I, ai = ia,
and therefore

aφ(i) = φ(ai) = φ(ia) = φ(i)a, i.e. φ(i) ∈ HomB(M,N).

This implies that for B = A/p, M = A/p, N = A/q, where p ⊆ q are (prime) ideals
of A,

Ext1A(A/p, A/q) 
 HomA(p/p2, A/q)

and, in particular

Ext1A(A/q, A/q) 
 HomA(q/q2, A/q) = Nq,

the normal bundle of V (q) in Spec(A). If q ⊂ p and q �= p we find,

Ext1A(A/p, A/q) 
 Ext1A/q(A/p, A/q).

In [La 1], chapter 1., we considered the cohomology of a category c with values
in a bifunctor, i.e. in a functor defined on the category morc of morphismes of c.
Recall that a morphism between the objects ψ and ψ′ is a commutative diagram,

c1 c2

c′1 c′2.

ψ ��

��

OO

ψ′
��

It is easy to see that this cohomology is an immediate generalization of the projec-
tive limit functor and its derivatives, or if one likes it better, the obvious general-
ization of the Hochschild cohomology of a ring. In fact, for every small category c
and for every bifunctor,

G : c× c −→ Ab

contravariant in the first variable, and covariant in the second, one obtains a co-
variant functor,

G : morc −→ Ab.

Consider now the complex,
D∗(c,G)

where,

Dp(c,G) =
∏

c0→c1···→cp

G(c0, cp)

where the indices are strings of morphisms ψi : ci → ci+1 in c, and the differential,

dp : Dp(c,G) −→ Dp+1(c,G)

is defined as usual,

(dpξ)(ψ1, . . . , ψi, ψi+1, . . . , ψp+1) = ψ1ξ(ψ2, . . . , ψp+1)

+

p∑
i=1

(−1)iξ(ψ1, . . . , ψi ◦ ψi+1, . . . , ψp+1) + (−1)p+1ξ(ψ1, . . . , ψp)ψp+1.
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As shown in [La 1], the cohomology of this complex is the higher derivatives of the

projective limit functor lim←−
(∗)
morc

applied to the covariant functor

G : morc −→ Ab.

This is the ”Hochschild” cohomology of the category c, denoted

H∗(c,G) := H∗(D∗(c,G)).

Example 1.1. Let c be a multiplicative subset of a ring R, considered as a category
with one object, and let R̃ : c × c −→ Ab be the functor, defined for ψ,ψ′ ∈ c, by
R̃(ψ,ψ′) = ψ∗ψ′

∗, where ψ∗ is left multiplication on R by ψ, and where ψ′
∗ is right

multiplication on R by ψ′, then

H0(c, R̃) = {φ ∈ R| φψ = ψφ for all ψ ∈ c},

i.e. the commutant of c in R.

Given a k-algebra A, and consider a subcategory c of the category of right A-
modules. Let, as above π : c → k −mod be the forgetful-functor, and consider the
bifunctor,

Homπ : c× c −→ k −mod

defined by
Homπ(Vi, Vj) = Homk(Vi, Vj).

Put,
O0(c, π) := H0(c,Homπ).

It is clear that O0(c, π) is a k-algebra, and that there is a canonical homomorphism
of k-algebras,

η0(c, π) : A −→ O0(c, π),

see §3.

Example 1.2. Let A be a commutative k-algebra of finite type, k algebraically
closed, and let Spec(A) be the subcategory of A-mod consisting of the modules
A/p, where p runs through Spec(A), the morphisms being only the obvious ones.
It is easy to see that the homomorphism

η0(Spec(A), π) : A −→ O0(Spec(A), π)

identifies A/rad(A) with O0(Spec(A), π). If rad(A) = 0, we even find an isomor-
phism,

η0(Simp∗(A), π) : A 
 O0(Simp∗(A), π).

Here Simp∗(A) is the subcategory of A-mod where the objects are A and the simple
A-modules, A/m, i.e. the closed points of Spec(A), and where the morphisms are
the obvious quotient morphisms A → A/m. η0(Simp∗(A), π) is, however not, in
general, an isomorphism. This is easily seen when A is a local k-algebra. To remedy
this situation we shall in §3. introduce and study a generalization O(c, π) of O0(c, π)
defined in terms of the noncommutative deformation theory , see [La 7].
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§2. Noncommutative deformations.

The category ar and liftings of modules. Let ar be the category of “r-pointed”
artinian k-algebras. Recall that an object R of ar is a diagram of morphism of
artinian k-algebras,

kr R

kr

=

CCCCCC ��

ι ��

ρ

��

such that, Rad(R) := kerρ, is nilpotent, and such that,

R/Rad(R) 

r∏

j=1

kj , kj 
 k.

A morphism φ : R → S of ar is a morphism of such diagrams inducing the identity
on kr, implying that the induced map,

kr 
 R/Rad(R) → S/Rad(S) 
 kr

is the identity. Pick idempotents ei ∈ kr ⊆ R such that

r∑
i=1

ei = 1, eiej = 0 if i �= j.

For every (i, j), we shall consider the subspace Rij := eiRej ⊆ R, and the pairing

Rij ⊗k Rjk → Rik

given in terms of the multiplication in R.

Let

R′ = (Rij)

be the matrix algebra, the elements of which are matrices of the form

(αij)

with αij ∈ Rij , i, j = 1, · · · , r. There is an obvious isomorphism of k-algebras

φ : R → R′

defined by

φ(α) = (eiαej).

identifying the sub k-algebra kr of R with the algebra of diagonal r × r-matrices.
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The noncommutative deformation functor. We are now ready to start the study
of noncommutative deformations of the family V = {Vi}ri=1. We shall assume,

dimkExt1A(Vi, Vj) < ∞.

Notice that the right A-module structure on the V ′
i s is defined by a homomorphism

of k-algebras,
η0 : A → ⊕r

i=1Endk(Vi).

Given an object ρ : R = (Ri,j) → kr of ar, consider the left R-module (Ri,j ⊗k Vj).
ρ defines a k-linear and left R-linear map,

ρ(R) : (Ri,j ⊗k Vj) → ⊕r
i=1Vi,

inducing a homomorphism of R-endomorphism rings,

ρ̃(R) : (Ri,j ⊗k Homk(Vi, Vj)) → ⊕r
i=1Endk(Vi).

Definition 2.1. The deformation functor

DefV : ar → Sets

is defined for every R ∈ ar, as the set,

DefV(R) ∈ Sets

of isoclasses of homomorphisms of k-algebras,

{η′ : A → (Ri,j ⊗k Homk(Vi, Vj))}/ ∼

such that,
ρ̃(R) ◦ η′ = η0,

where the equivalence relation ∼ is defined by inner automorphisms in the k-algebra

EndR((Ri,j ⊗k Vj)) = (Ri,j ⊗k Homk(Vi, Vj)).

Any such isoclass η̃′ will be called a deformation or a lifting of V to R, and
usually denoted VR.

One easily proves that DefV has the same properties as the ordinary deformation
functor.

Let π : R → S be a morphism of ar, such that Rad(R)·kerπ = 0. Morphisms like
this will be called small. If VR ∈ DefV (R) it is easy to see that VS := S ⊗R VR ∈
DefV (S) and that V = ker{VR → S⊗RVR} is, as a left R-module, an R/Rad(R) =
kr-module. Put kerπ = (Kij), then V = (V ij) where V ij = Kij ⊗k Vj .

Consider now the k-vector spaces

Ed
ij = ExtdA(Vi, Vj)

∗
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i.e. the dual k-vectorspaces of ExtdA(Vi, Vj), and consider the k-algebra of matrices,

T d
2 =

 k 0
. . .

0 k

 + (εijE
d
ij)

where we assume all products of the εij ’s are equal to zero. Now let for every
i, j = 1, . . . , r, and d = 1, 2, {

tdij(�)
}edij

�=1

be a basis of Ed
ij , and let {ψd

ij(�)}
edij
�=1 be the dual basis. Thus edij = dimkE

d
ij .

Consider the k-algebra

T d =

 k 0
. . .

0 k

 + (Ẽd
ij)

freely generated as matrix algebra by the generators
{
tdij(�)

}edij

�=1
. An element of

Ẽd
ij is then a matrix where the elements are linear combinations of elements of the

form:

τij = tdij1(l1) ⊗ tdj1j2(l2) ⊗ · · · ⊗ tdjm−1jm(lm)

j = jm, 1 ≤ ls ≤ edjs−1js , 1 ≤ js ≤ r, m ≥ 1

of Ed
ij1 ⊗ Ed

j1j2 ⊗ · · · ⊗Ed
jm−1j .

Obviously
T d

2 = T d/Rad(T d)2.

where Rad(T d) is the two-sided ideal of T d generated by (Ẽd
ij).

Definition 2.2. For every object R of ar, put

TR = (Rad(R)/Rad(R)2)∗

and call it the tangent space of R.

Theorem 2.3. The functor DefV has a prorepresentable hull, or a formal moduli
of V , H(V) =: H ∈ âr, together with a formal versal family

Ṽ = (Hi,j ⊗ Vj) ∈ lim←−
n≥1

DefV(H/Rad(H)n)

such that the corresponding morphism of functors on ar,

ρ : Mor(H,−) → DefV
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is smooth and an isomorphism on the tangent level. Moreover, H is uniquely
determined by a set of matric Massey products defined on subspaces,

Dn ⊂
n⊕

p=2

Ext1(Vi, Vj1) ⊗ · · · ⊗Ext1(Vjp−1
, Vj),

with values in Ext2(Vi, Vj).

Proof. See [La 3]. The proof of the existence of a prorepresentable hull for DefV
can, of course, also be modeled on the classical proof of M.Schlessinger [Sch]. This
has been carried out by Runar Ile, see [Ile]. �

This result may also be phrased as follows, see [La 1,§4],

Theorem 2.4. There is a morphism of proobjects of âr,

o : T 2 −→ T 1

determined by a sequence of well defined Massey products in Ext∗A(Vi, Vj), such
that

H = T 1 ⊗T 2 k

is the prorepresenting hull of the deformation functor DefV .

The O-construction.

For every deformation VR ∈ DefV(R) there exists, by definition an, up to inner
automorphisms, unique homomorphism of k-algebras,

ηVR
: A → EndR(VR) = (Rij ⊗Homk(Vi, Vj)).

Let H := H(V) be the formal moduli for V, and let Ṽ the formal versal family.

Definition 2.5. The finite family of V = {Vi}ri=1 will be called a swarm of A-
modules if,

dimkExt1A(Vi, Vj) < ∞.

and if there exist a natural A-module structure on the formal versal family, i.e. a
natural homomorphism,

η : A → EndH(Ṽ ),

inducing all ηVR
. The k-algebra,

O(V) := EndH(Ṽ ) = (Hij ⊗Homk(Vi, Vj)),

will then be called the algebra of observables of the family of A-modules V.

The following result, proved in [La 3], plays an important role in the construction
of a noncommutative algebraic geometry in §3.
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Theorem 2.6 A generalized Burnside theorem. Let A be a finite dimensional
k-algebra, k an algebraically closed field. Consider the family V = {Vi}ri=1 of simple
A-modules, then

η(V) : A → O(V) = (Hi,j ⊗Homk(Vi, Vj)),

is an isomorphism.

Noncommutative modular deformations. Let V be any right A-module such that
dimkExt1A(V, V ) < ∞. Consider the formal moduli HA =: H, the formal versal

family Ṽ = H ⊗ V , and the corresponding morphism of functors,

ρ : Morar
(H,−) → DefV .

We know that ρ is not, in general, injective. However, V is also a right A⊗EndA(V )-
module. As such it has a formal moduli HA,End, and there is a natural k-algebra
homomorphism, HA → HA,End. Let HA

0 be the unique maximal common quotient
of HA and HA,End. Using the same construction as in [La, Pf], §2, we prove that
the composition,

ρ0 : Morar
(H0,−) → Morar

(H,−) → DefV

is injective.

At the tangent level, the homomorphisms,

HA → HA,End ← HEnd,

looks like the canonical homomorphisms,

Ext1A(V, V ) ← Ext1A⊗kEnd(V, V ) → Ext1End(V, V ).

Representing elements of the Ext-groups as derivations, it is easy to see that the two
images are contained in the subspace Ext1A(V, V )End, respectively Ext1End(V, V )A.
Therefore the tangent space of H0 must be contained in the subspace of invariants
under EndA(V ) of the tangent space of H, Ext1A(V, V )End.

Example 2.7. Given any scheme H = Spec(H), say the 2-dimensional affine space
given by H = k[x1, x2]. We shall be interested in the (noncommutative) moduli
space parametrizing subschemes of length 2 of H. We may do this by simply
considering a point in the space Spec(H) together with a tangent direction, i.e. the
right H-module of the form,

V = k[x1, x2]/(x
2
1, x2),

and compute the formal moduli of V .
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Lemma 2.8. The formal moduli, H(V ) of the H-module H/(x2
1, x2), is given as

the completion of the k-algebra,

Ω = k < t1, t2, ω1, ω2 > /(y1, y2)

where
y1 = [t1, t2] − t1[ω1, ω2] y2 = [t1, ω2] − [t2, ω1] − ω1[ω1, ω2],

and where the family of left Ω-and right H-modules,

Ω ⊗k k2

is defined by the actions of x1 and x2, given by,

x1 =

(
0 t1
1 ω1

)
, x2 =

(
t2 t1ω2

ω2 t2 + ω1ω2

)

Proof. See [La 3]. Consider the obvious free resolution of V := H/(x2
1, x2) as an

H-module,

V H H2 H 0ρ
oo

d0

oo
d1

oo
d2

oo

where we have,

d0 = (x2
1, x2), d1 =

(
x2

−x2
1

)
.

Consider the Yoneda complex, and pick a basis

{t̂1, t̂2; ω̂1, ω̂2, }

of Ext1H(V, V ) represented by the morphisms of the diagram,

V H H2 H

V H H2 H H 0

V H H3 H3 H 0

ρoo

ω̂j

t̂i����
��
��

d0oo

ω̂2
j

t̂2i����
��
��

d1oo

ρoo

ω̂j

t̂i����
��
��

d0oo

ω̂2
j

t̂2i����
��
��

d1oo d2oo oo

ρ
oo

d0

oo
d1

oo
d2

oo oo

Here,

t̂1 = (1, 0), t̂2 = (0, 1, );

ω̂1 = (x1, 0), ω̂2 = (0, x1)

and,

t̂21 =

(
0
1

)
, t̂22 =

(
−1
0

)
,
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and finally,

ω̂2
1 =

(
0
x1

)
, ω̂2

2 =

(
−x1

0

)
.

Using this it is easy to see that ,

t̂i ∪ t̂i = 0, t̂1 ∪ t̂2 = −t̂2 ∪ t̂1 = ŷ1,

and that

t̂1ω̂
2
2 = ω̂1t

2
2 = −ŷ2, ω̂it̂

2
i = 0, ω̂iω̂

2
j = 0, t̂2ω̂

2
1 = ω̂2t̂

2
1 = ŷ2,

therefore

−y2 = t̂1 ∪ ω̂2 = ω̂1 ∪ t̂2 = −t̂2 ∪ ω̂1 = −ω̂2 ∪ t̂1, ω̂i ∪ ω̂j = t̂i ∪ t̂j = 0.

Now, consider the dual basis {t1, t2;ω1, ω2} generating the hull of the deformation
functor Defk[ε], we find after a simple computation of the 3. order Massey products
the formulas we want.

Notice that we just have to compute the tangent situation and check that our
formulas give us a lifting of the quadratic relations and of the corresponding H-
action, to know that our result holds.

�

Recall that the (commutative) Hilb2A2 is the blow-up of (A2 × A2)/Z2 along
the diagonal.

By a simple computation one checks that the k-points of Ω form an open dense
part of Hilb2A2 containing V . However, there are other simple representations of
Ω. The homomorphism,

Ω → k|t1, t2,
∂

∂t1
,
∂

∂t2
]

maping ωi to
∂

∂ti
, shows that k|t1, t2] is a simple representation of Ω.

Example 2.9. It is known that for any A-bimodule M,

HHp(A;M) = lim←−
{F→A}

(p−1)Derk(F,M), p ≥ 2,

where {F → A} denotes the category of k-free algebras F above A. Moreover, the
following sequence is exact,

0 → MA → M → Derk(A,M) → HH1(A,M) → 0.

Let A = k < x1, ..., xd >, be the free k-algebra on d symbols, then we deduce,

ExtpA(N,M) = 0, for p ≥ 2,

and for all right A-modules N,M . Given any simple n-dimensional A-representation
V we therefore find,

dimkExt1A(V, V ) = (d− 1)n2 + 1.
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This shows that,

H(V ) = k{{t1, ..., tr}}, r = (d− 1)n2 + 1.

This explains some results of [Procesi], see [Formanek], Theorem 23, Theorem 27
and Theorem 28.

The fact that for any simple n-dimensional representation (i.e. right A-module)
V , H(V ) is the completion of a free k-algebra on (d− 1)n2 + 1 symbols, shows also
that for all d ≥ 2, and all n ≥ 2, the natural homomorphism of k-algebras,

A → H(V ) ⊗ Endk(V )

is injective, a result we shall use in the next §, see (3.20).

§3. Noncommutative schemes.

Swarms, trivializations and observables. Let C be any abelian category with
Massey products. The last proviso is satisfied if C has enough projectives, but
there are other cases where Massey products exist even though projectives are
scarce. See [La 2] and [Siq 1] for an exposition of the Massey product structure in
the category of all OX -modules, for X a scheme defined on some field k.

Let c ⊆ C be a diagram, i.e. a family of objects V = {Vi}i and morphisms
between them. Put |c| := V. We shall assume that all finite subfamilies of |c| := V
are swarms, see (2.5). Assume moreover that there exists an exact and faithful
functor,

π : c −→ k −mod.

Definition 3.1. Any such c will be called a swarm, and the functor π will be called
a trivialization of c.

Example 3.2. The obvious example of this set up is the following: Let A be any
k-algebra, k a field, put C = A−mod and let

π : A−mod −→ k −mod

be the forgetful functor. Then π will be a trivialization for any diagram

c ⊆ C = A−mod

Unless we specifically mention another choice of trivialization, this is the one we
shall use in the sequel.

Fix the trivialization π of c ⊆ C, and consider the functor,

Homπ : mor c −→ k −mod

defined for ψ : c1 → c2 in c, by

Homπ(ψ) = Homk(π(c1), π(c2)),

and refer to §1.
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Definition 3.3. O0 := O0(c, π) := H0(c,Homπ) is the k-algebra of immediate
observables of c.

It is clear that O0 acts on each object π(c) ∈ k − mod, c ∈ ob c, in the sense
that there is a canonical k-algebra homomorphism

O0 −→ Endk(π(c))

such that the image diagram
π(c) ⊆ k −mod

becomes a diagram of O0 -representations.
In the example above, we obtain for every diagram c ⊆ A − mod, a k-algebra

O0(c, π) acting on every A-module in c such that c becomes a diagram of O0(c, π)-
modules. Moreover there is a canonical homomorphism of k-algebras

η0 : A −→ O0(c, π)

which is, in an obvious sense, a universal ”extension” of the algebra A, by an algebra
acting on the diagram c. Since we have,

c ⊆ O0 −mod

and since the trivialization π induces a trivialization,

π0 : O0 −mod −→ k −mod

we may repeat the construction of trivial observables. We obtain,

O0(c, π0) = O0(c, π) = O0

This implies that the operation of constructing trivial observables, is a closure
operation.

Example 3.4. Consider any reduced commutative k-algebra A of finite type. Re-
call from (1.2) that if c = Spec(A), then

η0 : A −→ O0(c, π)

is an isomorphism, provided k is algebraically closed.

Now, let A be any associative k-algebra. Assume that k is algebraically closed.
Let Simpn(A) be the set of simple A-modules of k-dimension n. Put for any
n, Simp≤n(A) := ∪s≤nSimps(A), and put Simp<∞(A) := ∪0≤sSimps(A). Let
Simp∗(A) be the diagram consisting of the object A and all the simples, Simp(A),
together with all morphisms of right A-modules between A and the simple modules.

Denote also by Ind(A) the full subcategory of A-mod defined by the indecom-
posable modules. It is easy to see that the canonical homomorphism

η0 : A −→ O0(Ind(A), π)
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is an isomorphism when A is right Noetherian. However, there is in general, no
isomorphism,

η0 : A −→ O0(Simp∗(A), π).

Notice that there is a generalized Zariski topology both on Simp(A) and Ind(A),
due to Jacobson, defined as follows. Let s ∈ A and consider the subset D(s) of
Simp(A) defined by the objects V for which s is not a zerodivisor. Obviously
D(s) ∩D(s′) = D(ss′), so {D(s)}s∈A is a basis for a topology.

The problem with Ind(A) is that it is too big, that the topology is too coarse,
and that it has some unsatisfactory functorial properties. On the other hand,
Simp∗(A) seem to be too small since, even for finite type k-algebras, the natural
homomorphism η0 : A → O0(Simp∗(A), π) is far from an isomorphism.

These problems stem from the trivial nature of the trivial observables. In the
construction of O0, we use only the trivial categorical structure of A-mod, restricted
to c. To get to the goal, we have to take into account the infinitesimal structure
of the category A-mod, i.e. the abelian structure of A-mod and, in particular, the
family of iterated extensions of the objects of c.

The goal is to construct, for every diagram c, an extension of O0(c, π), which we
shall denote Oπ(c), and a factorization,

A
η−→ Oπ(c)

ρ−→ O0(c, π)

of η0. We shall show that Oπ, has good functorial properties, mimicking the notion
of structure sheaf in commutative algebra, and providing us with a generalized,
noncommutative, algebraic geometry. We shall be guided by the principles of the
Introduction.

So consider a swarm c in C = A−mod, together with the trivialization π. Assume
first that c is finite. Let |c| = {Vi}ri=1, be the family of objects, and construct the

noncommutative formal moduli H(|c|) = (Hi,j) as in §3. Let Ṽ = (Hi,j ⊗ Vj) be
the versal family and consider the k-algebra

O(|c|, π) := EndH(Ṽ ) = (Hi,j ⊗Homk(Vi, Vj))

and the k-algebra homomorphism,

η(|c|) : A −→ O(|c|, π)

defined by the action of A on Ṽ .
Recall that the noncommutative formal moduli is unique up to isomorphisms,

and that having fixed a versal family, as a deformation, the action of A on Ṽ is
unique up to isomorphisms. This means that for any other homomorphism

η(|c|)′ : A −→ O(|c|, π)

defining the same deformation, there exists an automorphism

ω ∈ O(|c|, π)
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such that
η(|c|)′ = ω η(|c|) ω−1.

Notice that ω, as an element of O(|c|, π), is a unit.
Recall also that, for an artinian algebra A,the morphism η(Simp(A)) is an iso-

morphism.
Notice that, by definition of the terms, there is a canonical morphism of k-

algebras,
ρ0 : O(|c|, π) −→ O0(|c|, π)

which, together with η and η0 form a commutative diagram. Therefore |c| is, in
an obvious sense, a family of O(|c|, π)-modules. Notice also that if c1 ⊆ c2 is
an inclusion of swarms, there exist an, up to automorphisms, unique surjective
homomorphism,

h(c1 ⊆ c2) : H(|c2|) −→ H(|c1|)

induced by the natural imbedding,

ar1 → ar2

where ri, i = 1, 2, is the number of objects in ci. At the tangent level this morphism
corresponds to the inclusion,

(Ext1A(Vi, Vj))i,j=1,..,r1 ⊆ (Ext1A(Vi, Vj))i,j=1,..,r2 .

Beware, this k-algebra homomorphism does not necessarily admit a section! The
morphism h(c1 ⊆ c2) induces a unique homomorphism of k-algebras,

o(c1 ⊆ c2) : O(|c2|, π) → O(|c1|, π).

If c is infinite we shall later put,

O(|c|, π) = lim←−
c0⊆c

O(|c0|, π),

where c0 runs through all finite subdiagrams of c. (This is possible, since c0 being
fixed, we may choose bases {ti,j(�)}� for each Ext1A(Vi, Vj), for all Vi, Vj ∈ |c|,
and construct in one sweep all the cup and Massey products defining all H(|c0|).
However, there is a problem related to the A-action, see (3.14) and the definition
(3.15).

The k-algebra we are heading for is now a subquotient of O(|c|, π), singled out
by the incidences of our geometry, i.e. by the morphisms,

φi,j : Vi → Vj ,

of our diagram.
Let Γ(c) be the quiver corresponding to the swarm c, i.e. a quiver with set

of nodes equal to the set of objects of c, and with arrows corresponding to the
morphisms φi,j of c. Notice that c is a diagram of C not a subcategory, therefore
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we do not require that the identities of the objects be morphisms of c. Assume first
that c is finite, and assume, for simplicity, that Γ(c) (or c) is connected.

Corresponding to Γ(c) there is the universal k-algebra k[Γ(c)]. Consider the ob-
vious representation of k[Γ(c)] on V := ⊕r

i=1Vi mapping k[Γ(c)] to the k-algebra
end(c), generated by the morphisms of c, in EndA(V ). Now V is a A ⊗ k[Γ(c)]-
module, and as such an A-module, as well as a k[Γ(c)]-module. We may consider
the ordinary (noncommutative) deformation functors of this module, as A⊗k[Γ(c)-
module, as A-module, and as k[Γ(c)]-module. Let the formal moduli of these func-
tors be, HA,Γ(V ), H(V) and HΓ(V ), respectively. There are natural (non unique)
morphisms,

HΓ(V ) → HA,Γ(V ) ← H(V ).

Recall from §2. that the modular, or prorepresentable, substratum HA,Γ(V )0 of
HA,Γ(V ) is the unique maximal quotient of HA,Γ(V ) such that the composition,

Mor(HA,Γ(V )0,−) → Mor(HA,Γ(V ),−) → DefA⊗k[Γ]V

is injective. There is a universal deformation of V to HA,Γ(V )0, i.e. an action
of A ⊗ k[Γ] on HA,Γ(V )0 ⊗ V , uniquely inducing all other modular deformations.
Finally, let H(c) be the unique common quotient of HA,Γ(V )0 and H(V ) defined
by the induced morphism,

HA,Γ(V )0 ← H(V ).

Now, given any deformation ξS of V to some k-algebra S ∈ â1, denote by m the

maximal ideal of S. Let S̃ be the r-pointed matrix k-algebra (S̃i,j) where S̃i,i = S,

on the diagonal, and S̃i,j = m at the other places, i.e. for i �= j. Clearly S̃ is in âr,

and the i-th. row of the matrix (S̃i,j ⊗ Vj) is

(m⊗ V1) ⊕ · · · ⊕ (S ⊗ Vi) ⊕ · · · ⊕ (m⊗ Vr) ⊆ H(V ) ⊗ V.

Let vi ∈ Vi, and a ∈ A. The component of (1 ⊗ vi)a in S ⊗ Vj for i �= j sits in

m⊗ Vj . This shows that A acts on each line of the matrix (S̃i,j ⊗ Vj), commuting

with the left action of (S̃i,j), implying that (S̃i,j ⊗ Vj) is, in a natural way, a

noncommutative deformation of the family of right A-modules |c|, to S̃. Therefore
there is a morphism,

ιS : H(|c|) −→ S̃

compatible with the specified deformations of right A-modules. This induces a
morphism of k-algebras,

(Hi,j ⊗Homk(Vi, Vj)) −→ (S̃i,j ⊗Homk(Vi, Vj)).

Since the right hand side k-algebra is a subalgebra of

EndS(S ⊗ (⊕r
i=1Vi)) = (S ⊗Homk(Vi, Vj)),

we obtain a (non-unique) homomorphism of k-algebras,

κS : (Hi,j ⊗Homk(Vi, Vj)) −→ (S ⊗Homk(Vi, Vj))
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such that the action η(|c|) is mapped to the A-action on S ⊗ (⊕r
i=1Vi) defining the

deformation ξS . In particular, for the versal deformation of V to H(V ), and for the
versal A-action on H(V ) ⊗ (⊕r

i=1Vi), there is a homomorphism of k-algebras,

κH(V ) : (Hi,j ⊗Homk(Vi, Vj)) −→ (H(V ) ⊗Homk(Vi, Vj))

compatible with the actions. Notice that by construction of the terms involved, it
is clear that κH(V ) is injective, and that H(V ) is generated by the images of the
components ιi,j : Hi,j → H(V ) of ιH(V ). Therefore we have the adjunction relation,

Morar
(H(|c|), S̃) 
 Mora1

(H(V ), S).

Now, compose κH(V ) with the homomorphism induced by the quotient map
H(V ) → H(c) and get a k-algebra homomorphism,

κH(c) : (Hi,j ⊗Homk(Vi, Vj)) −→ (H(c) ⊗Homk(Vi, Vj))

Definition 3.5. The k-algebra of preobservables O(c, π) of the finite swarm c, is
the subalgebra of

(Hi,j(|c|) ⊗Homπ(Vi, Vj))

commuting, via the morphism,

κS : (Hi,j(|c|) ⊗Homπ(Vi, Vj)) → (S ⊗Homk(Vi, Vj)),

induced by any surjective k-algebra homomorphism

H(c) −→ S,

with the corresponding representation of k[Γ] in (S ⊗Homk(Vi, Vj)).

It is clear that O(c, π) is uniquely defined, up to isomorphisms, and that η(|c|
induces a homomorphism of k-algebras,

η(c : A −→ O(c, π)

Remark 3.6. Let A be a finite type k-algebra, and let {φ} be the diagram defined
by the canonical homomorphism,

φ : A → k(x)

of A onto its closed point k(x). The tangent space of H := H(|{φ}|) is,

(radH/rad2H)∗ =

(
0 0

Ext1A(k,A) Ext1A(k, k)

)
and the tangent space of H({φ}) looks like

(RadH({φ})/Rad2H({φ}))∗ =

(
0 0

Ext1A(k,A)φ Ext1A(k, k)

)
,



      

24 O.A.LAUDAL

where Ext1A(k,A)φ is the kernel of φ∗ : Ext1A(k,A) → Ext1A(k, k). The morphism

O(|{φ}|, π) →
(

H({φ}) ⊗k Endk(A) H({φ}) ⊗k Homk(A, k)
H({φ}) ⊗k Homk(k,A) H({φ})

)
maps an element

α =

(
α1,1 0
α2,1 α2,2

)
∈ O(|{φ}|, π)

to an element of the same form,

α̃ =

(
α1,1 0
α̃2,1 α2,2

)
∈
(

H({φ}) ⊗k Endk(A) H({φ}) ⊗k Homk(A, k)
H({φ}) ⊗k Homk(k,A) H({φ})

)
.

Moreover a versal lifting of φ1,2 has the form,

Φ =

(
0 Φ1,2

Φ2,1 Φ2,2

)
∈
(

H({φ}) ⊗k Endk(A) H({φ}) ⊗k Homk(A, k)
H({φ}) ⊗k Homk(k,A) H({φ})

)
.

Suppose now that,
Φα̃ = α̃Φ

then, in particular,
Φ1,2α̃2,1 = 0,

which implies that α̃2,1 = 0, and then

Φ1,2α2,2 = α1,1Φ1,2.

Since α2,2 =: αx ∈ H2,2 = Â{x} is the obvious multiplication endomorphism, and

since Φ1,2 reduces to the obvious completion map, ρx : A → H2,2 = Â{x} we find
that α ∈ O({φ}, π) if

α̃2,1 = 0, α1,1ρx = ρxαx

for some αx ∈ Â{x}, and,
Φ2,1α1,1 = αxΦ2,1.

O is a closure operation. The most important property of the O-construction is
a kind of functoriality (up to isomorphisms) and the closure property, given by the
following result:

Theorem 3.7. Let ψ : A → B be a k-algebra homomorphism, and let c be a finite
swarm of A-B-modules. Consider the O-constructions, OA(c, π), resp.OB(c, π).

a. Assume the natural morphism,

ψ∗ : HA,Γ(V ) → HB,Γ(V )0

induces a surjective homomorphism

ψ∗ : HA(c) → HB(c).
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Then there exists an, up to isomorphisms, unique extension of ψ, i.e. a commutative
diagram,

A B

OA(c, π) OB(c, π)

ψ ��

ηA

��
ηB

��

O(ψ)
��

b. There is a natural isomorphism,

O(ηA) : OA(c, π) → OOA

(c, π)

implying that the O-construction is a closure operation.

Proof. Let the noncommutative formal moduli of the family of B-modules {Vi} =
|c|, considered as A-and B-modules be HA resp. HB . Since the versal family of B-
modules (HB

i,j ⊗Vj) is also a family of A-modules, there is a morphism, HA → HB

inducing the morphism of families of A-modules, (HA
i,j⊗Vj) → (HB

i,j⊗Vj) consistent
with the induced A-module structure on the latter. In the same way we find that
there exists a morphism of the formal moduli

HA,Γ(V ) −→ HB,Γ(V )

of V = ⊕r
i=1Vi as a A⊗k[Γ(c)]-module, resp. a B⊗k[Γ(c)]-module, consistent with

the families. By assumption, the above homomorphism induces a surjection

ψ∗
p : HA(c) −→ HB(c)

By definition of O, we have a commutative diagram,

A OA(c, π) EndHA(HA
i,j ⊗ Vj) (HA(c) ⊗Homk(Vi, Vj))

B OB(c, π) EndHB (HB
i,j ⊗ Vj) (HB(c) ⊗Homk(Vi, Vj)).

ψ

��

��

O(ψ)

�
�
�

�
o ��

��

��

��
�� �

o �� ��

where, OA(c, π) and OB(c, π) are the commutants of the actions of k[Γ(c)]
in (S ⊗ Homk(Vi, Vj)), for all quotients S of HA(c), respectively of HB(c). The
surjectivity of ψ∗, together with the commutativity of the diagram defines the mor-
phism O(ψ), and proves (a).

To prove (b), we just have to observe that OA acts on the HA-family (HA
i,j⊗Vj),

consistent with the action of A via ηA, and that O⊗k[Γ(c)] acts on the HA(c)-family
(HA(c) ⊗ V ) consistent with the A-action via the obvious composition,

η(V ) : A −→ (HA(c) ⊗Homk(Vi, Vj)).

Therefore there must exist morphisms,(
HOA

i,j

)
µ−→

(
HA

i,j

)
HOA,Γ(V )

µ(c)−−→ HA,Γ(V )
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consistent with the obvious families. Moreover the composed morphisms(
HA

i,j

)
→

(
HOA

i,j

)
µ−→

(
HA

i,j

)
HA,Γ(V ) → HOA,Γ(V )

µp−→ HA,Γ(V )

must be surjections inducing injections on the tangent spaces. Let us show that
µ(c) induces a surjective homomorphism,

HOA

(c)
µ0−→ HA(c).

Consider the diagram,

Mor(HA(c),−) Mor(HO,Γ(V ),−) Mor(HA,Γ(V ),−)

DefA−Γ
V DefO−Γ

V DefA−Γ
V

α

RRRRRRRRRRRRR ����

��

��

��

��
��� � � � � � �

β
��

Define α by the composition, i.e. by considering the canonical O ⊗ k[Γ]-structure
on HA(c) ⊗ V , and tensorization. Since the composition of α and β is injective, α
is injective. But this implies, by definition, and by the the unicity of the modular
substratum, that the surjective homomorphism

µ0 : HO,Γ(V ) −→ HA(c)

induces a surjective homomorphism,

µ0(c) : HO,Γ(V )0 −→ HA(c)

and therefore also a surjection,

µ0 : HO(c) −→ HA(c).

Consider now the commutative diagram,

A (HA
i,j ⊗Homk(Vi, Vj)) (HA(c) ⊗Homk(Vi, Vj))

O(c, π) (HO
i,j ⊗Homk(Vi, Vj)) (HO(c) ⊗Homk(Vi, Vj)).

η

��

�� ��

�� ��

µ

OO
µ0

OO

Since µ0 is consistent with the actions of k[Γ], we obtain a cosection,

µ : OO(c, π) −→ OA(c, π)

of the morphism,
η1 : OA(c, π) −→ OO(c, π).
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Now use (a) for the case ψ = µ. Let us put A′ = OO(c, π), B′ = OA(c, π). Since
the composition of µ ◦ ν1 is the identity, the homomorphism,

HA′
(c) → HB′

(c)

must be surjective. We therefore obtain a commutative diagram,

OO(c, π) OA(c, π)

OOO

(c, π) OO(c, π).

µ ��

η2

��
η1

��

O(µ)
��

Since, by construction, the composition η2 ◦ O(µ) is an isomorphism, µ must be
injective, therefore an isomorphism, proving (b).

�

Noncommutative preschemes.

Definition 3.8. Let A be any k-algebra. A finite swarm c of A-modules is called
a prescheme for A, if the morphism

η(c, π) : A −→ O(c, π)

is an isomorphism. In this case we shall refer to A as the affine k-algebra of c.

Corollary 3.9. Any finite swarm, c, of right A-modules is a prescheme for
OA(c, π). In particular, if c is a diagram of finite dimensional k-vector spaces,
then c is a swarm of right modules over A = Ok(c, π) = O0(c, π), and, as such, a
prescheme for A.

Proof. This follows from the isomorphism

O(ηA) : OA(c, π) → OOA

(c, π)

of (3.7).

�

Example 3.10. According to the Generalized Burnside Theorem, if A is any finite
dimensional k-algebra, k algebraically closed, the family of simple A-modules V
form a (0-dimensional) prescheme for A. In particular, if Λ is a finite partially
ordered set, then the set of nodes of Λ, considered as the set of simple k[Λ]-modules,
is a scheme for k[Λ].

Example 3.11. Consider the following trivial example where A=k is a field, V1 =
k2 and V2 = k, and c is given by the diagram of right-modules,

V1 V2
φ ��
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where φ is the second projection. Obviously all Ext′s vanish, so that

H(|c|) =

(
k 0
0 k

)

(Hi,j ⊗ Vj) =

(
V1 0
0 V2

)
Moreover H(c) = k, and the maximal ideal m ⊂ H(c) is zero. Therefore,

H̄(c) =

(
k 0
0 k

)
and

(H̄(c)i,j ⊗ Vj) =

(
V1 0
0 V2

)
Therefore O(c, π) is the commutant algebra of the subalgebra,

end(c) ⊆
(
Homk(V1, V1) Homk(V1, V2)
Homk(V2, V1) Homk(V2, V2)

)
generated by φ, in the sub k-algebra,(

Homk(V1, V1) 0
0 Homk(V2, V2)

)
which is easily seen to be equal to,

O0(c, π) =

(
k 0
k k

)
.

Now it is equally easy to see that V1 identifies with the second line of

O(c, π) =

(
k 0
k k

)
as a right O(c, π)-module, and is therefore projective, and that V2 identifies with
the second simple module of O(c, π). Trivial calculation gives that

Ext1O(Vi, Vj) = 0, ∀i, j.

Put O := O(c, π). If we consider c as a diagram of O-modules, and repeat the
O-construction, we therefore obtain OO =: O(2)(c, π) = O(c, π), implying that the
diagram c is a prescheme for O, as it must be, see (3.9). Since the O(c, π) we have
found above is the algebra of the (A1) diagram,

◦1 ◦2oo

we find that as O-modules, the discrete diagram V = {k(1), k(2)} consisting of the
two simple O-modules is also a prescheme for O. Notice, however, that as family
of k-vector spaces V is a prescheme for k2.
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Example 3.12. That the claim of the Corollary (3.9) is not obvious, is seen by
classifying the simple schemes of the form,

Γ =
◦

��φ

�oo

Let c = {φ : V → V } be a diagram of k-vector spaces. Assume dimkV = 3, then
according to the Jordan decomposition of φ, we obtain the following k-algebras
A = O(c, π) with c as affine scheme,

(1) φ has 3 different eigenvalus, then A = k3

(2) φ has only two different eigenvalus, then A = k×Endk(k
2) or A = k× k[ε]

(3) φ has all eigenvalues equal, then A = Endk(k
3) or A = k[x]/(x3) or

A =

(
k k · ε1,2

k · ε2,1 k[ε2,2]

)
where we have the following relations, ε1,2 ·ε2,1 = 0, ε1,2 ·ε2,2 = 0, ε2,2 ·ε2,1 =
0, ε2,1 · ε1,2 = ε2,2

The last algebra is evidently artinian with two simple representations, both of
dimension 1. Therefore it has an affine scheme consisting of the discrete diagram
consisting of those two A-modules. As such, it has infinitesimal incidences given by
the family {εi,j}. By (3.9) A is also the affine algebra of the scheme c, with quiver
Γ.

Warning. NB! According to Example (3.4) if A is any reduced finite type com-
mutative k-algebra, and if k is algebraically closed, A 
 Ok(Spec(A), π). However
Spec(A) is usually infinite. Therefore we cannot conclude from Corollary (3.9),
that Spec(A) is a prescheme for A. In fact, Spec(A) is, in general, not a prescheme
for A, since O(Spec(A), π) may well be noncommutative.

Example 3.13. Consider the special case of Remark (3.6), where A is a local k-
algebra, and φ : A → k is the canonical homomorphism of A onto its residue field.
Since there is a surjective homomorphism,

H({φ}) −→ H2,2 = Â.

and since the completion map ρx defines a lifting,

Φ1,2 : Â⊗A → H0({φ}) ⊗ k = Â

of φ, we observe that α1,1 is the right multiplication by some element a = α1,1(1) ∈
A. Moreover αx = ρx(a) and the condition

Φ2,1α1,1 = αxΦ2,1,

is automatically satisfied, since Φ1,2 is A-linear.Therefore,

O({φ}, π) = {
(

α 0
α2,1 αx

)
| α ∈ A,αx = ρx(α), α2,1 ∈ H2,1 ⊗Homk(k,A)}.

In particular, the natural morphism

η : A → O({φ}, π)

is injective, and an isomorphism provided Ext1A(k,A)φ = Ext1A(k,A).
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Functoriality. The k-algebra of preobservables of a diagram of modules is not,
however, properly functorial with respect to inclusions between diagrams. The
problem is the following: Let c0 ⊆ c be a finite subdiagram. There is a correspond-
ing inclusion of quivers, Γ1 := Γ(c1) ⊆ Γ(c) =: Γ, inducing a homomorphism of
k-algebras,

k[Γ(c1)] −→ k[Γ(c)].

Consider the diagram,

(H(|c|)i,j ⊗Homk(Vi, Vj)) (H(|c1|)i,j ⊗Homk(Vi, Vj))

(H0(c) ⊗Homk(Vi, Vj)) (H0(c1) ⊗Homk(Vi, Vj))

k[Γ] k[Γ1].

��

o(c1⊆c)��

��

OO

oo

OO

We would now like to conclude that this induces a natural morphism

O(c1 ⊆ c) : O(c, π) −→ O(c1, π)

since there are fewer conditions to be satisfied in the definition of the right hand
algebra. However, the diagram above shows that this is not obvious. An element
in O(c, π) certainly commutes with the action of k[Γ1] in (H0(c) ⊗Homk(Vi, Vj))
but not necessarily with the action of k[Γ1] in (H0(c1)⊗Homk(Vi, Vj)). But we are
interested in the smallest k-algebra O extending A, and preserving both the diagram
and the system of iterated extensions of the objects of the diagram. Therefore we
define the refined k-algebra of observables of the swarm c, as,

Definition 3.14. The k-algebra of observables of the finite swarm c, is the subal-
gebra

O(c, π) =
⋂
c0⊆c

o(c0 ⊆ c)−1(O(c0, π)) ⊆ O(c, π),

where c0 runs through all subdiagrams of c.

Now there is a natural homomorphism,

O(c1 ⊆ c) : O(c, π) → O(c1, π),

and it is easy to see that the k-algebra of observables is a contravariant functor on
the ordered set of subdiagrams of a given finite diagram.

We are now able to extend the definition of observables to certain infinite swarms.

Definition 3.15. A swarm is called permissible, if there exist a k-algebra homo-
morphism,

η(|c|, π) : A −→ O(|c|, π),

compatible with the morphisms η(|c0|, π) and o(c0 ⊆ c), where c0 runs through all
subdiagrams of c.
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For any permissible swarm c, we define,

O(c, π) = lim←−
c0⊆c

O(c0, π)

where c0 runs through all finite subdiagrams of c.

Clearly
O(c, π) ⊆ O(|c|, π)

and η(|c|, π) induces a natural homomorphism of k-algebras,

η(c, π) : A −→ O(c, π)

the obvious limit of the family of morphisms η(c0, π), where c0 runs through all
finite subdiagrams of c.

Definition 3.16. The permissible swarm c will be called a prescheme for A, if
η(c, π) is an isomorphism.

Notice that if the finite swarm c is a prescheme in the sense of (2.8) then it is
also a prescheme in the sense of (3.16). Therefore, any finite swarm c of A-modules
is necessarily a prescheme for O(c, π). This is, however, not the case for infinite
swarms, see Warnig above.

Noncommutative schemes. Finaly, we arrive at the notion of structure sheaf Oπ.
For every finite subdiagram c0 of the swarm c, consider the natural morphism,

κ(c0) : O(c, π) → (H(c0) ⊗Homk(Vi, Vj))

and consider the two-sided ideal n ⊂ O(c, π), defined by

n =
⋂
c0⊆c

kerκ(c0).

Here c0 runs through all finite subdiagrams of c.

Definition 3.17. (i) In the above situation, put,

Oπ(c) = O(c, π)/n.

(ii) Oπ is a presheaf on the ordered set of subdiagrams of a given permissible
swarm c.

Definition 3.18. (i) Let A be any k-algebra. A permissible swarm c of A-modules
is called a scheme for A, if the canonical morphism

η(c, π) : A −→ Oπ(c)

is an isomorphism. In this case we shall call A the affine k-algebra of c.
(ii) We shall consider the objects Vi of c as points, and the morphisms as inci-

dences in our geometry.
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(iii) Let for a point Vi of c, H0(Vi) be the modular substratum of the local moduli
H(Vi) of Vi, as A-module. There exists a natural morphism,

Oπ(c) → H0(Vi) ⊗ Endk(Vi) = Oπ(Vi).

When c is a scheme we shall refer to Oπ(Vi) as the local ring of c at Vi.

This is in tune with the general setup, see the Introduction. In fact, according
to the Introduction, a space c should be the moduli space of its points, subject only
to the conditions imposed by the incidences, i.e. by the morphisms of c, and this
is exactely the property of a scheme c. The k-algebra A = Oπ(c) is the universal
k-algebra parametrizing the (modular) deformations of its points, subject only to
the conditions imposed by the incidences.

Note that if a diagram c of A-modules is a prescheme for A, then it is not
necessarily a scheme for A. However, we have the following obvious,

Lemma 3.19. (i) The diagram,

O(c, π) Oπ(c)

A Ok(c, π)

�� ��

��

OO

��

commutes.
(ii) If c is a prescheme for A and the homomorphism A → O0(c, π) = Ok(c, π) is

an isomorphism, then c is a scheme for A.

Now, by (3.17) (ii), there exist for every finite family of objects {Vl}l of c,
considered as a discrete subdiagram of c, a natural morphism,

Oπ(c) → Oπ({Vl}l).

If all V ′
l s are simple A-modules, we find that H0(Vl) = H(Vl), and,

Oπ({Vl}l) = (H({Vl}l)i,j ⊗Homk(Vi, Vj))

We shall refer to Oπ({Vl}l) as the semilocal ring of c at the family {Vl}l.
Consider for any finite type k-algebra A, the discrete diagram, Simp(A), con-

sisting of all the simple A-modules. If A is finite dimensional, we know that the
morphism,

η(Simp(A)) : A −→ O(Simp(A), π)

is an isomorphism provided k is algebraically closed. In general η(Simp(A)) is,
however, far from an isomorphism. In fact, when A is commutative, it is easy to
see that

O(Simp(A), π) 

∏
m

Âm

where m runs through all maximal ideals of A. To obtain a result analogous to
the General Burnside Theorem, see §2, we must add one or more generic points to
Simp(A), obtaining a diagram Simp∗(A) consisting of all morphisms between the
new generic A-modules and the simple ones. If we add just the A-module A, as we
have explained above, we may now prove the following simple result,
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Proposition 3.20. Suppose the natural homomorphism,

η(Simp(A)) : A −→ O(Simp(A), π)

is injectiv, then

η(Simp∗(A)) : A −→ O(Simp∗(A), π) = Oπ(Simp∗(A))

is an isomorphism, i.e. Simp∗(A) is a scheme for A.

Proof. Let us first prove this in the easiest case possible, i.e. where A = Endk(V ),
with V a finite dimensional k-vectorspace of dimension n. Clearly there are n
linearly independent right A-module homomorphisms pri : A → V, i = 1, .., n. If
{vi} is a basis for V then for a ∈ A, pri(a) = via =

∑
j hi,j(a)vj , hi,j(a) ∈ k.

Moreover the morphism η := η(Simp(A)) : A → O(Simp(A), π) = Endk(V ),
is an isomorphism and is given by, η(a) = (hi,j(a)). Now, if α ∈ Endk(A) sit
in O(Simp∗(A), π) then pri(α(a)) = α0(pri(a)) for α0 ∈ Endk(V ) and for all
i = 1, ...n. This means that η(α(a)) = α0(η(a)), therefore that η(α(1)) = α0, and
therefore η(α(a) − aα(1)) = 0, so by injectivity of η, α(a) = aα(1), for all a ∈ A.
But this is exactely what we want, α is the right multiplication by some element
α(1).

Now assume there are two simple modules, V1, V2, of k-dimensions, n1, n2. Then
there are n1n2 morphisms in Simp∗(A), inducing the A-module homomorphisms,
of A into the versal family,

prr,s : A →
(
H1,1 ⊗ V1 H1,2 ⊗ V2

H2,1 ⊗ V1 H2,2 ⊗ V2

)
.

If {ur} and {vs} are bases of V1 and V2, we find as above,

prr,s(a) =

(∑
k h

1,1
r,k(a) ⊗ uk

∑
k h

1,2
r,k(a) ⊗ vk∑

l h
2,1
s,l (a) ⊗ ul

∑
l h

2,2
s,l (a) ⊗ vl

)
so, in particular,

η(a) =

(
(h1,1

i,j (a)) (h1,2
i,s (a))

(h2,1
r,j (a)) (h2,2

r,s (a))

)
.

Now, as above, the condition on α ∈ Endk(A) to sit in O(Simp∗(A), π) is that
there exist some α0 ∈ O(Simp∗(A), π) such that for all a ∈ A, η(α(a)) = α0(η(a)).
Therefore η(α(1)) = α0, and therefore η(α(a) − aα(1)) = 0, so by injectivity of η,
α(a) = aα(1), for all a ∈ A, such that α is the right multiplication by the element
α(1) ∈ A. This proof obviously generalizes to the case of any finite or infinite set
of simples {Vi}.

�

For A = k < x1, x2, ..., xd >, the free k-algebra on d symbols, the example (2.9)
shows that the condition of (3.20) is satisfied, therefore Simp∗n(A), for any n ≥ 2
is a scheme for A.
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Notice that, so far we have defined a presheaf of observables on the family of
subdiagrams of a permissible diagram c of A-modules. Starting with the geom-
etry , i.e. the collection of points and incidences, we have defined, and studied,
the algebra Oπ(c) of operators parametrizing the geometry. When c is finite, the
fact that O(−, π) is a closure operator implies that the pair (O := O(c, π), c) is
a prescheme, such that η : O → OO(c, π) is an isomorphism. If also η0 : O →
(H(c0)⊗Homk(Vi, Vj)) is an injection, it follows from (3.17) that (O, c) is a scheme.
Now, if we start with a k-algebra A, how do we find its scheme? As we have seen
in (3.11), there is no such thing, in this field, as a unique scheme associated to a
given k-algebra. However as we have shown above, Simp∗(A) is a scheme in some
interesting cases. Consequently, we are interested in the geometry of Simp(A).

The structure of Simpn(A).

Lemma 3.21. If the k-algebra A is finitely generated, then Simp<∞(A) is a swarm.

Proof. If Vi ∈ Simpm(A), and Vj ∈ Simpn(A), then dimkExt1A(Vi, Vj) < ∞. This
follows from,

Ext1A(Vi, Vj) = Derk(A,Homk(Vi, Vj))/Triv,

since A is generated by a finite number of generators as k-algebra. The rest follows
from the next lemma, or more clearly from the proof of (3.23).

�

Lemma 3.22. Let A be a finitely generated k-algebra, and let V ∈ Simpn(A),
then the natural morphism,

η(V ) : A → H(V ) ⊗k Endk(V ),

is topologically surjectiv.

Proof. We must prove that for any m ≥ 1 the map,

ηm : A → Hm ⊗k Endk(V )

is surjectiv, where Hm = H(V )/rad(H(V ))m. But this is obviously a consequence
of the surjectivity of η2. Now, η1 : A → Endk(V ) is surjective, by simplicity
of V . Put m = kerη1, and consider the A-bi-module m/m2. It is clearly an
Endk(V )-bimodule, and as such a finite sum of r copies of Endk(V ). Therefore
Derk(A,Endk(V )), which is equal to the k-vectorspace of k-algebra homomor-
phisms, Mork(A, k[ε] ⊗k Endk(V )) is identified with,

Derk(Endk(V ), Endk(V )) ⊕HomA⊗Aop(m/m2, (ε)Endk(V ))

This, however is easily seen to be isomorphic to 
 Derk(Endk(V ))⊕ kr. Since the
derivations of Endk(V ) are all inner, we find,

Ext1A(V, V ) 
 kr.

But then, by construction, H2 
 k[kr], where k[kr] is the Nagata k-algebra of
the vector space kr, and the morphism η2 is the obvious surjection, of A onto
A/m2 
 k[kr] ⊗k Endk(V )

�

Another proof of a slightly more general result, is based on the generalized
Burnside theorem, see §2.
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Lemma 3.23. Let V = {Vi}i=1,..,r be a finite subset of Simp<∞(A), then the
morphisme of k-algebras,

A → O(V) = (Hi,j ⊗k Homk(Vi, Vj))

is topologically surjective.

Proof. Since the simple modules Vi, i = 1, .., r are distinct, there is an obvious
surjection, π : A →

∏
i=1,..,r Endk(Vi). Put r = kerπ, and consider for m ≥

2 the finite-dimensional k-algebra, B := A/rm. Clearly Simp(B) = V, so that
by the generalized Burnside theorem, see §2, we find, B 
 OB(V) := (HB

i,j ⊗k

Homk(Vi, Vj)). Consider the commutative diagram,

A (HA
i,j ⊗k Homk(Vi, Vj)) =: OA(V)

B (HB
i,j ⊗k Homk(Vi, Vj)) OA(V)/radm

��

�� ��

UUUUUUUUUUUUUUUU ��
�� α ��

where all morphisms are natural. In particular α exists since B = A/rm maps
into OA(V)/radm, and therefore induces the morphism α commuting with the rest
of the morphisms. Consequently α has to be surjective, and we have proved the
contention.

�

Recall that a standard n-commutator relation in a k-algebra A is a relation of
the type,

[a1, a2, ..., a2n] :=
∑

σ∈Σ2n

sign(σ)aσ(1)aσ(2)...aσ(2n) = 0

where {a1, a2, ..., a2n} is a subset of A. Let I(n) be the two-sided ideal of A gener-
ated by the subset,

{[a1, a2, ..., a2n]| {a1, a2, ..., a2n} ⊂ A}.

Consider the canonical homomorphism,

pn : A −→ A/I(n) =: A(n).

It is well known that any homomorphism of k-algebras,

ρ : A −→ Endk(k
n) =: Mn(k)

factors through pn, see [Formanek].

Corollary 3.24. (i). Let m ≥ 2, then for any Vi, Vj ∈ Simp≤n(A) we have,

Ext1A(Vi, Vj) 
 Ext1A/rm(Vi, Vj)

(ii). Let r = 1 above, and V := V1 ∈ Simpn(A). Then I(n) ⊂ r2, and therefore,

Ext1A(V, V ) 
 Ext1A(n)(V, V )



      

36 O.A.LAUDAL

Example 3.25. Notice that, for distinct Vi, Vj ∈ Simp≤n(A), we may well have,

Ext1A(Vi, Vj) �= Ext1A(n)(Vi, Vj).

In fact, consider the matrix k-algebra,

A =

(
k[x] k[x]
0 k[x]

)
,

and let n = 1. Then A(1) = k[x]⊕k[x]. Put Vi = k[x]/(x)⊕(0), Vj = (0)⊕k[x]/(x),
then it is easy to see that,

Ext1A(Vi, Vj) = k, Ext1A(1)(Vi, Vj) = 0.

Lemma 3.26. Let B be a k-algebra, and let V a vectorspace of dimension n, such
that the k-algebra B⊗Endk(V ) satisfies the standard n-commutator-condition, i.e.
such that the ideal, In ⊂ B ⊗ Endk(V ) generated by the standard commutators
[x1, x2, .., x2n], xi ∈ B ⊗ Endk(V ) is zero. Then B is commutative.

Proof. In fact if b1, b2 ∈ B is such that [b1, b2] �= 0, then the obvious n-commutator,

b1e1,1b2e1,1e1,2e2,2...en−1,n − b2e1,1b1e1,1e1,2e2,2...en−1,n

is different from 0.

�

Lemma 3.27. If A is a finite type k-algebra, then any V ∈ Simpn(A) is an A(n) :=
A/In-module, and the corresponding formal moduli, HA(n)(V ) is isomorphic to
HA(V )com, the commutativization of HA(V ).

Proof. Consider the natural diagram of homomorphisms of k-algebras,

A O(Simp∗(A), π)

Z(n) A(n) O(Simp∗n(A), π)

H(V )com H(V )com ⊗k Endk(V ) (Hi,j ⊗k Homk(Vi, Vj))

��

��

��

��

��

�� ��
�� oo

where Z(n) is the center of A(n) := A/In, Vi, Vj ∈ Simpn(A), and H(V )com is
the commutativization of H(V ). Clearly there are natural morphisms of formal
moduli,

HA(V ) → HA(n)(V ) → HA(V )com → HA(n)(V )com.

Since moreover
A(n) → HA(n)(V ) ⊗ Endk(V )

is topologically surjective, we find using (Lemma 6), that HA(n)(V ) is commutative.
But then the composition,

HA(n)(V ) → HA(V )com → HA(n)(V )com,

is an isomorphism. Since by Corollary (3.24), the tangent spaces of HA(n)(V ) and
HA(V ) are isomorphic, the lemma is proved.

�
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Corollary 3.28. Let A = k < x1, .., xd > be the free k-algebra on d symbols, and
let V ∈ Simpn(A). Then

HA(V )com 
 HA(n)(V ) 
 k[[t1, ..., t(d−1)n2+1]]

This should be compared with the results of Procesi, see [Procesi], or [Formanek].
There are further examples, some based upon the calculation of Tord Romstad, see
[Romstad], showing that HA(V ) is not commutative, even though V ∈ Simp(A) =
Simp≤2(A).

In general we do not know that the natural morphism,

A(n) →
∏

V ∈Simpn(A)

HA(n)(V ) ⊗k Endk(V )

is an injection. Replace A by its quotient, O(n) := Oπ(Simpn(A(n)), then for all
V ∈ Simpn(A),

HO(V ) 
 HA(n)(V ).

and,

O(n) →
∏

V ∈Simpn(A)

HO(n)(V ) ⊗k Endk(V )

is injective. Put B =
∏

V ∈Simpn(A) H
A(n)(V ). Let xi ∈ A, i = 1, ..., d be generators

of A, and consider the images (xi
p,q) ∈ B ⊗k Endk(k

n) of xi via the injective
homomorphism of k-algebras,

O(n) → B ⊗ Endk(k
n),

obtained by choosing bases in all V ∈ Simpn(A). Now, B is commutative, so the k-
subalgebra C ⊂ B generated by the elements {xi

p,q}i=1,..,d; p,q=1,..,n is commutative.
We have an injection,

O(n) → C ⊗k Endk(k
n).

and for all V ∈ Simpn(A) there is a natural projection,

C ⊗k Endk(k
n) → HA(n)(V ) ⊗k Endk(V ).

Since A(n) → HA(n)(V ) ⊗k Endk(V ) is topologically surjective, HA(n)(V ) ⊗k

Endk(V ) is generated by the images of xi. It follows that, if t(V ) is the element of
Simp(C) defined by V , we have a surjective homomorphism,

Ĉt(V ) → HA(n)(V ).

Categorical properties imply, as usual, that there is a natural morphism,

HA(n)(V ) → Ĉt(V ),

which composed with the former is an automorphism of HA(n)(V ). It follows that

HA(n)(V ) is a projection of the commutative k-algebra Ĉt(V ). Clearly Simpn(A) ⊂
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Simp(C). Let C(n) be the affine algebra of the closure of Simpn(A) in Simp(C).
Then it is clear that for every V ∈ Simpn(A) there is an isomorphism HA(n)(V ) 

Ĉt(V )(n), and so also,

O(n) ⊂ C(n) ⊗k Endk(k
n).

Recall the commutative diagram,

O(n) C(n) ⊗k Endk(V )

HO(V ) ⊗k Endk(V ) 
 Ĉt(V )(n) ⊗k Endk(V )

��

�� ��

Using Nakayamas lemma, it is easy to see that locally, at a point V ∈ Simpn(A),
C(n) and Z(O(n)) are isomorphic, which implies a result of M.Artin, see [Artin],
stating that if A does not have any simple modules of dimension less than n, then
A(n) is an Azumaya algebra over its center Z(n).

Moreover, Simp(C(n)) is, in a sense, a compactification of Simpn(A), and we
shall be able, using this imbedding to study the degeneration processes that occur,
at infinity in Simpn(A), see a forthcoming paper.

Now, consider for s2 ≤ s1 ≤ n, V1 ∈ Simps1(A), V2 ∈ Simps2(A), the commu-
tative diagram,

Z(n) A(n)

Z(s1) A(s1) Endk(V1)

Z(s2) A(s2) Endk(V2).

ρ1

��

��

��

ρ

��

��

��

��

�� ��

Put ρ2 := ρρ1, and let t(Vi) ∈ Simp(Z(si)) be the points corresponding to the
simple modules Vi.

Lemma 3.29. In the situation above, if Ext1A(n)(Vi, Vj) �= 0 then

ρi : Simp(Z(si)) → Simp(Z(n)), i = 1, 2,

maps t(V1) and t(V2 to the same point.

Proof. If ρ1(t(V1)) �= ρ2(t(V2)), the two corresponding maximal ideals mi, i = 1, 2,
of Z(n) will be distinct, the sum m1 + m2 is then Z(n). However, mi annihilates
Vi, therfore the sum will annihilate Ext1A(Vi, Vj), which therefore must be zero.

�

Localization and topology on Simp(A). Let s ∈ A, and consider the open subset
D(s) of Simp(A), defined above. It is clear that the natural morphism,

η : A → Oπ(D(s))

maps s into an invertible element of Oπ(D(s)). Therefore we may define the lo-
calization A{s} of A, as the k-algebra Oπ(D(s)) with the inverse η(s) added. This
furnishes a general methode of localization with all the properties one would wish.
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Generic points. In the general case, given a diagram c, we should be prepared
to include in c a finite subset γ(c) of generic points, and modify the construction
of Oπ(c), such that the result,

Oπ(c, γ(c))

parametrizes the deformations of all points of c, subject to the conditions imposed
by the incidences and, moreover, keeping the generic points fixed.

This construction also turns out to give us the right tool to define a reasonable
notion of noncommutative subscheme.

To obtain Oπ(c, γ(c)) we copy the construction of Oπ(c), replacing O(|c|, π) by
the subring

O(|c|, γ(c);π) = (H(|c|, γ(c))i,j ⊗Homk(Vi, Vj))

where,

H(|c|, γ(c))i,j =H(|c|)i,j if Vi /∈ γ(c)

H(|c|, γ(c))i,j =0 if i �= j, Vi ∈ γ(c)

H(|c|, γ(c))i,i =k if Vi ∈ γ(c),

and, for every finite subdiagram c0 of c, while insisting that c0 contain γ(c), by
replacing H(c0) by H(c0, γ(c)) given by the cocartesian diagram,

(Ext1A(U, V )∗) H(V ) H(c)

k H(c0, γ(c)).
��

�
o �� ��

��
����

Here,
U = ⊕Vi∈γ(c)Vi ⊆ V = ⊕Vi∈|c|Vi

and (Ext1A(U, V )∗) is the ideal of H(V ) generated by a dual basis of Ext1A(U, V ),
considered as part of a dual basis of Ext1A(V, V ) generating H(V ).

Examples 3.30. (i) Let A be any k-algebra, and let c := Ind(A) be the dia-
gram consisting of the essential (i.e. generating all others) morphisms between
(all) the indecomposable A-modules. Suppose A is a sum of a finite number of
indecomposibles. Using the fact that the only k-linear endomorphisms of A that
are right A-linear, are the left multiplication by elements of A, we easily prove
that η0 : A → O0(Ind(A), π) is an isomorphism. Since Ind(A) is, essentially, a
finite diagram, we may use the closure property of O and prove that Ind(A) is a
prescheme for A and therefore, by (3.18), also a scheme.

(ii) Consider a discrete diagram c = V of A-modules. There is, by definition of
Oπ, a homomorphism,

Oπ(V) −→ (H0(V ) ⊗Homk(Vi, Vj)).

The tangent space of the image is

(Ei,j ⊗Homk(Vi, Vj)),
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where the Ei,j are defined by,

(Ei,j) = (Ext1A(Vi, Vj))
EndA(V ).

(iii) In particular, if V is the family of all simple right modules of an artinian
k-algebra A, and k is algebraically closed, then EndA(V ) is trivial, and we obtain,

A 
 Oπ(V)

so V is a scheme for A.
(iv) Going back to Example (3.13), where A was a local k-algebra with φ : A → k

as the residue map, we found that when φ∗ : Ext1A(k,A) → Ext1A(k, k) is zero, the
natural morphism,

η : A → O({φ}, π)

is an isomorphism. It is now clear that, in all cases,

η : A → Oπ({φ})

is an isomorphism, implying that {φ} is a scheme for A.
(v) The Hairy Line. Consider the k-algebra of matrices,

A =

(
k[y] k[y]
0 k[y]

)
.

The scheme Ind(A) contains the two projectives,

V1,2 =

(
k[y] k[y]
0 0

)
, V2 =

(
0 0
0 k[y]

)
such that A = V1,2 ⊕ V2. Therefore Ind(A) is a scheme for A. Notice that there
is an incidence, i.e. a morphism of (right) A-modules V2 → V1,2, the cokernel of
which is the indecomposible A-module,

V1 =

(
k[y] 0
0 0

)
.

Notice also that Ai := Vi , i=1,2 are quotient algebras of A both isomorphic to
the polynomial k-algebra k[y]. The closed points of Ind(A) are the different simple
representations of A, that is, the different closed points of Spec(Ai), for i=1,2.
Thus we find that the closed points correspond to the points of two different affine
lines, L1 and L2, both (canonically) isomorphic to Spec(k[y]). However, while there
are no ordinary incidences between these points, there are infinitesimal incidences
between pairs of equal points (p, p) ∈ L1 × L2. In fact if p ∈ L1, q ∈ L2, then

Ext1A(k(p), k(p)) = k

Ext1A(k(q), k(q)) = k

Ext1A(k(p), k(q)) = k if p = q

Ext1A(k(p), k(q)) = 0, if p �= q

Ext1A(k(q), k(p)) = 0, for all p ∈ L1, q ∈ L2.
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The picture of this is is an ordinary line L2 with hairs, corresponding to the points
of the other line L1, stuck into the first line at the corresponding point.

Let as above, Simp(A) be the discrete diagram of the simple A-modules, and
let Simp∗(A) be the diagram consisting of A and Simp(A) together with the ob-
vious morphisms. We claim that Simp∗(A) is a scheme for A. In fact this fol-
lows from the following calculations: Let p = q, and let ξ1,1 ∈ Ext1A(k(p), k(p)),
ξ2,2 ∈ Ext1A(k(q), k(q)) and ξ1,2 ∈ Ext1A(k(p), k(q)), be generators. Then the cup
products ξ1,1 ∪ ξ1,2 ∈ Ext2A(k(p), k(q)) and ξ1,2 ∪ ξ2,2 ∈ Ext2A(k(p), k(q)) are equal
and different from 0. Since Homk(k, k) = k this implies,

Oπ({k(p), k(q)}) = H({k(p), k(q)}) =

(
k[[y]] k[[y]]

0 k[[y]]

)
.

and the natural morphism

η : A → Oπ({k(p), k(q)})

is the obvious completion. From this follows immediately,

Oπ(Simp∗(A)) =

(
k[y] k[y]
0 k[y]

)
.

Noncommutative subschemes. Let (c0, γ(c0)) be a swarm of A-modules and its
subset of generic points. Suppose first that γ(c0) = {V0}, i.e. is reduced to one
single object. Let ρ : V0 → V1 be any homomorphism of A-modules. Consider
now the morphisms φ : V1 → Vp of C = A − mod, for which the composition ρφ
is a morphism of c0. The resulting diagram c1 with generic point γ(c1)) = {V1}
should be considered as a closed subobject of (c0, γ(c0)) cut out by ρ. Notice that
c1 deprived of its generic point, is a subdiagram of c0. It is clear how to generalize
this notion, but we shall leave that for later work. Consider the following example.

Example 3.31. (i) The quantum plane. Let A = kq[x, y] := k{x, y}/(xy− qyx), k
algebraically closed, with q �= 1. The discrete diagram Simp(A) may be identified
with the union of the x-and the y-axes in the affine plane. Consider points p1, p2 ∈
Simp(A), then we easily compute,

Ext1A(k(p1), k(p2)) = k,

if p1 = p2 �= 0 or if p1 and p2 sit on the x-axis and qp2 = p1.

Ext1A(k(p1), k(p2)) = k

if p1 and p2 sit on the y-axis and qp1 = p2. In particular,

Ext1A(k(0), k(0)) = k2

Ext2A(k(0), k(0)) = k.
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All other Ext′s are 0, and there exists a basis {ξ1, ξ2} of Ext1A(k(0), k(0)), such
that

0 �= ξ1 ∪ ξ2 = qξ2 ∪ ξ1 ∈ Ext2A(k(0), k(0)).

Therefore,
HA(k(0)) 
 Â(0),

and so A 
 Oπ(Simp∗(A)). Moreover, if V1 = A/(ax+ by+ c) is a line in the quan-
tum plane, and if we consider the corresponding closed subobject (Simp∗(A), {V1})
of Simp∗(A), in the manner described above, we obtain, Oπ(Simp∗(A), {V1}) 

A/(ax + by + c), as we would expect.

(ii) Espaces quantiques de Connes, trivial case. Let A be a commutative k-
algebra, k algebraically closed. Consider an algebraic equivalence relation, R =
Spec(R) on the affine scheme X = Spec(A). It corresponds to the affine diagram,

A A⊗A R A
i1 ��

i2
��

ρ �� ��

with the obvious relations. Consider the morphisms τi = ii ◦ ρ, and let

Spec(A : R) = {R/τ1(p)R|p ∈ Spec(A)}

be the diagram consisting of the objects R/pR := R/τ1(p)R considered as A-
modules via τ2, and with the obvious morphisms. Let x ∈ X be a closed point,
corresponding to the maximal ideal mx of A, then the composition,

κx : A
i2◦ρ−−→ R

πx−→ R/mxR

identifies Spec(R/mxR) with the equivalence class x̄ of x ∈ X = Spec(A). In
particular, if x ∼R y then

R/mxR = R/myR

as objects of Spec(A : R).
Now compute

O0 := O0(Spec(A : R), π).

It is clear that, α ∈ O0 is a family,

α = {αp ∈ Endk(R/τ1(p)R)|πpq ◦ αq = αp ◦ πpq , ∀ p, q ∈ Spec(A)}

where πpq : R/τ1(p)R → R/τ1(q)R is the obvious morphism corresponding to an
inclusion p ⊆ q. Since each one of the πpq is surjective, it is easy to see that α is
determined by α0 ∈ Endk(R) and the components αx ∈ Endk(R/mxR). Moreover,
since for x ∼ y, R/mxR = R/myR, as objects, it is clear that αx depends only
upon the equivalence class x̄ of x. Each αx̄ is a k-linear endomorphism. Suppose
the equivalence classes of R are finite reduced, i.e. R/mxR 
 ⊕z∈x̄k(z), then αx̄ is
a matrix

αx̄ = (α(z, z′)), z, z′ ∈ x̄, α(z, z′) ∈ k.
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Moreover, in this case, given α, α′ ∈ O0 then α = α′ if and only if αx̄ = α′
x̄ for

all closed points x ∈ X. This follows immediately from the defining relations,
πx(α(a)) = αx̄(πx(a)). This means that α is determined as a function on X × X
with α(z, z′) = 0 unless z ∼ z′, and with addition defined as for functions, but
with multiplication defined by the matrix nature of each αx̄, i.e. (αα′)(x, y) =∑

z∈x̄=ȳ α(x, z)α′(z, y). But this is the way Connes defines les espaces quantiques,

see [Connes].

Infinitesimal structures on schemes. Let c be a swarm of A-mod, and consider
a point x=Vi. We would like to be able to talk about vectorfields, their values
at points, if possible also about energy operators and time etc. as in quantum
mechanics. We start with the following,

Definition 3.32. Given a point x = Vi ∈ c, we put

Tx :=Ext1A(Vi, Vi)
Γ :

={ξ ∈ Ext1A(Vi, Vi)| ∀p∃ ξp ∈ Ext1A(Vp, Vp) such that ∀φ := φi,p : Vi → Vp, ,

φ∗(ξ) = φ∗(ξp) and ∀φ := φp,i : Vp → Vi, φ∗(ξp) = φ∗(ξ) }

and we shall call it the tangent space of c at x.

There is a canonical map

κx : Derk(A,A) −→ Tx

the compositions of the natural maps,

Derk(A,A) −→ Derk(A,Endk(V ))

the surjection

Derk(A,Endk(V )) −→ Ext1A(V, V ) = ⊕i,jExt1A(Vi, Vj)

and the projection onto Ext1A(Vi, Vi). Recall that the tangent space T0 of H(c) is
contained in,

T0 = (Ext1A(V, V )Γ)Endk[Γ]⊗A(V )

and see that there are natural homomorphisms,

Derk(A,A) → T0.

For every δ ∈ Derk(A,A), let δ(x) ∈ Tx, be the image κx(δ) in Tx. Thus
Derk(A,A) is a k-vectorspace of vector fields defined on c. In particular if E ∈ A is
some element, then the k-linear map adE : A → A defined by adE(a) = Ea−aE, is
a k-derivation of A. Obviously, adE(x) = 0 for every point x of c. Thus, operators
of this type (like time evolutions), i.e. ad(E), although they act on the observables,
leave the points fixed.
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Definition 3.33. Given a point x=Vi of c, we shall say that x is A-smooth if
the map κx is surjective. If this is true for all points of c, we shall say that c is
A-smooth.

Using the example (2.9) we observe that when A is a free k-algebra, the scheme
Simp∗(A) is smooth for A, and it clearly generalizes the classical notion of smooth-
ness in algebraic geometry.

There is also the non-commutative version of Grothendiecks notion of smooth-
ness, the Quillen, or Q-smoothness. The k-algebra A is Q-smooth if whenever
R → S is a surjective small homomorphism of k-algebras, the map Mor(A,R) →
Mor(A,S) is surjectiv. The following result is easily proved.

Proposition 3.25. A is Q-smooth implies that for all finite dimensional simple
A-module V, all cup and Massey products,

Ext1A(V, V ) ⊗ Ext1A(V, V ) ⊗ . . . Ext1A(V, V ) → Ext2A(V, V )

vanish.

From this we deduce the well known result,

Corollary 3.26. If a finite type commutative k-algebra A is Q-smooth then either
A 
 kn for some n, or A is a smooth curve.

§4. The commutative case.

The main Theorem. To show that the noncommutative algebraic geometry, in-
troduced above, is a good extension of classical algebraic geometry, one would be
tempted to prove that, for commutative k-algebras A,

(S) η(Spec(A), π) : A −→ Oπ(Spec(A))

is an isomorphism. This is, however, not reasonnable, see the Introduction. The
problem is that Spec(A) contains too many points. The closed points are special
since Spec(A) is the moduli space for such. The non closed points are not treated
as bona fide points, but as generic points for subschemes. We would like to include
as few as possible such generic points, and therefore we add only the projective
generator A. We have already proved the essentials of the following,

Theorem 4.1. Let A be any commutative k-algebra, essentially of finite type, with
k algebraically closed. Let, as above Simp∗(A) be the diagram Simp(A) augmented
by the generic point A. Then Simp∗(A) is a permissible swarm, and the canonical
morphisms of k-algebras,

η(Simp∗(A), π) : A → Oπ(Simp∗(A))

is an isomorphism.

Proof. For every closed point x ∈ Simp(A) consider the corresponding homomor-
phisms of A-modules,

φx : A → k(x)
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and use the Remark (3.6) together with see (3.20). Clearly the versal deformation
of φx is the canonical morphism of k-algebras

Φx : A → H(k(x)) ⊗ Endk(k(x)) = Âx.

If α ∈ Endk(A) and αx ∈ EndHx,x
(H(k(x))⊗Endk(k(x))) commute via the action

of Φx, then the composition (α−Rα(1)) ◦Φx = 0, where Rα(1) is the right multipli-
cation by α(1). Since this is true for all x ∈ Simp(A) we obtain that α is the right
multiplication of some element α(1), proving our theorem. �

As a consequence of the functorial properties of Oπ the Oπ-construction applies
to the (open affine) subdiagrams of the category of OX − Mod, where X is a k-
scheme, and provides us with a globalization procedure. To sede how it works, let
us consider the following example.

Example 4.2. Blowing-ups. Let A = k[x, y] and and consider the A-module
V = (x, y), i.e. the maximal ideal of A. The diagram of A-modules, Simp∗(A− V )
is, by definition, the diagram consisting of V together with all simple quotients of
V . These correspond to all points of A2 = Spec(A) different from (0,0), together
with all tangent lines through (0,0) in A2. Now consider x ∈ V and let D(x) be
the diagram obtained from Simp∗(A − V ) by localizing, i.e. removing the points
where x becomes zero, and inverting the multiplicative action by x. In particular,
in D(x) we have all points of A2 minus the y-axis, but preserving all tangent lines
through (0,0), except the x-axis. We find,

O(Simp∗(A− V ), π) = A, O(D(x), π) = k[y, y/x]

as we should, proving that the scheme (Simp∗(A − V ),Oπ) is the blow up of the
origin in A2

Notice that in this paragraph we have assumed that A is a commutative k-
algebra essentially of finite type on an algebraically closed field. The extension of
the theory to include schemes on general base rings, seems difficult.

§5. More homological preparations.

The category of A-G-modules. Let A be any k-algebra and let g : A → A be
an automorphism. Given an A-module Mi, i=1,2 consider an automorphism of
k-modules ∇i

g : Mi → Mi, such that for mi ∈ Mi and a ∈ A we have,

∇i
g(mia) = ∇i

g(mi)g(a) for i=1,2

i.e. such that ∇i
g is g-linear. Then there is an automorphism,

θpg := θpg(∇1,∇2) : ExtpA(M1,M2) −→ ExtpA(M1,M2)

induced via the isomorphism,

ExtpA(M1,M2) 
 HHp(A,Homk(M1,M2))



    

46 O.A.LAUDAL

by the g−1-linear automorphism of bi-modules,

ζg : Homk(M1,M2) −→ Homk(M1,M2)

defined by,
ψ �−→ ∇1

g ◦ ψ ◦ ∇2
g−1 .

Notice that we compose morphisms in the natural order. For a ∈ A we compute,

ζg(g(a)ψ) = ∇1
g ◦ g(a)ψ ◦ ∇2

g−1 = a(∇1
g ◦ ψ ◦ ∇2

g−1) = aζg(ψ)

ζg(ψg(a)) = ∇1
g ◦ ψg(a) ◦ ∇2

g−1 = (∇1
g ◦ ψ ◦ ∇2

g−1)a = ζg(ψ)a.

This implies that there is an automorphism of Hochschild cohomology,

ζpg : HHp(A,Homk(M1,M2)) −→ HHp(A,Homk(M1,M2))

defined on cochain form by,

ξp �−→ {(a1, a2, . . . , ap) �→ ∇1
g ◦ ξp(g(a1), . . . , g(ap)) ◦ ∇2

g−1}.

In particular the automorphism,

ζ1
g : Ext1A(M1,M2) −→ Ext1A(M1,M2)

is induced by the map

ζ1
g : Derk(A,Homk(M1,M2)) −→ Derk(A,Homk(M1,M2))

defined by
ζ1
g (δ)(a) = ∇1

g ◦ δ(g(a)) ◦ ∇2
g−1 .

When p ⊆ A is a g-invariant ideal of A contained in the annihilator of M2, we know
that the restriction of the derivations of Derk(A,Homk(M1,M2)) to p induces an
isomorphism,

HomA(p/p2, HomA(A/p,M2)) 
 Ext1A(A/p,M2)

such that the automorphism ζ1
g takes the form,

ζ1
g (ψ)(x) = ∇2

g−1(ψ(gx)) for x ∈ p/p2.

Suppose ξ ∈ Ext1A(M1,M2) is represented by the exact sequence of A-modules,

(∗) 0 −→ M2 −→ E −→ M1 −→ 0

Since the g-linear automorphisms ∇i
g : Mi → Mi correspond to an A-linear isomor-

phism,
∇i

g : Mi → Mi ⊗g−1 A
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we deduce from (∗) the exact sequence of A-modules,

(∗∗) 0 −→ M2 ⊗g−1 A −→ E ⊗g−1 A −→ M1 ⊗g−1 A −→ 0

which represents the element ζ1
g (ξ) ∈ Ext1A(M1,M2). The ζ1

g -invariant elements ξ

of Ext1A(M1,M2) therefore corresponds to the extensions (∗) for which there exists
an isomorphism

(∗ ∗ ∗) ∇g : E −→ E ⊗g−1 A

compatible with the ∇i
g, for i=1,2. Another way of viewing this is to look at

ζ1
g (ξ) − ξ as an obstruction for the existence of such an isomorphism (∗∗).

Given one ∇g : E −→ E⊗g−1 A compatible with the ∇i
g, another ∇g‘ will differ

from the first one by the composition Γg of the homomorphism E −→ M1 and some
A-linear map α : M1 → M2 ⊗g−1 A, and any such Γg added to (∗ ∗ ∗), will again be

compatible with the ∇i
g, for i=1,2. In the category of (A-g)-modules, we therefore

find,

Ext1A−g(M1,M2) 
 Ext1A(M1,M2)
ζg ⊕HomA(M1,M2 ⊗g−1 A)/ ∼

The equivalence ∼ identifies (E‘,∇g‘) and (E“,∇g“) if there exists an isomorphism
of extensions ζ : E 
 E“ compatible with the ∇‘s. Since

∇2
g : HomA(M1,M2) 
 HomA(M1,M2 ⊗g−1 A)

the equivalence relation ∼ is trivial.
Now, suppose G is a group acting on the k-algebra A, i.e. suppose there exists

a homomorphism of groups,

ρ : G −→ Autk(A).

Consider A-modules Mi, i=1,2, with G-actions compatible with ρ, i.e. homomor-
phisms

∇i : G −→ Autk(Mi)

such that for g ∈ G , mi ∈ Mi, and a ∈ A,

∇i
g(mia) = ∇i

g(mi)g(a) for i=1,2

where we denote by g(a) the action of ρ(g) on a ∈ A.
Given an invariant ξ ∈ Ext1A(M1,M2) under the action of the group G, as

explained above, there exists for every g ∈ G an isomorphism

∇g : E −→ E ⊗g−1 A

Since
(E ⊗g−1

1
A) ⊗g−1

2
A = E ⊗(g1g2)−1 A
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we find an obstruction for the existence of a homomorphism of groups,

∇ : G −→ Autk(E)

compatible with the ∇i′s, which is a 2-cocycle of G with values in the G-bimodule
HomA(M1,M2),

(g1, g2) �−→ (∇g1
◦ ∇g2

−∇g1g2
).

When the corresponding 2-class,

σξ ∈ H2(G,HomA(M1,M2))

vanishes, there exists a ∇ and the set of such will be a torsor under

H1(G,HomA(M1,M2)).

Proposition 5.1. Suppose Hi(G,HomA(M1,M2)) = 0 for i=1,2, then,

Ext1A−G(M1,M2) 
 Ext1A(M1,M2)
G.

Notice that a 1-coboundary of the form

g �−→ (gα− α)

corresponds to an automorphism θα : E −→ E inducing an automorphism of
(E,∇g).

The category of A- g-modules. Suppose

ρ : g −→ Derk(A)

is a k-Lie homomorphism, e.g. a Lie-Cartan pair. We shall treat this as the tangent
map of a Lie-group action ρ studied in the previous section. Let Mi, i=1,2 be A-
modules with g-integrable connections

∇i : g −→ Endk(Mi),

and consider for every δ ∈ g and every ψ ∈ Homk(M1,M2) the map

δ �−→ ∇1
δψ − ψ∇2

δ .

This defines a Lie algebra homomorphism,

ρ : g −→ Endk(Homk(M1,M2))

such that, if ρ is a Lie-Cartan pair, ρ(δa) = aρ(δ) − ρ(δ)a.
Let D ∈ Derk(A,Homk(M1,M2)), then the map

a �−→ ∇δ(D)(a) := D(δ(a)) + ∇1
δD(a) −D(a)∇2

δ

is a derivation, and we obtain a connection

∇ : g −→ Endk(Ext1A(M1,M2)).

As above, every ξ ∈ Ext1A(M1,M2)
g is associated to an obstruction,

σ(ξ) ∈ H2(g, Homk(M1,M2))

which vanishes if and only if there exists an integrable connection on the middle
term E of the exact sequence representing ξ,

0 −→ M2 −→ E −→ M1 −→ 0

compatible with the connections ∇i on Mi. The set of isomorphism classes of such
(ξ,∇) is then a torsor under

H1(g, HomA(M1,M2)).
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Proposition 5.2. Suppose

Hi(g, HomA(M1,M2)) = 0 for i=1.2

then,
Ext1A−g(M1,M2) = Ext1A(M1,M2)

g

§6. Invariant theory and moduli.
Let k be an algebraically closed field, and consider a commutative finite type

k-algebra A. Let G be a finite group, acting on A, and let ρ : G → Autk(A), be the
action. Consider the category of A−G-modules, and let, as above, Simp∗(A−G) be
the swarm of orbits of G on Spec(A), together with A as generic point. For any orbit
V ∈ Simp(A−G), let v ∈ Spec(AG) be the corresponding point. If G is reductiv we
know that the ideal a ⊂ A defining a maximal orbit V , a regular point, is generated
by the ideal a0 = aG ⊂ AG. In fact, since the ideal a is generated by invariants, the
relation-submodule will also be generated by invariants, etc. Therefore there exist
an A−G-resolution of V , of the form,

0 V A An1 An−2 ...oo oo oo oo

where the action by G is the obvious product-action. Since G is reductive we obtain
the following resolution of the field k = V G = EndA−G(V ) as AG-module,

0 k AG (AG)n1 (AG)n−2 ...oo oo oo oo

This implies that,
ExtpA−G(V, V ) = Extp

AG(k, k),

for all p ≥ 0 and the Massey-product structures also coincide. Therfore, by con-
struction H(V ) 
 ÂG

v . For all such maximal orbits V we have a natural commuta-
tive diagram,

AG A O(Simp∗(A−G), π) Endk(A)

H(V ) H(V ) ⊗k Endk(V )

��

��

��

�� ttjjjj
jjjj

jjjj
jjj

��

��

showing that,
O(Simp∗(A−G), π) ⊂ EndAG(A).

Let I ⊂ G, be a subgroup. Put X(I) ⊆ {x ∈ X := Simp(A)|I = gI(x)g−1} be
the locally closed subscheme of X := Spec(A), corresponding to the orbits with
isotropy subgroups conjugate to I. Let a(I) ⊂ A be the G-invariant ideal of A,
defining the closure X̄(I) in X. Put A(I) := A/a(I). Consider a simple A − G-
module V (I), with isotropy subgroup class I. Assume that the natural morphism
of right A − G-module, A → H(V (I)) ⊗ V (I), is the formalization of a morphism
A → H(V (I))⊗ V (I) with H(V (I)) a k-algebra of finite type. Notice that since G
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is reductive, G acts on H(V (I)) ⊗ V (I) via its action on V (I), i.e. the action lifts
trivially to H(V (I)) ⊗ V (I). Then there is a commutative diagram,

A H0(V (I)) ⊗ V (I)

V (I) A(I)
��

��OOOOOOOOOOOO ��

OO

oo

where H0(V (I)) = H(V (I))/rad, is the reduced k-algebra. Here rad is the intersec-

tion of all two-sided maximal ideals with residu field k. Let H0(V (I)) = Ĥ0(V (I)),
the formalization of H0(V (I)) at the point corresponding to V (I). This diagram,
however, proves that there are natural morphisms,

HA(I)−G(V (I)) → HA−G
0 (V (I)) → H

A(I)−G
0 (V (I)).

If V (I) is regular with respect to the G-action on X(I), we therefore have,

HA−G
0 (V (I)) 
 ˆ

(A(I))
G
v red.

In the example (8.3), below, in characteristic 2, Tord Romstad has computed
the formal moduli HA−G(V (I)) for I = G, and come up with a non-commutative
k-algebra such that its reduction is isomorphic to HA(I)−G(V (I)) 
 k[[t]], see the
end of §8, and [Romstad].

Definition 6.1. The quotient Simp∗(A)/G, is the swarm of O(Simp∗(A−G), π)-
modules Simp∗(A−G).

Proposition 6.2. Simp∗(A−G) is a scheme for O := O(Simp∗(A−G), π)

Proof. (i) follows from (3.20) since, for each maximal orbite Vd, Avd
is a free

AG
vd

-module, and since the natural map O → O(Simp(O), π) decomposes via

EndAG(A) →
∏

Vd
AG

vd
⊗ Endk(Vd) which, since the maximal orbits correspond

to an open dense set in Spec(AG), is injective.

�

Notice that in Simp∗(A − G) the point A is generic. See also that there is a
natural surjective homomorphism, HO(V ) → HA−G which, since

O →
∏
V

HA−G(V ) ⊗ Endk(V )

is injective, makes

O →
∏
V

HO(V ) ⊗ Endk(V )

also injective. By (3.20) this shows that also Simp∗(O) is a scheme for O. Here O
is the generic point.
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Example 6.3. Let G = Z/(2) = (τ) act on A = k[x, y] as τ(x) = x, τ(y) = x− y.
Then AG = k[x, xy − y2] =: k[u, v]. Then Simp∗(A − G) is a scheme for the k-
algebra,

{
(
a1,1 a1,2

a2,1 a2,2

)
|ai,j ∈ AG, a1,1 − a2,2 ∈ (u2 − 4v), a1,2, a2,1 ∈ (u2 − 4v)}

If G is a Lie group acting algebraically on the k-algebra A, we may copy the
definitions and the proofs above, and obtain the same results. However since in
this case the orbits, i.e. the points of Simp(A−G), are of infinite k-dimension, we
shall work with the trivialization functor, πG : A − G − mod → k − mod defined
by πG(V ) = V G = H0(G,V ). When G is reductive consider the stratification
{X(I)} of X = Simp(A), indexed by all conjugacy classes of (isotropy) subgroups
I ⊂ G. Consider the set of generic points {A(I)}, and let us construct O :=
OA−G(Simp∗(A−G); {A(I)}). G operates on O, and the invariant ring maps to the

k-algebra HA−G(Simp(A−G)) =: (HA−G
i,j ). Let OA−G(Simp∗(A−G; {A(I)}, πG)

be the image.

Definition 6.1 bis. The quotient Simp∗(A)/G, is the swarm Simp∗(O) of O-
modules, where,

O := OA−G(Simp∗(A−G), πG).

Notice that there is a natural identification Simp∗(A−G) 
 Simp∗(O), but O is
no longer an extension of A. However, we have the natural morphism ηG : AG → O.
We shall return to the properties of this construction. See §8 for examples.

Now, let the Lie-algebra g of vectorfields (i.e. derivations), act on A. Consider the
category C := A− g−mod, of A-modules with integrable g-covariant derivations.
In this category we define the trivialization functor,

πg : C −→ k −mod

by
πg(V ) = H0(g, V ).

Recall that when g is reductive π := πg is exact. Moreover, Ext in this category,
is then simply the g-invariants of the Ext in A-mod.

Given any permissible swarm c of C, we may construct a ring of preobservables
OA−g(c, πg), in the same way as we constructed OA−G(Simp∗(A − G), πG) in the
case of a group action. In particular, let us consider the diagram, Simp(A− g), of
simple A− g-modules, and add to it A, as a generic point, to obtain Simp∗(A− g).

We propose, tentatively,

Definition 6.1 bis,bis. The quotient Simp∗(A)/g, is the swarm Simp∗(O), of
O-modules, where,

O := OA−g(Simp∗(A− g), πg).

Notice that we do not assert that Simp∗(A− g), as a diagram of A− g−mod,
is a scheme for O. This would be meaningless. In good cases we may, however,
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hope that Simp∗(O) is a scheme for O, and that Simp(O) is, in a natural way,
isomorphic to Simp(A− g).

In many cases the simple A−g-modules occur in a finite number of families, just
as in the case of a group action, corresponding to quotients of some Ul = A/al. In
this case it is reasonable to add the U ′

l s as generic points to Simp(A− g) forming
a new diagram Simp∗(A − g). We would then consider Oπg(Simp∗(A − g), {Ul})
as a candidate for the affine ring of the orbit space.

That this invariant theory fits with the classical invariant theory, is shown by
the following result,

Theorem 6.4. Let A be any irreducible and reduced commutative k-algebra of
finite type, k algebraically closed, and g a reductive Lie-algebra of vectorfields (i.e.
derivations), acting on A. Assume that the geometric quotient of Spec(A) with g

exists and is affine. Then

OA−g(Simp∗(A− g), πg) = Ag.

Proof. By assumption, the diagram Simp∗(Ag) induces the diagram Simp∗(A−g).
Moreover the trivialization πg maps the diagram Simp∗(A − g) onto the diagram
Simp∗(Ag), or rather, to the image of this diagram under the canonical trivializa-
tion π. But then the exactnes of πg and the smoothness of the morphism of the
geometric quotient, proves that the formal moduli of the family |Simp∗(A− g)| in
the category of A− g-mod is isomorphic to the corresponding formal moduli of the
family |Simp∗(Ag)| in the category of Ag-mod. Since the trivializations coincide,
the Theorem (6.1) shows that

O(Simp∗(A− g), πg) ∼= Ag

which is exactly what we wanted. �

Example 6.5 The McKay correspondence. Let k be an algebraically closed
field of characteristic 0, and let U be a finite dimensional k-vectorspace. Put n =
dimkU . Let G be any group acting on U , and let {Vi}i=1,...,r be the family of
simple G-modules, such that

k(G) =
∏

i=1,...,r

V ni
i

as k(G)-modules. Let A = Symk(U
∗), and consider now a quotient module o

of A which is isomorphic to k(G) as G-module, i.e. an object of the diagram
Simps.s(A−G). There must exist a filtration of o with graded module consisting
of the different Vi strung out in some order, defined by an ordered graph Γ of length
r. If x ∈ o is a closed point, and Ix the corresponding isotropy subgroup of G, we
know that o has an A−G-quotient of the form,

A/m =
∏

g∈Ix/G

k(g(x))
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which is an object of Simp∗(A−G). In this way we find a map,

κ : Simps.s(A−G) −→ Simp∗(A−G)

which is the McKay map. There are interesting cases in which

O(−, πG)

is a non singular presheaf of commutative k-algebras on the (open) subdiagrams of
Simps.s(A−G), with a canonical birational morphism,

κ∗ : O(Simp∗(A−G), πG) = AG → O(−, πG)

showing that κ is a desingularization of Spec(A)/G. Suppose G acts effectively,
such that Simps.s(A−G)∩Simp∗(A−G) is an open dense set of Simp∗(A−G) ⊆
Spec(AG), in the Zariski topology. Then o is a non singular point of Simps.s(A−G),
if and only if,

χ(o, o) : =
∑

i=1,...,n

(−1)iextiA−G(o, o)

=
∑

p=1,...,n,i,j=1,...,r

(−1)phomG(Vi, Vj ⊗ ∧pU) = 0.

Notice that for the scheme to be commutative we must have,

ext2A−G(o, o) ≥ dimk(Ext1A−G(o, o) ∧ Ext1A−G(o, o)) ≥ 1/2n(n− 1).

Moreover, we always have,
homA−G(o, o) = 1.

If o is a non singular point of Simps.s(A−G), then the tangent space Ext1A−G(o, o)
of o must be of dimension n = dimkU . This proves the only if condition above.
The if part, is a little more involved.

Remark 6.6. If the Lie algebra g (or the Lie group G) is not reductive,

Ext1A−g(Vi, Vj) = H0(g, Ext1A(Vi, Vj)) ⊕H1(g, HomA(Vi, Vj))

where the component H1(g, HomA(Vi, Vj)) may be non-zero. This component of
the tangent space of the deformation functor measures the number of different g-
structures on the same deformation of the family of A-modules {Vi}i. If we are
not interested in the specific g-structures, but only in isomorphism classes as A-
modules, then we may suppress this component, by taking an appropriate quotient
of the resulting H, and of O(Simp(Ag, π), and we obtain a k-algebra

Ored(Simp(A− g), π)

which is simpler, therefore contains less information, but for which the set of simple
modules is in one-to-one correspondence with the orbits of g. See §8 for examples.
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§7. Tensor products and quantum groups. Let c be a subcategory of A−mod,
with a trivializing functor π. Suppose given a tensor product on the category c, i.e.
a bi-functor

⊗ : c× c −→ c

which is a faithful imbedding, consistent with π, with some extra structure. In
particular there should exist natural isomorphisms,

α−,−,− : ((−⊗−) ⊗−) 
 (−⊗ (−⊗−))

satisfying the Mac Lane pentagon condition,

idX ⊗ αY,Z,W ◦ αX,Y⊗Z,W ◦ αX,Y,Z ⊗ idW

= αX,Y,Z⊗W ◦ αX⊗Y,Z,W .

Consider the exact functor,

∆ : c → c× c,

defined by ∆(V ) = V × V . Then, since all of these functors are imbeddings, there
exist homomorphisms of k-algebras,

(1) O(c, π) → O(c⊗ c, π) 
 O(c× c, π) → O(c, π)

such that,

O(c× c, π) 
 O(c, π) ⊗O(c, π),

and such that the last morphism of (1) is the multiplication morphism of the k-
algebra O(c, π).

The Mac Lane pentagon condition garanties that the first morphism of (1) be-
comes an associative co-algebra structure on O(c, π). Clearly any extra functorial
symmetry one may want to consider on c, will show up in the corresponding k-
algebra O(c, π).

§8. Examples.

The noncommutative projective line. Let A = k[x0, x1], and consider the usual
k∗-action. We shall compute the space Spec(A)/k∗. The subcategory Simp(A-k∗)
of A-k∗-modules consists of the origin V3, the lines through the origin V2(l), and
the generic point V1 = A. The trivializing functor (see §3.),

π : A− k∗ −mod −→ k −mod

has the values,

π(V1) = k, π(V2(l)) = k, π(V3) = k.

The noncommutative orbit space is given by the hull of the deformation functor,
i.e. by (Hi,j). Since Hp(k∗,−) = 0 for p≥1, we may use the Proposition (5.2), and
we obtain,

ExtA−k∗(Vi, Vj) = ExtA(Vi, Vj)
k∗
.
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It is easy to compute the different ext-groups, we find:

Ext1A(Vi, Vj) = 0, for i=1, j=1,2,3.

Ext1A(V2(l), V1) = V2(l) = A/(αx0 + βx1)

Ext1A(V2(l), V2(l)) = V2(l)

Ext1A(V2(l), V2(l‘)) = 0 if l �= l‘

Ext1A(V2(l), V3) = V3 = k

Ext1A(V3, V1) = 0

Ext1A(V3, V2(l)) = V3 = k

Ext1A(V3, V3) = k2.

Using the results of §5. we obtain for the invariants

Ext1A(Vi, Vj)
k∗

= 0, for i=1, j=1,2,3.

Ext1A(V2(l), V1)
k∗

= k represented by ξ = l

Ext1A(V2(l), V2(l))
k∗

= k represented by ξ = l

Ext1A(V2(l), V2(l‘))
k∗

= 0 if l �= l‘

Ext1A(V2(l), V3)
k∗

= 0

Ext1A(V3, V1)
k∗

= 0

Ext1A(V3, V2(l))
k∗

= 0

Ext1A(V3, V3)
k∗

= 0.

The corresponding quotient becomes the infinite matrix algebra of the form,

Spec(A)/k∗ := O(Simp(A− k∗), π) =

 k 0 0
k[t2(l)]t2,1 k[t2(l)] 0

0 0 k


where l runs through all the points in the ordinary projective line. We observe that
the special point, corresponding to the isolated orbit, i.e. the origo, stays isolated,
even infinitesimally. There are, however, adjacencies between the formal points
corresponding to the lines through the origin, and the generic point corresponding
to the generic point of the ordinary projective line.

Suppose that we localize, say in x0, i.e. that we restrict to the

Spec(A{x0} − k∗) = {V1 = A{x0}, V2(l) = A{x0}/(l)}
then we find,

π(V1) = k[x1/x0], π(V2(l)) = k,

for all l. The exts in the new category looks like,

Ext1A{x0}
(Vi, Vj)

k∗
= 0, for i=1, j=1,2.

Ext1A{x0}
(V2(l), V1)

k∗
= k represented by ξ = l

Ext1A{x0}
(V2(l), V2(l))

k∗
= k represented by ξ = l

Ext1A{x0}
(V2(l), V2(l

′))k
∗

= 0 if l �= l′
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With this we find that Spec(A{x0})/k
∗ is the subalgebra,

O(Simp∗(A{x0} − k∗), π) =

{(
f(x1/x0) 0

ψ(f(x1/x0))t2,1 f(x1/x0)]

)}
,

of the algebra,

(
Endk(k[x1/x0]) 0
k[[x1/x0]]t2,1 k[[t2(l)]]

)

where ψ is some derivation of Derk(k[x1/x0]) and f runs through k[x1/x0], as
expected, see the Theorem (3.2).

It is therefore clear that the noncommutative version of the projective line con-
tains the geometric projective line.

If we consider, instead of the action by the group k∗, the action of the Lie algebra

g generated by the Euler vectorfield δ0 = x0
∂

∂x 0
+x1

∂

∂x1
, we get a different picture

steming from the fact that g has cohomology. The subcategory Spec(A-g) of A-g-
modules consists of the origin V3, the lines through the origin V2(l), and the generic
point V1. The trivializing functor

π : A− g−mod −→ k −mod

has the values,

π(V1) = k, π(V2(l)) = k, π(V3) = k

Since there are no π-incidences, the noncommutative orbit space Spec(A)/g is given
by the hull of the deformation functor, i.e. by (Hi,j), as above. However, here we
cannot use the result (6.2), since for most g-modules V, H1(g, V ) = V/δ0V �= 0. In
fact we get,

Ext1A−g(Vi, Vj) = Ext1A(Vi, Vj)
g ⊕H1(g, HomA(Vi, Vj))

Ext2A−g(Vi, Vj) = H1(g, Ext1A(Vi, Vj))
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This implies that

Ext1A−g(V1, Vj) = H1(g, HomA(V1, Vj)) = k for j=1,2,3.

Ext1A−g(V2(l), Vj) = Ext1A(V2, Vj)
g ⊕H1(g, HomA(V2, Vj))

= k ⊕ 0 for j=1

= k ⊕ k for Vj = V2(l)

= 0 ⊕ 0 for Vj = V2(l
′) l �= l′

= 0 ⊕ k for j=3

Ext1A−g(V3, Vj) = Ext1A(V3, Vj)
g ⊕H1(g, HomA(V3, Vj))

= 0 ⊕ 0 for j=1

= 0 ⊕ 0 for j=2

= 0 ⊕ k for j=3

Ext2A−g(Vi, Vj) = H1(g, Ext1A(Vi, Vj))

= 0 for i=1, j=1,2,3.

= k for i=2, j=1

= k forVi = V2(l), Vj = V2(l)

= 0 for Vi = V2(l), Vj = V2(l
′), l �= l′

= k for i=3, j=3.

It follows that Spec(A)/g is given by the rather complicated looking k-algebra,
generated by,  k[[t1]] t1,2(l) t1,3(l)

u2,1(l) k[[t2(l), u2(l)]] t2,3(l)
0 0 k[[t3]]


with some relations.

The moduli space of simple singularities, the A2 case. We shall consider the
Weierstrass family F := F (t0, t1, x, y) = x3 − y2 + t1x+ t0, parametrized by the k-
algebra A := k[t0, t1], and the corresponding Kodaira-Spencer kernel g ⊆ Derk(A)
see [La-Pf], generated by,

δ0 = 3t0
∂

∂t0
+ 2t1

∂

∂t1

δ1 = 2t21
∂

∂t0
− 9t0

∂

∂t1

We claim that the moduli space consisting of the three singularities in the family F,
is given as the quotient space Spec(A)/g. We must therfore consider the diagram
Simp(A − g), consisting of the 3 A − g-modules,V1 = k[t0, t1], V2 = k[t0, t1]/(∆),
where ∆ = 27t20 + 4t31 is the discriminant of F, and finally V3 = k coresponding to
the origin.

As above we find that

π = H0(g,−) : A− g−mod −→ k −mod
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defines three points,

π(V1) = k, π(V2) = k, π(V3) = k

with no incidences. Since it is easy to see that

H2(g, HomA(Vi, Vj)) = 0

we find,

Ext1A−g(Vi, Vj) = H0(g, Ext1A(Vi, Vj)) ⊕H1(g, HomA(Vi, Vj))

which implies,

Ext1A−g(V1, Vj) = H1(g, HomA(V1, Vj)) = k for j=1,2,3.

Ext1A−g(V2, Vj) = H0(g, Ext1A(V2, Vj)) ⊕H1(g, HomA(V2, Vj))

= 0 ⊕ 0 for j=1

= 0 ⊕ k for j = 2

= 0 ⊕ k for j=3

Ext1A−g(V3, Vj) = Ext1A(V3, Vj)
g ⊕H1(g, HomA(V3, Vj))

= 0 ⊕ 0 for j=1

= 0 ⊕ 0 for j=2

= 0 ⊕ k for j=3.

Moreover,

Ext2A−g(Vi, Vj) ⊆ H0(g, Ext2A(Vi, Vj)) ⊕H1(g, Ext1A(Vi, Vj))

= 0 for all i,j=1,2,3.

The moduli space is therefore given by the k-algebra (freely generated by),

O(Simp(A− g), π) =

 k[[t1,1]] t1,2 t1,3
0 k[[t2,2]] t2,3
0 0 k[[t3,3]]


which has a reduced quotient, given by the matrices of the form, k kt1,2 kt1,3 ⊕ kt1,2t2,3

0 k kt2,3
0 0 k


which is the k-algebra of the non-commuting adjacency diagram corresponding to
the Weierstrass family, see [La-Pf],

t2,3 : cusp → node

t1,2 : node → ellipt

t1,2t2,3 : cusp −→ ellipt

t1,3 : cusp → ellipt
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Notice that g is a rank 2 A-module, such that we may expect to find exact
sequences of A− g-modules,

0 −→ A −→ g −→ A −→ 0

0 −→ A/(∆) −→ g⊗A A/(∆) −→ A/(∆) −→ 0

0 −→ A/(t0, t1) −→ g⊗A k(o) −→ A/(t0, t1) −→ 0

explaining the diagonal tangent structure of the moduli space, k[[t1,1]] t1,2 t1,3
0 k[[t2,2]] t2,3
0 0 k[[t3,3]]

 .

The reduced moduli is, however, given by,

Ored(Simp(A− g), π) =

 k 0 0
0 k 0
0 0 k

 ,

i.e. the obvious 3-point space.

The moduli of endomorphisms. The dimension 2 case. We shall compute the
(noncommutative) space of invariants

Endk(k
n)/Gln(k)

for k = C and n=2. (For n ≥ 3 see a forthcoming paper by Arvid Siqveland [Siq
2]). Refering to §4. it suffices to compute the noncommutative formal moduli for
the longest chain of infinitesimal incidences, i.e. the family of formal Jordan forms.
Let

A = OEndk(k2)(Endk(k
2))

then

A = k[x1,1, x1,2, x2,1, x2,2]

The group G := Gl2(k) acts on Endk(k
2) by conjugation, and there are two Jordan

formes of interest, (
λ 0
0 λ

)
and (

λ 1
0 λ

)
corresponding to orbits V2 of dimension 0 and V1 of dimension 2, respectively, in
Endk(k

2). According to §3, since

H0(G,Vi) = k, i = 1, 2
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we should expect Endk(k
2)/Gl2(k) to be an algebraization of the formal moduli of

the family of A-G-modules {Vi}i=1.2, i.e.

H := H({Vi}i=1.2)

The orbits, as A-modules, are given by:

V1 = k[xi.j ]/(s1 − 2λ, s2 − λ2)

V2 = k[xi.j ]/(x1,1 − λ, x1,2, x2,1, x2,2 − λ).

Now it is clear that we may assume λ = 0. We find A-free resolutions,

V1 A A2 A 0

V1 A A2 A 0

V2 A A4 A6 A4

V2 A A4 A6 A4.

oo (s1,s2)oo

ψ(2)1����
��
��ψ(1)1

����
��
��

�
s2

−s1

�
oo

ψ(2)2����
��
��ψ(1)2

����
��
��

oo

oo oo

ψ1,2(2)1����
��
��ψ1,2(1)1

����
��
��

oo

ψ1,2(2)2����
��
��ψ1,2(1)2

����
��
��

oo

oo
ρ

oo

ψ1

����
��
��

d1

oo

ψ2

����
��
��

oo

oo
ρ

oo
d1

oo oo

Here,

ψ(1)1 = (1, 0)

ψ(2)1 = (0, 1)

ψ(1)2 =

(
0
1

)
ψ(2)2 =

(
−1
0

)
ψ(1,2)(1)1 = (1, 0)

ψ(1,2)(2)1 = (0, 1)

ψ(1,2)(1)2 =


x2,2

−x2,1

0
0



ψ(1,2)(2)2 =


−1
0
0
−1
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and

ρ = (x1,1 x1,2 x2,1 x2,2 )

d1 =


x1,2 x2,1 x2,2 0 0 0
−x1,1 0 0 x2,1 x2,2 0

0 −x1,1 0 −x1,2 0 x2,2

0 0 −x1,1 0 −x1,2 −x2,1


ψ1 = ( 1 0 0 1 )

ψ2 =


0 0 −1 0 0 0
1 0 0 0 −1 0
0 1 0 0 0 −1
0 0 1 0 0 0


From this diagram we easily compute Ext1A(Vi, Vj), and since G is reductive,

also Ext1A−G(Vi, Vj) = Ext1A(Vi, Vj)
G. We obtain,

Ext1A−G(Vi, Vj) =


= k2 for i = 1

= k for i = j = 2

= 0 for i = 2, j = 1

which means that the tangent space of H is given by,(
k2 k2

0 k1

)
.

Now,

Ext2A−G(V1, V1) = k · η1,1

Ext2A−G(V1, V2) = k · η1,2

and we compute the cup products and the Massey products of the basis elements
of the Ext1A−G(Vi, Vj) = Ext1A(Vi, Vj)

G,

s∗1 ∪ s∗2 = −s∗2 ∪ s∗1 = η1,1, s
∗ ∪ s∗ = 0

t∗1 ∪ s∗ = 0, t∗2 ∪ s∗ = −2 · η1,2,

s∗1 ∪ t∗1 = 0, s∗1 ∪ t∗2 = η1,2, s
∗
2 ∪ t∗1 = −η1,2, s

∗
2 ∪ t∗2 = 0

< t∗1, s
∗, s∗ >= η1,2, < s∗1, t

∗
1, s

∗ >= 0.,

This proves that in H there are relations of the form,

(rel) s1s2 = s2s1, t1s
2 − 2 · t2s + s1t2 − s2t1 = 0

It follows that,

H({Vi}) =

(
k[[s1, s2]] < t1, t2 >

0 k[[s]]

)
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subject to the relation t1s
2 − s2t1 − 2 · t2s + s1t2 = 0. From this it is clear that,

Endk(k
2)/Gl2(k) = H̃({Vi}) =

(
k[s1, s2] < t1, t2 >

0 k[s]

)
subject to the relation t1s

2 − s2t1 − 2 · t2s + s1t2 = 0 in the upper right corner,
H1,2 = k[s1, s2] < t1, t2 > k[s].

The k-points of Endk(k
2)/Gl2(k) are therefore stratified into two strata, a plane

parametrized by (s1, s2), corresponding to the semi-simple orbits, and to the (max-
imal dimensional) orbits given by the Jordan form,(

λ 1
0 λ

)
,

and a line parametrized by (s), corresponding to the orbits of dimension 0, i.e. to
the Jordan forms, (

s 0
0 s

)
.

There are two tangents from a point (s1, s2) in the plane to the point s on the line
if and only if he relation above is trivial, i.e. iff s1 = 2s and s2 = s2 = 0.

The versal family, Ṽ, i.e. the action of A on Ṽ = H ⊗ V. This is easily done by
using the k-linear and Gl(2)-invariant section of the morphism A → V1 = A/(s1, s2),
see §5, induced by fixing a k-basis ,

{xn0
1,1x

n1
1,2x

n2
2,1 =: xn0

1,1v0}0≤n0≤1,0≤n1,n2

for V1, mapping, multiplicatively, x1,1 to 1/2(x1,1 − x2,2), and xi,j , i �= j to xi,j .
We obtain,

Ṽ = (H({Vi})i,j ⊗ Vj) =

(
k[s1, s2] ⊗ V1 < t1, t2 > ⊗V2

0 k[s] ⊗ V2

)
where V2 = k, subject to the relation in H1,2 = k[s1, s2] < t1, t2 > k[s],

t1s
2 − s2t1 − 2 · t2s + s1t2 = 0,

with the k[xi,j ]-action given by,(
1 ⊗ v1 0

0 1 ⊗ v2

)
xi,j =

(
1 ⊗ v1xi,j 0

0 0

)
if i �= j, and,(

1 ⊗ v0 0
0 1 ⊗ v2

)
x1,1 =

(
1 ⊗ v0x1,1 − 1/2s1 ⊗ v0 −1/2t1 ⊗ v′0

0 −s⊗ v2

)
(

1 ⊗ v0 0
0 1 ⊗ v2

)
x2,2 =

(
−1 ⊗ v0x1,1 − 1/2s1 ⊗ v0 −1/2t1 ⊗ v′0

0 −s⊗ v2

)
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Moreover, the first row of the matrix multiplied with xi,i, for v1 = v0x1,1, looks
like, for i = 1;

−1⊗v0x1,2x2,1−1/2s1⊗v0x1,1+s2⊗v0+t2⊗v′0−1/2t1s⊗v′0−(s/2)2/(1−(s/2))t1⊗v′0,

and for i = 2,

1⊗v0x1,2x2,1−1/2s1⊗v0x1,1−s2⊗v0−t2⊗v′0+1/2t1s⊗v′0+(s/2)2/(1−(s/2))t1⊗v′0,

where v′0 is the image in V2 of v0 ∈ V1.

An example of Tord Romstad. : Let A = k[x, y] and let the A-module V =
A/(x− 2y). Let the group G = Z/(2) be generated by τ , and let G act on A as,

τ(x) = x, τ(y) = x− y.

When char(k) �= 2, it is easy to show that,

Ext1A(G)(V, V ) = k, Ext2A(G)(V, V ) = 0.

When char(k) = 2, a more complicate calculation shows that,

Ext1A(G)(V, V ) = k2, Ext2A(G)(V, V ) = k2.

Computing the cup and third-order Massey products one shows that,

HA(G)(V ) = k{{t1, t2}}/(t22, t21t2 + t2t
2
1),

which should be compared with the introduction to §6, and to (6.3), see also [Rom-
stad].
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