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Accented speech recognition is more challenging than standard speech recognition due to the effects
of phonetic and acoustic confusions. Phonetic confusion in accented speech occurs when an
expected phone is pronounced as a different one, which leads to erroneous recognition. Acoustic
confusion occurs when the pronounced phone is found to lie acoustically between two baseform
models and can be equally recognized as either one. We propose that it is necessary to analyze and
model these confusions separately in order to improve accented speech recognition without
degrading standard speech recognition. Since low phonetic confusion units in accented speech do
not give rise to automatic speech recognition errors, we focus on analyzing and reducing phonetic
and acoustic confusability under high phonetic confusion conditions. We propose using likelihood
ratio test to measure phonetic confusion, and asymmetric acoustic distance to measure acoustic
confusion. Only accent-specific phonetic units with low acoustic confusion are used in an
augmented pronunciation dictionary, while phonetic units with high acoustic confusion are
reconstructed using decision tree merging. Experimental results show that our approach is effective
and superior to methods modeling phonetic confusion or acoustic confusion alone in accented
speech, with a significant 5.7% absolute WER reduction, without degrading standard speech
recognition. © 2005 Acoustical Society of America. �DOI: 10.1121/1.2035588�
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I. INTRODUCTION

Most state-of-the-art automatic speech recognition
�ASR� systems fail to perform well when the speaker has a
regional accent different from that of the standard language
the systems were trained on. The high error rate is largely
due to the effects of phonetic confusions and acoustic con-
fusions in accented speech. Previous studies on accented
speech recognition investigated in detail the effect of pho-
netic confusions �Liu et al., 2000; Tomokiyo, 2001� or
acoustic confusions �Huang et al., 2000�. However, the dis-
tinction and correlation between phonetic and acoustic con-
fusions, in particular how to model their different roles for
better ASR performance, are less clear. We suggest that it is
essential to distinguish phonetic and acoustic confusions, as
well as understand their relationship and roles in accented
speech in order to achieve better recognition performance.

Phonetic confusions in accented speech are caused by
the speaker pronouncing an expected phone in a different
way �for example, when /zh/ is pronounced as /z/�. A phone
is the fundamental sound category that is represented by a
particular group of articulatory features found in languages
�Stevens, 1998�. In the speech production process, a speaker
first retrieves the canonical pronunciation of the word from
his/her mental lexicon in terms of phoneme sequence �i.e.,
baseform�, and then forms the articulatory shape of the pro-
nunciation in terms of phones �i.e., surface form�. Due to the
effect of different accents and pronunciation habits, the sur-
face form production can be different from that of the base-

a�
Electronic mail: pascale@ee.ust.hk

J. Acoust. Soc. Am. 118 �5�, November 2005 0001-4966/2005/118�5
form. From this point of view, phonetic confusion can be
regarded as the probabilistic transformation from a baseform
unit to a surface form unit. In speech recognition, it is the
erroneous recognition of a baseform phone into a different
surface form phone.

On the other hand, acoustic confusion arises when the
accented speech is found to lie acoustically somewhere be-
tween two baseform phones and can be equally recognized
as either �for example, when it is in between /zh/ and /z/�.
Acoustic confusion can also come from data and recognizer-
related confusions �Strik and Cucchiarini, 1999; Fung et al.,
2000�, in addition to pronunciation variation.

In this paper, we focus on accent-specific phonetic and
acoustic confusions. Phonetic and acoustic confusions are
common and amorphous in accented speech, which degrade
the recognition performance if they are not well accounted
for.

A common approach to reduce phonetic confusion in
ASR is by extending the phone set and generating a dictio-
nary with multiple pronunciations �Bacchiani and Ostendorf,
1998; Chen et al., 2002, Li et al., 2000�. In this approach,
phonetic set is extended to include more surface form vari-
ants by either using hand-defined symbols based on phono-
logical knowledge �Li et al., 2000� or by using data-driven
methods �Bacchiani and Ostendorf, 1998; Chen et al., 2002�.
For example, Li et al. �2000� used pre-defined SAMPA-C
symbols to differentiate Wu accented Mandarin pronuncia-
tions for spontaneous speech annotation. Chen et al. �2002�
applied the chi-square test to design additional phonetic units
for phonetic confusions with short duration. Bacchiani and

Ostendorf �1998� proposed a data-driven method to generate
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acoustic subword unit �ASU� to capture phonetic confusions.
Jurafsky et al. �2001� showed that triphones are a good
phone set for modeling multiple pronunciations.

Moreover, augmenting the pronunciation dictionary by
pronunciation variations typically found in accented speech
provides more hypotheses in the decoder search space which
sometimes leads to better recognition results. Huang et al.
�2000� and Liu et al. �2000� established accent-related pro-
nunciation dictionaries, where the alternatives in the dictio-
naries are learned from accented speech data. Liu and Fung
�1999� generated accent-adapted dictionary using some
supra-segmental information to model the phonetic confu-
sions in Cantonese-accented English.

To model acoustic confusions, especially those in ac-
cented speech, a commonly adopted method is to modify the
acoustic parameters to cover accent variations. For example,
retraining acoustic models using a large amount of accented
speech data �Huang, et al., 2000, Liu et al., 2000�, applying
maximum a posteriori �MAP� or maximum log likelihood
ratio �MLLR� on speaker-independent models to adapt to the
acoustic characteristics of a particular accent �Young, 1999;
Tomokiyo, 2001�. Juang and Katagiri �1992�, Chou et al.
�1992� and Katagiri et al. �1998� proposed a discriminative
training approach that uses the local error information to re-
fine the acoustic model. Recently, Nakamura �2002� pro-
posed restructuring Gaussian mixture density functions with
Gaussian mixture sharing to restore local modeling mismatch
within the confused acoustic models.

However, it is not sufficient to either model phonetic
confusion or acoustic confusion exclusively as in the above-
mentioned methods, when phonetic and acoustic confusions
are correlated but different.

Simply using extended phonetic units is insufficient in
reducing a lot of phonetic confusions which also include
acoustic confusions. Even though an accent-specific dictio-
nary with multiple pronunciations provides a larger hypoth-
esis space to cover phonetic confusions, a larger search space
also leads to more lexical confusion if the underlying models
are acoustically confusable. In other words, the increase in
dictionary size can increase recognition errors if the under-
lying models already contain acoustic confusions. Mean-
while, the local error information used for discriminative
training to reduce acoustic confusions is based on recogni-
tion errors, which may be attributed to various recognizer
and data design configurations, not just because of accent. In
addition, retraining and using MAP or MLLR adaptation of
acoustic models lead to irreversible changes in acoustic pa-
rameters that are not suitable for native speech recognition.
This results in performance degradation in speaker-
independent systems.

In this paper, we propose methods to measure phonetic
and acoustic confusions and reduce them for optimal speech
recognition performance on accented speech without sacri-
ficing the performance on standard speech. The paper is or-
ganized as follows. In Sec. II, we analyze a special case of
Cantonese-accented Mandarin speech, which is used as our
test case. Section III outlines the distinction and correlation
between phonetic and acoustic confusions in accented

speech. Section IV describes the mechanism of reducing
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both the phonetic and acoustic confusions using accent-
specific units and acoustic model reconstruction. In Sec. V,
experiments on accented Mandarin telephony speech are pre-
sented. We summarize our work and present our conclusions
in Sec. VI.

II. CANTONESE ACCENT IN MANDARIN

Accent is a more serious problem for native Mandarin
speakers than for native speakers of most other languages. In
addition to the standard Chinese Mandarin �also known as
Putonghua� spoken by radio and TV announcers, there are
seven major language regions in China, including Guanhua,
Wu, Yue, Xiang, Kejia, Min, and Gan �Huang, 1987�. These
major languages can be further divided into more than 30
sub-categories of dialects. In addition to lexical, syntactic,
and colloquial differences, the phonetic pronunciations of the
same Chinese characters are quite different between Manda-
rin and the other Chinese languages. Only 70% of Chinese
speakers on Mainland China are native speakers of Guanhua,
the language group most related to Mandarin. Among these,
only a minority speak with the standard Mandarin accent.
Consequently, accent distribution among Mandarin speakers
can be as varied as that among European speakers of En-
glish. Cantonese is an important regional language and is
spoken by tens of millions of speakers in south China, Hong
Kong, and overseas. 60% of the pronunciations between
Cantonese and Mandarin are not even close to each other
�Huang, 1987�. In this section, we focus on the phonetic and
acoustic analysis of Cantonese and Mandarin, especially on
the pronunciation differences of their subword units, to high-
light the phonological differences between the two lan-
guages. Cantonese-accented Mandarin is used as the test case
for our work in this paper.

In Chinese ASR systems, initial and final units are con-
ventionally used as subword units instead of phonemic units.
One initial corresponds to one phoneme, while one final may
consist of one or several phonemes. Without taking into ac-
count tonal differences, there are 21 initials and 37 finals for
Mandarin, compared to 19 initials and 53 finals in Cantonese
�Lee et al., 2002�. Initials in both Mandarin and Cantonese
consist of a single consonant. However, the initial invento-
ries for these two languages are different. In contrast to Man-
darin initials, Cantonese initials do not have retroflexed af-
fricatives �e.g., /zh/, /ch/, /sh/, and /r/�, but include one
additional velar nasal /ng/. Table I gives an example of a
comparison between Mandarin and Cantonese initials with
respect to the place and method of articulation. The structure
of Cantonese finals is more complicated than that of Manda-
rin. Cantonese finals have six different consonant codas �/m/,
/n/, /ng/, /k/, /p/, and /t/� in contrast to the two codas /n/ and
/ng/ in Mandarin finals. Cantonese finals have five catego-
ries: vowel, diphthong, vowel with nasal coda, vowel with
stop coda and syllabic coda. On the other hand, Mandarin
finals were comprised of a vowel or diphthong nucleus pre-
ceded by an optimal medial and followed by an optimal na-
sal.

Consequently, native Cantonese speakers often have dif-

ficulty pronouncing many basic Mandarin initials and finals.
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They use some of the typical strategies of language learners
to compensate for such difficulties, including phonological
transfer, overgeneralization, prefabrication, epenthesis, etc.
For example, the pronunciation of the retroflexed affricative
/zh/ is sometimes similar to that of the dental velar /z/ among
Cantonese speakers. Since there is no /zh/ in the Cantonese
initial set, the speaker naturally moves this pronunciation to
the most similar initial unit /z/ from the Cantonese initial set.
On the other hand, such pronunciation is distinct from the
canonical pronunciation of /z/ since the speaker needs to dis-
tinguish the pronunciation between /zh/ and /z/. Sometimes,
this intention to distinguish leads the Cantonese speaker to
pronounce /zh/ as /j/. Since the speaker is trying to say /zh/
and not /z/ or /j/, the phonological transfers of “zh→z” and
“zh→ j” lead to confusable pronunciations which are corre-

TABLE I. Mandarin initials vs Cantonese initials.

Manner of
articulation

Place of
articulation

Mandarin
initials

4 Plosive Labial b
Alveolar d
Velar g

Aspirated plosive Labial p
Alveolar t
Velar k

Affricates Alveolar z
Retroflex zh
Dorsal j

Aspirated affricates Alveolar c
Retroflex ch
Dorsal q

Nasals Labial m
Alveolar n

Fricatives Labiodental f
Alveolar s
Retroflex sh

r
Dorsal x
Velar h

Laterals Alveolar l

Plosive Labial b
Alveolar d
Velar g

Aspirated plosive Labial p
Alveolar t
Velar k

Plosive, lip-rounded Velar, labial gw
Aspirated plosive, lip- rounded Velar, labial kw
Nasals Labial m

Alveolar n
Velar ng

Liquid Lateral l
Affricate, unaspirated Alveolar z
Affricate, aspirated Alveolar c
Fricative Alveolar s

Dental-labial f
Vocal h

Glide Alveolar j
Labial w
lated with yet different from the canonical pronunciations of
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/z/ and /j/. Moreover, this type of change is unidirectional in
accented speech, i.e., there are no “z→zh” or “j→zh” trans-
fers. The degree and tendency of confusions between “zh
→z” and “z→zh”, and between “zh→ j” and “j→zh” are
quite different.

III. PHONETIC CONFUSION VERSUS ACOUSTIC
CONFUSION

A. Phonetic confusions and acoustic confusions are
different yet correlated

There are different types of phonetic and acoustic con-
fusions in speech recognition systems. While some phonetic
and acoustic confusion are correlated with each other, others
are not, and whereas some are caused by accented speech,
others are due to inadequacies and idiosyncrasies in the de-
sign and implementation of the recognizer or the training
data. In this paper, we focus on analyzing and reducing pho-
netic and acoustic confusion caused by accented speech.

Phonetic confusion is a property of relating phone in-
stances to acoustic models whereas acoustic confusion is a
property of acoustic models. In accented speech, phonetic
confusion is caused by the pronunciation of an expected
phone into a different one whereas acoustic confusion arises
from a pronounced phone lying between two standard
phones acoustically �Liu and Fung, 2003a; Tsai and Lee,
2003�. For a speech recognizer trained on standard speech,
phonetic confusion is then the erroneous recognition of a
phonetic unit in the accented speech into another phonetic
unit in the standard speech. It can be regarded as the prob-
ability of the transformation from a baseform unit to a sur-
face form unit. Acoustic confusion, on the other hand, is at a
more fundamental level and describes the distance between
the phonetic unit in accented speech and phonetic units rep-
resented by two baseform models, in terms of acoustic prop-
erties.

Phonetic and acoustic confusions are different yet corre-
lated in the speech recognition task. If the acoustic models of
two phonetic units are close to each other �i.e., not easily
separable�, then these models have low discriminative ability
and will cause phonetic confusions in the final recognition
task, irregardless of whether the input speech is accented or
not. However, even if the trained acoustic models have good
separability, accented speech might produce a phone that lies
somewhere between two models and again cause acoustic
confusion, resulting in phonetic confusion. In other cases, the
accented speech might produce one phone that is clearly
close to another, different phone in the standard speech. This
causes phonetic confusion, even though there is no acoustic
confusion between models.

We use Fig. 1 to illustrate the distinction and correlation
between the phonetic confusion and the acoustic confusion.
Suppose “A” is a phonetic unit and “B” is another phonetic
unit that is often confused with “A.” Acoustic models for
“A” and “B” consist of a single Gaussian component,
GA��A,�A� and GB��B,�B�, respectively, where � and � are
the mean and the variance. The phonetic confusion between
units “A” and “B” are measured using P�B �A� which is

computed using occurrence frequencies �Byrne et al., 2001;
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Liu and Fung, 2003a; Chen et al., 2002�. The more “A”
maps to “B,” the higher the phonetic confusion. On the other
hand, the acoustic confusion is measured using the acoustic
distance between models “A”; and “B”, i.e., the distance be-
tween the Gaussian components. This distance is computed
using Gaussian distance measure �Li and King, 1999; Liu
and Huang, 2000�. In this case, the more model “A” overlaps
with model “B” �the shaded area in Fig. 1�, the higher the
acoustic confusion between “A” and “B.” Obviously, pho-
netic and acoustic confusions are measured differently.

Suppose the acoustic samples for phone A and phone B
are XA and XB, respectively, in the accented speech. If the
acoustic sample is located in the shaded area, it can be as-
signed to either P�B �XA� or P�A �XB�, causing phonetic con-
fusions. Conversely, acoustic confusion is caused by a large
overlap between “A” and “B,” causing the misclassification
of P�XA �B� and P�XB �A�.

Even if model A and model B do not have any overlap,
XA can still be recognized as phone B, if the accented speech
differs from standard speech. In this case, there is phonetic
confusion without acoustic confusion.

We wish to point out that there are other conditions that
lead to phonetic confusions, even if the input speech has no
accent: �1� models “A” and “B” are confusable even in stan-
dard speech. This corresponds to the underlying acoustic
confusions �e.g., /b/ and /d/, /in/ and /ing/ in Mandarin
speech�. Representing this condition in Fig. 1 is the large
shaded area, and the high overlap ratio. Hence, even if the
speaker accurately pronounces “A” or “B,” chances for mis-
matched outputs still exist; �2� models are poorly trained
because of biased data or incorrect phonetic transcriptions
due to transcriber disagreement.

Assuming the above two factors are held constant, i.e.,
we use the same set of training data and transcriptions and
the same training methods for an ASR system, we are inter-
ested in studying how best to reduce phonetic and acoustic
confusions due to the accent effect.

B. Measuring phonetic and acoustic confusions

1. Measuring phonetic confusions

Phonetic confusions are measured in terms of the distri-

FIG. 1. An example of phonetic and acoustic confusions. C0 is one dimen-
sion of the mean and P�C0� is the relevant output distribution.
bution of the mapping between surface form and baseform
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phones. Due to the effect of accented speech, the baseform
�standard speech� and surface form �accented speech� se-
quences of a word differ. For example, the word �China� has
the standard pronunciation represented by the baseform se-
quence “zh ong g uo.” Cantonese-accented Mandarin speech
might produce different surface form representations such as
“z ong g uo”, “ch ong g uo” or “j ong g uo.”

Aligning the baseform and surface form representations
and counting the mapped phone pairs is an obvious way to
estimate phonetic confusion distribution. However, as we
mentioned in Sec. III A, this type of confusion can be caused
by accent as well as the recognizer or training data design
and implementation. As we need to focus on phonetic con-
fusion caused by accent effect, it is necessary to impose a
confidence measure on the phonetic confusion pairs. Intu-
itively, if a particular phone A in input speech is often mis-
recognized as phones B, C, D, etc., then we reason that the
phone model A in the ASR system is unreliable either due to
training data bias or recognizer design. Similarly, if we find
multiple phones being misrecognized as B, then we have
reason to believe that the phone model B is unreliable. How-
ever, if A and only A is consistently misrecognized as B, then
we suspect that there is a phonetic shift from B to A in the
accented speech. Of course, there might be additional acous-
tic confusion between A and B as well, which can then be
measured using another measure described in the next sec-
tion.

We use likelihood ratio test as a confidence measure to
evaluate the phonetic confusions. We use dynamic program-
ming to align the phone sequences in the accented speech
with standard baseform phone transcriptions. For a baseform
phone b which is misrecognized as s, we count the occur-
rences of b ,s, and b_s in the aligned data, which are c1 , c2,
and c12, respectively. We have the likelihoods:

p =
c2

N
, p1 =

c12

c1
, p2 =

c2 − c12

N − c1
, �1�

where N is the total number of the phonetic units in the
training set. The log of the likelihood ratio � is then defined
as follows:

log � = log L�c12,c1,p� + log L�c2 − c12,N − c1,p�

− log L�c12,c1,p1� + log L�c2 − c12,N − c1,p2� ,

�2�

where L�k ,n ,x�=xk�1−x�n−k is a binomial distribution. In
general, we use −2 log � instead of � in practice �Manning
and Schütze, 1999�. The phonetic confusion distribution is
then described as

Dph�b,s� =
C

− 2 log �
�3�

where C is a constant estimated from data. Equation �1�
shows that the likelihood of phonetic confusion depends not
only on the occurrence frequency of b_s but also on the
occurrence frequencies of b and s. Thus, we can distinguish
between whether the models b and s are simply badly trained
or there is indeed a phonetic shift from b to s. Moreover,

since c12 differs from c21 �e.g., the occurrence number of
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/zh/-� /z/ is different from that of /z / -� / zh/�, this pho-
netic confusion distribution is asymmetric and unidirec-
tional, in accordance with phonological knowledge about
accented speech.

2. Measuring acoustic confusions

The degree of acoustic confusions can be measured by
the dissimilarity or distance between two speech vectors, be-
tween a speech vector and a speech model, and between two
speech models. For accented speech, we are interested in
measuring the statistical dissimilarity between that of the ac-
cented speech model and the standard speech model. Com-
mon distance measures include Euclidian distance, Mahal-
anobis distance, Kullback-Leibler distance, etc. �Hwang,
1993; Liu and Huang, 2000�. These measures assume that
the distance between two vectors or models is symmetric,
i.e., the acoustic distance from model “A” to model “B” is
equal to that of from model “B” to model “A.” However, it is
well known that acoustic confusions in accented speech are
asymmetric and unidirectional1 �Liu and Fung, 2003a, Tsai
and Lee, 2003�. For speech recognition tasks, we need an
asymmetric distance measure between continuous hidden
Markov models �CHMM� with variable, multiple Gaussian
components.

Tsai and Lee �2003� proposed an asymmetric acoustic
distance measure that uses an asymmetric form of Mahalano-
bis distance, which is the averaged distance over all M mix-
tures and over all N states of two HMMs:

Dac��i,� j� = �
s=1

N

�
mi,s=1

M

wmi,s �
mj,s=1

M

wmj,s
d�gmi,s

,gmj,s
� .

However, the above distance measure simplifies mul-
tiple mixtures into one mixture before obtaining the average
distance. This averaged distance sometimes does not corre-
spond to true model distance as had been pointed out in
previous research �Liu and Huang, 2000�. Instead, we start
from the method of parametric distance metric for mixture
probability distribution function �PDF� described in �Liu and
Huang, 2000�, and propose an asymmetric acoustic distance
measure for CHMM with multiple states and variable, mul-
tiple Gaussian components using a weight matrix. Suppose
�i and � j are two different CHMM phonetic models which
consist of N states. Each individual state is represented by a
PDF representing multiple Gaussian components. Consider
two different states sin and sjn of model �i and model � j,

sin = �
k=1

K

win,kgin,k��k,�k�

and

sjn = �
l=1

L

wjn,lgjn,l��l,�l� , �4�

where win,k and wjn,l correspond to the mixture weights of the
kth and lth Gaussian components which satisfy �k=1

K win,k

=1 and �l=1
L wjn,l=1. According to the parametric distance
metric for PDF, the distance D�sin ,sjn� is defined as
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D�sin,sjn� = min
W=�wkl�

�
k=1

K

�
l=1

L

wkld�gin,k,gjn,l� , �5�

where W= �wkl� is a weight matrix to be estimated by using a
linear programming procedure, such as the Simlex tableau
method �Cover and Thomas, 1991�. d�gin,k ,gjn,l� is an ele-
ment distance between two single Gaussian components. In
order to consider the asymmetric property of acoustic confu-
sions in accented speech, we use the asymmetric form of
Mahalanobis distance:

d�gin,k,gjn,l� = ��k − �l�T�2
−1��k − �l� .

The weight matrix W= �wkl� is determined under the con-
straints shown in Eq. �6�:

wkl � 0

�
k=1

K

wkl = wjn,l 1 � k � K ,

�
l=1

L

wkl = win,k 1 � l � L , �6�

�
k=1

K

win,k = 1,

�
l=1

L

wjn,l = 1.

The overall distance D�sin ,sjn� is then determined ac-
cording to the weight matrix W= �wkl� and element distance
between each Gaussian component, as described in Fig. 2.

Finally, the overall distance between model �i and
model � j is calculated as a sum of each individual state dis-
tances:

D��i,� j� = �
n=1

N

D�sin,sjn� . �7�

In this paper, we assume state alignment between two

FIG. 2. Asymmetric distance measure for CHMM with multiple states and
multiple Gaussian components.
HMMs since the baseform and surface form models in ac-
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cented speech have the same number of states. Equation �7�
could be replaced by frame-to-state alignment if the models
have different state numbers �Liu and Fung, 2001�. Our pro-
posed asymmetric acoustic distance measure is both compu-
tationally efficient and linguistically motivated. Owing to the
different mixture weight matrices W= �wkl� and W= �wlk�, as
well as the asymmetric element distance, the distance
D�sin ,sjn� is distinguished from D�sjn ,sin�. Hence, our acous-
tic distance measure captures the fact that the acoustic con-
fusion is asymmetric and unidirectional in accented speech.

Given the above-noted quantitative measures of acoustic
and phonetic confusions, we can describe different classes of
confusion in accented speech.

C. Combinations of phonetic and acoustic
confusions in accented speech

There are four combinations of acoustic and phonetic
confusions in speech recognition systems: �1� phonetic con-
fusions and acoustic confusions are both low; �2� phonetic
confusion is low and acoustic confusion is high; �3� phonetic
confusion is high and acoustic confusion is low; and �4�
phonetic confusions and acoustic confusions are both high.

Ideally, the subword units �e.g., phonemes and phones or
initials/finals in Mandarin speech� used in ASR systems
should be modeled and trained so that phonetic and acoustic
confusions are both low for good discriminative-ness. Con-
dition �1� is therefore desirable for ASR systems.

Condition �2� in which phonetic confusion is low but
acoustic confusion is high is relatively rare. It happens when
two phoneme models are acoustically confusable �i.e., with
overlapping acoustic characteristics such as between /l/ and
/n/�, but accented speaker tends to distinguish the two phones
very clearly, even more so than standard speakers �for ex-
ample, Cantonese speakers never pronounce /l/ close to /n/�.
This type of confusion exists when native models are acous-
tically confusable �e.g., “l” and “n” in Mandarin� whereas
accented speakers, by overcompensation, can separate the
two pronunciations better than native speakers in their pro-
nunciation �e.g., Cantonese speakers of Mandarin� �Huang,
1987�. Under condition �2�, accented speech does not ad-
versely affect speech recognition performance. Example
phone pairs in condition �2� for Cantonese-accented Manda-
rin are shown in the following:

1. n→ l, 2. d→p, 3. h→k, 4. ei→en,
5. ei→ui, 6. ang→ iang, 7. c→z, 8. k→g.

Condition �3� under which phonetic confusion is high
and acoustic confusion is low indicates that phonetic confu-
sion in this case is not caused by acoustic confusion, since
acoustic models under this condition have good discrimina-
tive abilities. Accent is a predominant factor leading to pho-
netic confusion in this case. For instance, acoustic confusion
between models /f/ and /x/ is low since there is little over-
lapping acoustic characteristic between standard Mandarin
models of these two sounds. On the other hand, there is high
phonetic confusion between /f/ and /x/ in Cantonese-

accented Mandarin speech. In Cantonese-accented Mandarin
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speech, we have detected the following phone pairs that have
high phonetic confusion but low acoustic confusions:

1. ai→uai, 2. h→u, 3. ao→ou, 4. t→sh,
5. en→ iang, 6. sh→r, 7. d→zh, 8. x→ t,
9. j→d, 10. h→q, 11. d→z, 12. ia→e,
13. d→n, 14. x→ t, 15. f →sh, 16. n→sil,
17. d→m, 18. j→b, 19. f →z, 20. e→uo,
21. l→d, 22. x→ i.

Under condition �4�, phonetic and acoustic confusions
are both high. If most of the phonetic units are phonetically
and acoustically confusable, then perhaps the unit inventory
is not well defined and/or the acoustic models are not well
trained. The acoustic models do not have good separability
and ASR performance will suffer greatly. Another factor is
again accent. In most cases, the two factors co-exist. That is,
the acoustic models do not have good separability and the
accented speech differs from standard speech.

More important, accent effect is a key contributing fac-
tor to high acoustic and phonetic confusions. For example,
the articulatory features of the retroflexed affricative /zh/ are
similar to those of the dental velar /z/ for Cantonese-accented
speakers. Since there is no /zh/ sound in the native Cantonese
initial set, Cantonese speaker naturally shifts this pronuncia-
tion to the most similar initial unit /z/, found in native Can-
tonese phone set. However, the pronounced /zh/ by Can-
tonese speaker is not exactly /z/ either, but acoustically
somewhere in between /zh/ and /z/. This shift leads to pho-
netic confusion as well as acoustic confusion between /zh/
and /z/ in Cantonese-accented Mandarin speech. An analysis
of Cantonese-accented Mandarin speech data shows us that
this type of confusion is limited to a particular set of sub-
word units, such as the retroflexed affricatives to dental ve-
lars in Cantonese-accented Mandarin speech.

To illustrate the above, we plot the two-dimensional pro-
jection of the acoustic distribution of actual MFCC samples
of accented versus standard Mandarin for the baseform /zh/
in Fig. 3. We can see that while “zh-�z” and “zh-�zh”
share similar acoustic properties, “zh-� j” and “zh-� others”
are clearly different in terms of acoustic cluster shape and
centroid.

Note that while our visualization method cannot show
all of the parameters or variations of the original acoustic
�LDA compression of the features may cause the loss of
some variation information�, it has been found that if two
phenomena are dissimilar in two dimensions, they can only
be more dissimilar in the original feature space �Peters and
Stubley, 1998�. In other words, the characteristics of partial
changes in two dimensions are in accordance with their char-
acteristics in higher dimensions. Examples of phone pairs
which belong to condition �4� in Cantonese-accented Man-
darin speech are shown below:

1. ai→an, 2. c→ch, 3. c→ch, 4. ch→s,
5. d→ j, 6. f →h, 7. h→g, 8. in→ ing,
9. j→x, 10. j→zh, 11. m→ l, 12. q→x,
13. s→zh, 14. x→z, 15. zh→q, 16. zh→s.

Since accented speech only impacts ASR systems ad-

versely in conditions �3� and �4�, our task is to analyze and
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model accented speech with the objective of reducing pho-
netic and acoustic confusions under these conditions.

IV. REDUCING PHONETIC AND ACOUSTIC
CONFUSIONS FOR ACCENTED SPEECH
RECOGNITION

We studied four combinations of acoustic confusions
and phonetic confusions in speech recognition. The investi-
gation of these four combinations and the corresponding pro-
nunciation phenomena in accented speech shows that the

FIG. 3. Two dimensional MFCC samples of ac
J. Acoust. Soc. Am., Vol. 118, No. 5, November 2005 P. Fung and
phonetic and acoustic confusions should be considered dis-
tinctively to improve recognition performance in accented
speech recognition task. Figure. 4 gives examples of acoustic
and phonetic distances of Chinese initials in the accent-
specific units.

To model phonetic and acoustic confusions in accented
speech for the task of speech recognition, we propose the
following algorithm:

Modeling Phonetic and Acoustic Confusions in Accented
Speech:

d vs standard Mandarin for the baseform /zh/.

FIG. 4. Examples of normalized
acoustic and phonetic distances in
accent-specific units.
cente
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1. Identify phonetic confusion in the input speech by likeli-
hood ratio test to generate a set of units �P�;
1a. Identify accent-specific confusion pairs from �P� by

using dialectical pronunciation rules, and replace set
�P� by this new set �Paccent�.

2. Identify acoustic confusion from �Paccent� using asymmet-
ric acoustic distance measure, and form a set of units that
have high phonetic confusion but low acoustic confusion
�A_l� and another set of units with high phonetic confu-
sion as well as high acoustic confusion �A_h�;

3. For phonetic units in �A_l�, form a multiple pronunciation
dictionary with extended phone set;

4. For phonetic units in �A_h�, use acoustic model recon-
struction with decision-tree merging.

State-transition charts of the above-mentioned algorithms are
shown in Fig. 5.

In the following sections, we first explain how to clas-
sify phone units into those with high and low phonetic and
acoustic confusions in Sec. IV A. The algorithm for extend-
ing phone sets to form a multiple pronunciation dictionary
units with high phonetic confusion but low acoustic confu-
sion in �A_l� is described in Sec. IV B. The algorithm for
acoustic model reconstruction with decision-tree merging for
units with high phonetic and high acoustic confusion in
�A_h� is detailed in Sec. IV C.

A. Classifying phone units according to accent
effects

As we explained in Sec. III, only phonetic units with
high phonetic confusion can lead to recognition errors,
whether these confusions are caused by accented speech or
other factors. Therefore the first step in modeling accented

FIG. 5. State-transition charts of modeling phonetic and acoustic confusions
in accented speech.
speech is to find phonetic units with high phonetic confusion
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during recognition. An initial set of baseform to surface form
phone confusion pairs are found by dynamic programming
alignment between the baseform and surface form transcrip-
tions. The baseform transcription is a phoneme sequence cor-
responding to canonical pronunciations found in a standard
pronunciation dictionary. The surface form transcription is a
phone sequence with alternative pronunciation information,
which can be obtained either by hand-labeled transcription or
by a weighted finite-state transducer using a Classification
and Regression Tree. In this step, we implement a flexible
alignment tool that incorporates intersymbol comparison
costs. These costs are based on phonetic feature distance
between each pair of phone symbols, derived from linguistic
rules �Fung et al., 2000; Byrne et al., 2001; Sproat, 2001�.

Next, likelihood ratio test is applied to the DP-aligned
baseform-surface form phone pairs to form a set of phoneti-
cally confusable units. As a result, 353 units are selected
from the original 6573 initially found units. To help further
distinguish between phonetically confusable units that are
caused by accented speech from those caused by recognizer
or data related factors, we use some linguistic rules to select
a subset of the 353 units that are believed to be due to ac-
cented speech. For Cantonese-accented Mandarin, we apply
the following linguistic rules in Cantonese dialectical pro-
nunciations described in �Huang 1987�:

�1� High confusions within retroflexed affricatives �e.g.,
/zh/, /ch/, /sh/ and /r/�.

�2� High confusion between /f/ and /x/.
�3� One special velar nasal /ng/.
�4� Cantonese finals include /m/ coda.
�5� Pronunciation change in accented speech is unidirec-

tional �e.g., /zh/ moves to /z/ and /r/ moves to /l/ but not
vice versa�.

�6� No medial in Cantonese finals.

These rules enable us to select 79 accent-specific units from
the previous 353 pre-selected units for phonetic confusions.

These 79 phonetically confusable units are further di-
vided into two classes: those with high acoustic confusions
and the others with low acoustic confusions. The asymmetric
acoustic distance measure is used to divide the units into
high and low acoustic confusion pairs. 57 phone units are
found to have high phonetic and high acoustic confusions
whereas 27 phone units are found to have high phonetic but
low acoustic confusions.

Having classified accent-specific phonetic units accord-
ing to high and low acoustic confusions, we suggest select-
ing only phonetic units with low acoustic confusions to form
alternate pronunciations and add into a pronunciation dictio-
nary. For phone units with high acoustic confusions, we sug-
gest that incorporating them into a pronunciation dictionary
will further increase lexical confusions. Instead, we propose
using decision tree merging with acoustic model reconstruc-
tion for this class of phone units.

B. Modeling phone units with high phonetic
confusion and low acoustic confusion

When standard phonetic unit models are applied to ac-

cented speech recognition tasks, severe performance degra-
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dation is observed �Huang, et al., 2000�. The increased pho-
netic variability in accented speech means the acoustic
models of the defined units are not adequate for modeling
such variability within subword units. Hence, we need to
extend the original phonetic unit inventory to represent ac-
cented speech. The extended units are used to form alternate
pronunciations in a pronunciation dictionary to cover pho-
netic variations �Holter, 1997 Riley et al., 1999�. Special
attention must be paid to selecting units with low acoustic
confusions. Our resultant multiple-pronunciation dictionary
should cover only units with phonetic confusions but not
those with acoustic confusions.

Adding these pronunciations, the dictionary is aug-
mented and includes both standard initial/final units and
accent-specific units. Compared to conventional multiple
pronunciation dictionaries �Liu et al., 2000; Huang et al.,
2000�, our augmented dictionary uses selected units with low
or no acoustic confusion. In other words, the use of such
dictionary provides more chances for speech recognizer to
output correct sequences without increasing lexical confu-
sion. Moreover, pronunciation probabilities can be attached
to each entry of the dictionary. These associated probabilities
can be determined from training data using decision tree
based structure as follows: A decision tree is constructed to
predict the surface form of each reference phoneme by ask-
ing questions about its phonemic context. Each phoneme unit
has a separate decision tree in which a yes/no question is
attached to each node. These questions include information
about the phoneme stream itself �such as stress, position, and
the classes of neighboring phones�, or the past output of the
tree �including the identities of surface phones to the left of
the current phone�. From this, a probability distribution over
the set of surface phone�s� for any given context can be
determined by the alignment. The decision tree-based pro-
nunciation model thus assigns probabilities to alternative sur-
face form realizations of each phone depending on its con-

text. When decision tree-based pronunciation modeling is
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carried out, it can be used to generate phone level networks
to predict alternative pronunciations in terms of phone se-
quences. An example alignment is shown in the following
Fig. 6.

C. Modeling phone units with high phonetic and high
acoustic confusions

Due to high acoustic confusions and the resultant lexical
confusions, the direct use of extended phone units to form
alternative pronunciations in the dictionary gives no signifi-
cant improvement in recognition �Liu and Fung, 2003b�. To
model acoustic confusions, we treat these accent-specific
units as hidden models and adjust the mixture distributions
of the pretrained baseform models through the use of mixture
components from the hidden models by acoustic model re-
construction. The acoustic model reconstruction is equivalent
to tree merging in the decision tree based triphone model
structure. This approach aims at refining the pretrained base-
form models to achieve a high discriminative ability for the
high degree of acoustic confusions, while keeping the model
robustness to cover the flexible acoustic variations in ac-
cented speech.

1. Auxiliary decision trees for accent-specific
triphone units

Context-dependent triphone models are commonly used
in current ASR systems for high recognition performance. To
limit the model complexity and reduce redundant Gaussian
components, decision tree based state tying approach is com-
monly used �Young, 1999; Hwang et al., 1996�. Decision
trees for accent-specific triphone units are called auxiliary
decision trees, compared to standard decision trees of base-
form triphones. In our system, the structure of triphones for
accent-specific units differs from that of baseform triphones
only in terms of the central unit. The central unit in an

FIG. 6. Aligning baseform sequence to surface form
sequence.
accent-specific tree is a baseform to surface form pair �e.g.

Y. Liu: Phonetic and acoustic confusions in accented speech 3287



“iao_iu”�. Compared to standard decision trees, auxiliary de-
cision trees are also phonetic binary trees in which a yes/no
question is attached to each node. On the other hand, the
question set for auxiliary trees is enlarged to include accent-
specific units. The tree size is smaller than that of standard
decision trees due to the small training sample of phone units
with high acoustic confusions.

The topology of the auxiliary decision trees represents
accent variation characteristics. Figure 7 shows an auxiliary
tree of “iao_iu” and a standard tree of “iao” at the final, state
three. Nearly all the questions for tree splitting of the auxil-
iary decision tree are right-dependent phonetic questions,
while the standard decision tree has both the right-dependent
and left-dependent questions. This means that a lot of acous-
tic variations from /iao/ to /iu/ occur at the final end of the
pronunciation. Right-context information is therefore more
important than left-context information for accent-specific
triphone unit “iao_iu.” This is probably because Cantonese
FIG. 8. Acoustic model reconstruction using decis
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speakers tend to move /iao/ to /iu/ at the end of the phone
owing to the ingrained influence of their native language.

2. Acoustic model reconstruction through decision
tree merge

Auxiliary decision trees representing accented speech
and standard decision trees representing standard speech are
merged for better recognition of both accented and standard
speech.

We merge the leaf nodes of auxiliary decision trees into
the related nodes of the standard tree for acoustic model
reconstruction as shown in Fig. 8. Through decision tree
merge, the pretrained acoustic models are reconstructed to
include Gaussian mixture distributions from accent-specific
triphone models. As a result, the structure of the Gaussian
distribution is adjusted and more Gaussians borrowed from
tied states of auxiliary decision trees may locate at the dis-

FIG. 7. The auxiliary decision tree of
“iao_iu�3�” vs the standard decision
tree of “iao�3�”.
ion tree merge for triphone acoustic models.
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tribution boundaries to cover the variant pronunciations
within the accented speech. We use acoustic distance mea-
sure of Eq. �5� to determine the mapping relation of tied
states between auxiliary decision trees and their related stan-
dard trees.

Figure 8 also shows that not all leaf nodes of standard
decision tree are mapped to those of auxiliary decision trees.
Some nodes have more than one mapping nodes while some
nodes have none. The number of mapping nodes is deter-
mined by the coverage of the original pretrained model and
training samples. For example, the leaf node “ST_ 3_11” of
standard decision tree includes mapping nodes from two dif-
ferent auxiliary decision trees in order to model the accented
pronunciation changes from /iao/ to /iu/ and from /iao/ to
/ao/, while leaf node “ST_3_5” has no mapping node.

According to Fig. 8, the new output distribution of the
reconstructed model is represented as

P��x�b� = �P�x�b� + �1 − ���
i=1

N

P�x�si�P�si�b� , �8�

where P�x �b� is the output distribution of the pretrained
baseform model, � is a linear interpolation coefficient for
combining different acoustic models. The coefficient is the
probability of the baseform model being recognized as itself.
For instance, if “p�2�,”, i.e., the second state of the baseform
unit /p/, has 70% probability to be recognized as “p�2�” and
30% probability as other alternate surface forms from the
training data, then �=0.7. In addition, i=1,2 , . . . ,N, and N
is the total number of merged nodes from auxiliary deci-
sion trees; si is one possible surface form state from aux-
iliary decision trees with respect to the baseform state. If a
certain leaf node of standard decision tree has no mapping
modes, then N=0 and �=1. P�si �b� is the confusion prob-
ability between the accent-specific unit model and base-
form model, which can be estimated from confusion ma-
trix or from state-level pronunciation modeling �Liu and
Fung, 2003a; Saraclar, Nock, and Khudanpur, 2000�.

V. RECOGNITION EXPERIMENTS

A. Experimental setup

We evaluate our algorithms in a Chinese telephony short
phrase recognition task. All speech data were sampled at 8
kHz and 8 bit-rate. The baseform acoustic model was trained
using 100 speakers’ utterances with around 50 h of native
Mandarin speech. two-thousand continuous utterances with
23 685 syllables from 20 Cantonese-accented speakers
�DATA1� were used to extract the accent-specific units. The
HMM topology is three-states, left-to-right without skips,
and continuous. The acoustic features are 13MFCC,
13�MFCC and 13��MFCC. Twentyone standard initials
and 38 finals were used to generate context-independent
HMMs. We used the HTK decision tree based state tying
procedures to build 12 Gaussian-component triphone models
with 5500 tied states. The test data consist of two parts: the
first test set �Test_set1� includes 9 speakers �4 females and 5
males� 900 Cantonese-accented utterances apart from

DATA1; the second test set �Test_set2� consists of 900 stan-
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dard Mandarin utterances selected from 9 native speakers �4
females and 5 males�, and is used for performance compari-
son. In order to evaluate the recognition performance gains
solely from phonetic and acoustic modeling, free from other
high level information, all the utterances of the test sets are
Chinese short phrases without word n-grams.

B. Modeling accent-specific units with high phonetic
confusion and low acoustic confusion

Using DATA1 as the development set, we obtained 79
accent-specific units with high phonetic confusions. We first
used these units to generate a multiple pronunciation dictio-
nary �Dict1� and compared its performance with respected to
a conventional reweighed and augmented dictionary �Dict2�
that is based on minimum count and minimum out relative
frequency criteria �Byrne et al., 2001; Huang et al., 2000;
Liu et al., 2000�. The results are shown in Table II. We can
see that augmenting a multiple pronunciation dictionary with
these high phonetic confusion units gives us an encouraging
2.7% absolute WER reduction compared to the baseline and
a slight 0.7% absolute WER reduction with respect to using
Dict2.

Furthermore, we compared the tendency of initial/final
error rate �IFER� to that of word error rate �WER� by varying
the extended phone unit numbers. As shown in Fig. 9, we
found that lower IFER does not always lead to lower WER.
In an extreme case, introducing more accent-specific units
leads to the degradation of recognition performance. We be-
lieve that the inability of transferring the lower IFER to
lower SER is caused by lexical confusion. The accent-
specific high phonetic confusion units in Dict2 include both
high acoustic confusions as well as low acoustic confusion.
This shows that we need to model these two classes of pho-
netic units separately. Using the asymmetric acoustic dis-
tance measure, only 22 units with low acoustic confusions
are selected to form alternative pronunciations and generated
a selected multiple pronunciation dictionary �Dict3�. Table II
shows that using Dict3 is more efficient to cover phonetic
confusions in accented speech than using Dict1 and Dict2,
yielding additional 0.4% and 1.1% absolute WER reductions,
respectively.

Moreover, we can see that the use of Dict3 on native

TABLE II. A comparison of WER of using multiple pronunciation dictio-
naries based on accent-specific units compared to using conventional re-
weighed and augmented dictionary.

Word error rate �WER�%

System
�Test_set1�

Accented speech
�Test_set2�

Mandarin speech

Baseline 20% 7.9%
Multiple pronunciation

dictionary �Dict1�
17.3% �−2.7� 8.1% �+0.2�

Reweighted and augmented
dictionary �Dict2�

18% �−2.0� 7.7% �−0.2�

Selected multiple pronunciation
dictionary �Dict3�

16.9%(−3.1) 7.7%(−0.2)
Mandarin speech �test_set2� does not lead to any perfor-
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mance degradation since there are no acoustic and lexical
confusions between the additional pronunciations and the
originally canonical pronunciations. On the other hand, using
the conventional augmented dictionary, Dict1, with accent-
specific units leads to worse performance on test_set2. That
is, additional acoustic and lexical confusions are introduced
when alternative pronunciations related to accent effects are
added into the dictionary. These results support our claim
that adding acoustically confusable phone units in an aug-
mented dictionary leads to more decoder error in recognition.

C. Modeling accent-specific units with high phonetic
confusions and high acoustic confusions

Fifty-seven units from the original 79 accent-specific
units were extracted as units with high phonetic and acoustic
confusions. We constructed 171 auxiliary decision trees with
967 tied states for these 57 accent-specific triphone units.
Through acoustic model reconstruction, 967 tied states were
merged into the pretrained 5500 tied states of 177 standard
decision trees. The reconstructed model included 77 604
Gaussian components and each state has 14.1 Gaussians on
average. To make a fair comparison, we generated an en-

FIG. 9. WER and IFER with different amount of selected accent-specific
units. Lower IFER does not always lead to lower WER.

TABLE III. Our approach outperforms MAP adaptation, enhanced acoustic
model, and augmented dictionary.

Word error rate �WER� %

System
�Test_set1�

Accented speech
�Test_set2�

Standard speech

Baseline 20% 7.9%
Enhanced HMMs

with 14 Gaussians per state
18.6% �−1.4� 7.5% �−0.4�

Baseline HMM with MAP
adaptation using accented data

15.1% �−4.9� 15.7% �+6.8�

Reconstructed HMMs with
selected accent-specific units

15.2%(−4.8) 7.1%(−0.8)
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hanced baseform model with 5500 tied states and 14
Gaussian-component per state. The recognition performances
are shown in Table III.

We can see that using the reconstructed acoustic model
gives a significant 4.8% absolute WER reduction compared
to the baseline, and an additional 3.4% reduction with re-
spect to using enhanced HMM at the same model complex-
ity. The reason lies in the fact that the mixture distribution of
our reconstructed model includes borrowed Gaussians from
accent-specific unit models, and adjusts the structure of the
original mixture distribution and enables more Gaussians at
the mixture boundaries to cover the acoustic confusions in
accented speech. On the other hand, directly increasing
Gaussian components in the enhanced model results in poor
estimation of some Gaussians with available training data.
Meanwhile, most of the increased Gaussians may converge
around the global mean to handle the majority of pronuncia-
tion with small variations, and there are not sufficient Gaus-
sians at the boundary of mixture distributions.

One advantage of using reconstructed acoustic models is
that our method provides significant improvement for ac-
cented speech task without sacrificing the performance on
native Mandarin speech. In comparison, the use of MAP ad-
aptation approach gives a good 4.9%WER reduction on ac-
cented speech, while leading to a serious performance deg-
radation �6.8% WER increase� on native Mandarin speech.
Through MAP adaptation, the parameters of acoustic model
are adjusted to handle accented speech and are no longer
suitable for native speech. However, our reconstructed model
includes its own Gaussians from pretrained acoustic model
as well as those borrowed from accent-specific unit models.
The borrowed Gaussians are used only to adjust the structure
of original mixture distribution and not to change param-
eters. These two Gaussian distributions cover the acoustic
samples either with small deviation in native speech or with
high deviation in accented speech.

In addition, Gaussian mixture sharing and clustering
across phonetic models with minimal average distortion have
been shown to be efficient in improving model robustness for
acoustic confusions �Huang and Jack, 1989; Nakamura,
2002�. The question is whether the same amount of WER
reduction can be achieved by straightforward Gaussian mix-
ture sharing. To answer this question, a comparison of rec-
ognition performance between our acoustic model recon-
struction with selected accented-specific units and Gaussian
mixture sharing of baseline model is illustrated in Table IV.
Note that in the decision tree-bases state tying triphone mod-
els with Gaussian sharing, based on the extended accent-
specific units, an additional 7683 mixture weights are added
as new parameters.

In addition, our reconstructed model gives 3% absolute
WER reduction in relation to Gaussian sharing models on
accented speech. In Gaussian mixture sharing, only the
shared parameters are trained efficiently, while the shared
Gaussians may not cover the acoustic confusions that locate
at the boundary of mixture distributions. On the other hand,
our reconstructed model includes more Gaussian compo-
nents borrowed from accent-specific unit models at the

boundary of the mixture distributions, when the confusing

ng and Y. Liu: Phonetic and acoustic confusions in accented speech



acoustic samples fall into this mixture distribution, a higher
acoustic likelihood score is obtained compared to using
Gaussian sharing models.

It was shown in Riley et al. �1999� that acoustic models
can be trained by using the surface form transcriptions itera-
tively. We compare this approach with our reconstructed
model in Table IV. It has been reported in Riley et al. �1999�
and also shown here that their method gives limited perfor-
mance improvement. We note that the selection of surface
form transcriptions is mainly based on phonetic confusions
not acoustic confusions. On the other hand, the recognition is
primarily based on the acoustic distance, not the phonetic
distance, so WER will not be reduced if the acoustic distance
among the units remains unchanged. We give an example in
Fig. 10 of the acoustic distance of /zh/ with respect to other
Chinese initials/finals in baseline model and retrained model
using selective surface form transcriptions and show that
there is no distinct acoustic distance. This also explains why
very limited improvement was achieved by using retrained
acoustic models based on selective phone-level transcrip-
tions in Riley et al. �1999�. The evidence again indicates that
phonetic and acoustic confusions should be treated sepa-
rately in accented speech recognition. Moreover, using se-
lected multiple dictionary as well as acoustic model recon-
struction provides a significant 5.7% WER reduction without
sacrificing the performance on native Mandarin speech. That
is, our approach can be applied to a single system for both
accented and native speech recognition.

Last but not the least, we show the performance com-
parison between our approach, the baseline approach, meth-
ods using only phonetic confusion modeling and a method
using only acoustic confusion in Table V and show that mod-
eling phonetic and acoustic confusable units separately gives
the best performance on accented speech as well as standard
speech recognition.

VI. CONCLUSIONS

We study the effects of phonetic confusions and acoustic
confusions in accented speech. We suggest that phonetic and

TABLE IV. Our approach outperforms the baseline, and modeling phonetic
or acoustic confusion alone.

Word error rate �WER� %

System
�Test_set1�

Accented speech
�Test_set2�

Standard speech

Baseline 20% 7.9%
Baseline model with Gaussian

mixture sharing
18.2% �−1.8� 7.0% �−0.9�

Model trained using selective
surface form tran- scriptions

�modeling phonetic confusion only�

19.1% �−0.9� 7.6% �−0.3�

Reconstructed HMMs with selected
accent-specific units

�modeling acoustic confusion only�

15.2% �−4.8� 7.1% �−0.8�

Reconstructed HMMs and selected
multiple pronunciation dictionary

�our approach�

14.3%(−5.7) 7.1%(−0.8)
acoustic confusions are different yet correlated in accented
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speech. We suggest that only phone units which lead to high
phonetic confusions in accented speech cause recognition er-
rors. Among these units, there are those that also have high
acoustic confusions and others with low acoustic confusions.
We propose to model these two classes of phone units dif-
ferently for better recognition performance on both accented
and standard speech. We use likelihood ratio test to select
units with high phonetic confusions and we propose an
asymmetric acoustic distance measure to describe the unidi-
rectional properties of acoustic confusions in accented
speech. In addition, we separated accent-specific confusions
from data and recognizer-related confusions using distance
measure and pronunciation phonological rules.

We propose incorporating only those accent-specific
phonetic units with low acoustic confusions in a multiple
pronunciation dictionary in order to reduce phonetic confu-
sions and avoid lexical confusion at the same time. Mean-

FIG. 10. The normalized acoustic distance of “zh” in relation to other Chi-
nese initials in baseline model and surface form retrained model.

TABLE V. Our approach outperforms the baseline, and modeling phonetic
or acoustic confusion alone.

Word error rate �WER� %

System
�Test_set1�

Accented speech
�Test_set2�

Standard speech

Baseline 20% 7.9%
Multiple pronunciation dictionary

�modeling phonetic confusion alone�
17.3% �−2.7� 8.1% �+0.2�

Reconstructed HMMs
�modeling acoustic confusion alone�

15.2% �−4.8� 7.1% �−0.8�

Reconstructed HMMs and selected
multiple pronunciation dictionary

14.3%(−5.7) 7.1%(−0.8)
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while, for accent-specific units with high acoustic confusion,
we propose using decision tree merging with acoustic model
reconstruction to achieve a high discriminative ability for
reducing acoustic confusions within phonetic unit models.
This approach aims at using the selected accent-specific units
as hidden models to adjust the structure of mixture distribu-
tions of standard speech baseform models to cover more
acoustic variability so as to model acoustic confusions in
accented speech.

Experimental results on Cantonese-accented Mandarin
speech show that using the selected multiple pronunciation
dictionary to model phonetic confusions provides WER re-
ductions of 3.1% and 1.1% in absolute terms, compared to
baseline and using conventional reweighted and multiple
pronunciation dictionary. Through the use of acoustic model
reconstruction, we achieve a significant 4.8% absolute WER
reduction for accented speech compared to 1.4% using in-
creasing Gaussian components and 1.8% by Gaussian mix-
ture sharing. The combination of modeling phonetic confu-
sions and acoustic confusions yields a 5.7% reduction.
Compared to using MAP adaptation, our method provides a
better WER reduction on accented speech recognition with-
out sacrificing the performance on native, standard speech.
Our approach can be applied to a single system to handle
both accented and standard speech, and even speech with
multiple accents.
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