Does Mr. Galton Still Have a Problem?: Autocorrelation in the Standard Cross-Cultural Sample.

E. Anthon Eff * Middle Tennessee State University, Murfreesboro, TN

Presented at the Southern Anthropological Association annual meeting, Nashville Tennessee, April 5-8, 2001

Abstract

This paper examines the Standard Cross-Cultural Sample (SCCS), extracted by George P. Murdock and Douglas R. White from the Ethnographic Atlas in an effort to produce independent observations, so that statistical analysis would not be biased by "Galton's Problem." Spatial statistics are used to test for spatial autocorrelation and "phylogenetic" autocorrelation (using language phyla to signify degree of relatedness) across the 186 cultures in the sample. The results suggest that the cultures are not completely independent, and that it would be prudent to test for spatial and phylogenetic autocorrelation when conducting regression analyses with the Standard Cross-Cultural Sample.

Key words: Cross-Cultural, Autocorrelation

JEL categories: A1, Z1

*E. Anthon Eff, Associate Professor Department of Economics and Finance, Middle Tennessee State University, Murfreesboro, TN 37132, phone: 615-898-2387, fax: 615-898-5045, email: eaeff@mtsu.edu

Introduction

In 1889, Edward Tylor presented what was to become the seminal paper in statistical cross-cultural analysis, before a panel at the Royal Anthropological Institute. Sitting on the panel was Sir Francis Galton, the statistician and eugenicist. Tylor compiled information on institutions of marriage and descent for 350 cultures and examined the correlations among these institutions. The results showed that certain institutions were associated with each other far more often than chance would imply; Tylor interpreted these results as indications of a general evolutionary sequence, in which institutions changed focus from the maternal line to the paternal line. Galton disagreed, pointing out that similarity between cultures could be due to borrowing, could be due to common descent, or could be due to evolutionary development; he maintained that without controlling for borrowing and common descent one cannot make valid inferences regarding evolutionary development. In the literature, Galton's critique has become the eponymous "Galton's Problem." (Gillies 2000; Stocking 1968: 175)

Galton's problem appears in a peculiar form in regression analysis. The statistical technique requires that the disturbance term in the estimated model have certain properties, one of which is that the disturbances not be correlated with each other. Violation of this property causes the estimated standard errors of the coefficients to be biased, so that one cannot trust the t-statistics, and one therefore cannot make hypothesis tests regarding the estimated coefficients (Kennedy 1998). Hence, cross-cultural analysis employing the method of regression must take seriously the prospect that the disturbance terms may be correlated. The likely sources of such correlation are exactly the sources mentioned by Sir Francis Galton: individual cultures are probably related, either by descent or via cultural diffusion.

Galton's Problem has received much attention from practitioners of cross-cultural analysis. George Peter Murdock attempted to tackle the problem by developing a sample of cultures relatively independent from each other—i.e., with relatively weak phylogenetic and cultural diffusion relationships. Murdock began with the twelve hundred or so peoples in his *Ethnographic Atlas* (Murdock, 1957), dividing them into roughly 200 "sampling provinces" of closely related cultures. Working with Douglas R. White, Murdock chose one particularly well-documented culture from each sampling province, to create the Standard Cross-Cultural Sample (SCCS) (Murdock and White, 1969). The number of cultures is large and varied enough to provide a sound basis for statistical analysis; the sample includes 186 cultures, ranging from contemporary hunter gatherers (e.g., the Mbuti), to early historic states (e.g., the Romans), to contemporary industrial peoples (e.g., the Russians) (Silverman and Messinger 1999; Mace and Pagel 1994). Table 1, at the end of the paper, gives the names of the cultures, their locations, their language families, and their levels of cultural complexity.¹

Scholars engaging in statistical cross-cultural analysis are encouraged to use the set of cultures in the SCCS, since each new study adds to the number of coded variables capable of being used with already existing variables. The electronic journal *World Cultures* functions as the repository of the SCCS, archiving the now nearly 2000 coded variables and publishing a number of papers on cross-cultural methodology.

Murdock and White performed an important service in selecting the SCCS, but one can readily understand that many cultures in the sample do have links to other cultures in the sample, so that statistical independence is not fully realized. For example, the sample contains 13 cultures speaking Bantoid languages and four cultures speaking Cushitic languages. This suggests that the sample might mitigate Galton's Problem, but not eliminate it. A long line of empirical work (Naroll 1965; Loftin 1972; Loftin and Ward 1983; Mace and Pagel 1994; Hays 1998) recognizes the need to test for and correct phylogenetic relationships when performing statistical analysis with cross-cultural data sets. In the remainder of the paper, Moran's I—a statistic drawn from spatial econometrics—is used to test for the degree of relatedness among cultures for each of the variables in the SCCS. The test is performed both for phylogenetic relatedness and for spatial proximity. The results indicate the degree to which variables in the sample are affected by autocorrelation from the two sources. In the final portion of the paper, an example is given of how Moran's I can be used in regression analysis. The example estimates a model of female contribution to subsistence, then evaluates the errors to determine if phylogenetic or spatial autocorrelation creates a problem.

¹ An index, produced by myself, using variables 149-158 in the SCCS.

Testing for Autocorrelation in the SCCS

The statistic used here is Moran's I (Odland 1988; Anselin 1988):

$$I = \frac{n}{\sum_{i} \sum_{j} w_{ij}} \cdot \frac{\sum_{i} \sum_{j} w_{ij} (x_i - \overline{x}) (x_j - \overline{x})}{\sum_{i} (x_i - \overline{x})}$$
(1)

Where w_{ij} is a weight representing the degree of relatedness between location *i* and *j* (greater relatedness implies a higher weight); *n* is the number of locations; x_i is the value of a variable at location *i* and x_j is the value of the same variable at location *j*.

The statistic is in the class of correlation statistics, since the term on the right is the ratio of a covariance to a variance (Odland 1988). Intuitively, it differs from the usual correlation coefficient in that a correlation coefficient compares the values of two variables at each location, while Moran's I compares the value of a single variable for each pair of locations arrayed according to degree of relatedness.

Because it is in the class of correlation coefficients, one can calculate a variance for a Moran's I. This then allows one to conduct hypothesis tests, by setting the difference between the Moran's I and its hypothesized value over the standard error of the Moran's I. The resulting t-distribution can be used to reject or maintain a null hypothesis that there is no autocorrelation (Odland 1988; Anselin 1988).

Three different sets of weights were constructed. The first set represents the spatial distance: using latitude and longitude, the great circle distance was calculated between each pair of cultures. The squared inverse of this distance was then employed as the weight. If two locations are more likely to have similar features in a cultural trait when they are physically close, then the Moran's I will be positive and one can reject the null hypothesis of no spatial autocorrelation. Spatial distance should produce significant autocorrelation in cases where the trait is diffused by borrowing.

The second set of weights represents phylogenetic relationships. Some genetic data have been compiled for human populations, most notably by Cavalli-Sforza, Menozzi, and Piazza (1994), and these authors have noted that the genetic distance between any pair of populations matches fairly closely the linguistic distance between those populations. There are no data for genetic distance for the set of cultures in the SCCS, but the data set does contain the language continent, phylum, and family, for each culture. Weights are given a value of 0 if the pair of cultures are in different language continents, a value of 1 if in the same language family. Linguistic distance should produce significant autocorrelation in cases where the trait is transmitted through descent.

The third set of weights represents cultural complexity. In the initial discussion, it was mentioned that Edward Tylor initiated statistical cross-cultural analysis in an effort to identify characteristics of cultural evolution. Many social scientists using the SCCS maintain this particular interest. If a cultural trait is associated with larger and more differentiated societies, it could well be that that trait is called forth through an adaptive process of mutual causation, where changes in one part of the social structure elicit changes in other parts, in order to solve adaptive problems. This kind of functional, evolutionary perspective is at least as old as Herbert Spencer (1897), and is of interest in the present context because it depicts a way in which a cultural trait may be acquired that is distinct from both descent and borrowing. The index of cultural complexity (fashioned from variables variables 149-158 in the SCCS) goes from 1 (least complex) to 20 (most complex). The weights are the inverse of the squared difference in cultural complexity between each pair of cultures. If two locations are more likely to have similar features in a cultural trait when they are at similar levels of cultural complexity, then the Moran's I will be positive and one can reject the null hypothesis of no autocorrelation in the dimension of cultural complexity. Significant autocorrelation should occur in cases where the trait is elicited through cultural evolution.

Table 2 presents a summary of the results of the Moran's I test on 1700 variables in the SCCS. The three columns at the right represent the percent of variables for which the specified type of autocorrelation was present (using a 0.10 size of test). The bottom row (next page) shows that about 44% of the variables exhibit spatial autocorrelation, 43% exhibit linguistic autocorrelation, and 44% exhibit autocorrelation in the dimension of cultural complexity. The results show that relations of borrowing and descent are present in the data, and that the degree to which they are present is quite strong: as strong as the degree to which evolutionary relations are present.

SCCS Variables	No. Var.	Topic Name	Distance	Language	Cultural Complexity
1-22	22	Subsistence Economy and Supportive Practices	91%	95%	91%
23-60	38	Infancy and Early Childhood	45%	55%	47%
61-80	20	Settlement Patterns and Community Organization	65%	65%	65%
81-98	18	Political Organization	67%	72%	78%
99-148	48	Division of Labor	67%	60%	42%
149-158	10	Cultural Complexity	100%	100%	100%
159-178	20	Sexual Attitudes and Practices	30%	15%	25%
179-199	21	Climate Data from Weather Stations	95%	86%	67%
200-292	92	Ethnographic Atlas	71%	74%	68%
293-336	44	Traits Inculcated in Childhood	45%	55%	39%
337-480	144	Agents and Techniques of Child Training	35%	39%	19%
481-528	42	Parental Acceptance-Rejection and Parental Control	12%		
529-560	32	Adolescent Initiation Ceremonies	100%		
561-575	15	Reproductive Rituals	93%		
576-636	60	The Relative Status of Women	48%		
637-644	8	Kin Term Patterns	63%		
645-656	12	Cultural Theories of Illness	42%		
657-679	23	Female Power and Male Dominance	42 <i>%</i> 57%		
680-738	23 59	Female Status: Independent Variables	66%		
739-755	17	Husband-Wife Relationships	41%		
756-797	42	Political Decision Making and Conflict	41%		
798-813	16	Data Quality Control Variables for Child Training	44%		
814-826	13	Sexual Division of Labor Revisited	92%		
827-832	6	Adolescent Sexual Behavior	50%		
833-850	7	Standard Cross-Cultural Sample	57%		
854-859	6	Climate and Subsistence	100%		
860-879	20	Polygyny: Form and Frequency	95%		
879-884	6	Magico-Religious Practitioners	50%		
885-890	6	Female Contribution to Subsistence	83%		
891-916	26	The Nature of Warfare	54%		
917-920	4	Slavery and Social Death	100%		
921-930	10	Agricultural Potentials	80%		
931-985	55	Varieties of Sexual Experience	31%		
986-1005	20	Enculturative Continuity and Importance of Caretakers	10%	0%	5%
1006-1114	67	Historical Analysis of Subsistence Change	33%	7%	22%
1122-1122	1	Population Codes	100%	100%	100%
1123-1131	9	Type of Agriculture	56%	89%	44%
1132-1132	1	State Organization	100%	100%	100%
1133-1135	3	Despotism and Harem Size	100%	67%	67%
1136-1178	43	Divorce	12%	40%	23%
1188-1189	2	Evil Eye	100%	100%	100%
1190-1225	29	Kin Avoidance	7%	10%	14%
1248-1252	4	Female Beauty and Adolescent Sexuality Codes	50%		
1253-1260	8	Pathogen Stress Cross-Culturally: Codes	100%		
1261-1270	10	Starvation and Famine Among SCCS Societies: Codes	50%		
1271-1305	35	Household Division Of Work: primary crop 1	9%		
1306-1341	36	Household Division Of Work: primary crop 2	28%		
1342-1366	24	Household Division Of Work: primary crop 3	33%		
1367-1401	29	Household Division Of Work: secondary crop 1	7%		
1402-1437	36	Household Division Of Work: secondary crop 2	17%		
1438-1462	24	Household Division Of Work: secondary crop 2 Household Division Of Work: secondary crop 3	21%		

Table 2: Percent of Variables with Significant Autocorrelation, by Topic.

SCCS Variables	No. Var.	Topic Name	Distance	Language	Cultural Complexity
1463-1490	28	Household Division Of Work: small animals	54%	57%	46%
1491-1521	31	Household Division Of Work: large animals	65%	29%	68%
1522-1557	36	Household Division Of Work: wage,trade,gathering	33%	17%	36%
1558-1591	34	Household Division Of Work: hunting, child care, housekeepin	35%	15%	21%
1592-1614	18	Household Division Of Work: cooking, fire tending	11%	0%	28%
1615-1647	32	Household Division Of Work: gather fuel, carry burdens, ca	19%	13%	9%
1648-1691	44	Warfare, Aggression, and Resource Problems	7%	18%	9%
1692-1709	17	Scarification, Pathogen Load and Biome	71%	76%	59%
1710-1713	4	Sleeping Arrangements of Children & Adolescents	75%	75%	50%
1714-1747	34	CONAN: Code-Text Data-Base, Part I	29%	56%	68%
1748-1780	33	CONAN: Code-Text Data-Base, Part II	27%	33%	27%
1781-1805	25	Codes on Gossip	12%	24%	8%
1-1805	1700	Total SCCS	44%	43%	44%

Autocorrelation Tests in Exploratory Data Analysis

The various species of autocorrelation—spatial, linguistic, and "evolutionary"—are present in various degrees in each of the different topics listed in Table 2, and the study of these autocorrelation results can provide useful insights as part of an exploratory data analysis. For example, Schlegel and Barry's (1979) study on adolescent initiation rituals contains 26 variables—13 pertinent to boys and 13 pertinent to girls— describing the experience of adolescents in each culture during initiation. The first column in Table 3 describes the variable, and the statement in parentheses give some sense of what an increase in the variable's value implies. Thus, the first row indicates that an increasing value for "Occurrence" implies that adolescent initiation rituals are present.² The table presents the p-values for the autocorrelation t-statistic in each of the three dimensions (distance, language, cultural complexity); p-values for girls are presented in the first three columns, and p-values for boys in the next three.

The distance p-value and the language p-value are below 0.05 in all instances—allowing us to reject the null hypothesis of no autocorrelation. Cultural complexity, however, is a different story: girls clearly have autocorrelation in the dimension of cultural complexity while boys just as clearly do not. One can thus make the preliminary inference that relations of borrowing and descent account for the presence of particular adolescent initiation rituals for both sexes; "evolutionary" relations account for the presence of adolescent initiation rituals for girls, but not for boys. As part of an exploratory data analysis this finding could then trigger a more rigorous and detailed effort at uncovering the features and sources of this "evolutionary" sex difference.

	Girls			Boys		
Variable	Distance	Language	Cultural Complexity	Distance	Language	Cultural Complexity
V529-V530 Occurrence ($\uparrow \Rightarrow$ present)	0%	0%	0%	0%	0%	28%
V531-V532 Age ($\uparrow \Rightarrow$ older)	0%	0%	0%	0%	0%	73%
V533-V534 Number of Concurrent Initiates ($\uparrow \Rightarrow$ group larger)	0%	0%	1%	0%	0%	49%
V535-V536 Duration of Ceremony ($\uparrow \Rightarrow$ longer)	0%	0%	0%	0%	0%	52%
V537-V538 Number of Participants ($\uparrow \Rightarrow$ larger)	0%	0%	2%	0%	0%	86%
V539-V540 Sexes of Participants ($\uparrow \Rightarrow$ more sex- segregation)	0%	0%	0%	0%	0%	65%

Table 3: Autocorrelation (3 types) for Variables in Schlegel and Barry's (1979) Study on Adolescen	t
Initiation.	

 $^{^{2}}$ For the detailed description of these variables see the appendix, where the relevant pages from Divale (2000) are reproduced.

	Girls			Boys		
Variable	Distance	Language	Cultural Complexity	Distance	Language	Cultural Complexity
V541-V542 Primary Physical Components ($\uparrow \Rightarrow$ more intense pain)	0%	0%	2%	0%	0%	37%
V543-V544 Secondary Physical Components $(\uparrow \Rightarrow \text{ more intense pain})$	0%	0%	1%	0%	0%	89%
V545-V546 Primary Cognitive or Performance Components ($\uparrow \Rightarrow$ intensity of ordeal increases)	0%	0%	0%	0%	0%	52%
V547-V548 Secondary Cognitive or Performance Components ($\uparrow \Rightarrow$ intensity of ordeal increases)	0%	0%	0%	0%	0%	64%
V549-V550 Primary Emic Interpretations ($\uparrow \Rightarrow$ intensity of ordeal increases)	0%	0%	0%	0%	0%	77%
V551-V552 Secondary Emic Interpretations $(\uparrow \Rightarrow$ intensity of ordeal increases)	0%	0%	0%	1%	0%	77%
V553-V554 Tertiary Emic Interpretations ($\uparrow \Rightarrow$ intensity of ordeal increases)	0%	2%	0%	0%	1%	51%

Autocorrelation Tests in Regression Analysis

In the building of regression models, one must ensure that the error term has certain properties. One of those properties is that the residuals not be correlated with each other—i.e., that there be no autocorrelation. The presence of autocorrelation in the regression residuals causes the estimated standard errors to be biased, and thus invalidates the t-statistics and any hypothesis tests conducted with those t-statistics. With a few modifications (Odland 1988; Anselin 1988), the Moran's I can used to test the regression residuals for the presence of autocorrelation. The important dimensions to consider in a cross-cultural data set would be the dimensions of distance and descent.

Table 4 presents the results of an ordinary least squares regression. The model attempts to explain variations in the average female contribution to subsistence across cultures. Interpreting these results in the usual way, one would say that the average female contribution to subsistence is higher in societies where fishing and hunting are less important food sources, where total pathogen stress is lower, where rainfall is lower, where polygamy is more common, where mothers spend more time with young sons, where land transport relies more on human power, where political integration occurs over more levels, and where there are fewer evidences of social stratification.

This usual interpretation, however, would be incorrect. The p-values for the Moran's I tests at the bottom of Table 4 show that there is significant autocorrelation in both the distance and descent dimension. Therefore the reported standard errors are incorrect, and the t-statistics and resulting p-values are wrong, so that our inferences are specious.

When autocorrelation exists in a regression model, it can usually be removed by the appropriate respecification. In most cases, this requires the creation of a "lagged" dependent variable—i.e., a weighted average of the dependent variable at all other locations, where the weights indicate the degree of relationship. Estimation of regression models containing lagged dependent variables, however, must usually be done using maximum likelihood methods: ordinary least squares biases the estimated coefficients since the lagged variables typically are endogenous (Anselin 1988).

Variable	Label	Parameter Estimate	Standard Error	t Value	Pr > t	VIF
Intercept	Intercept	46.00715	9.49409	4.85	<.0001	0
V816	V816 Importance Fishing %	-0.19866	0.06649	-2.99	0.0032	1.41144
V817	V817 Importance Hunting %	-0.42973	0.08083	-5.32	<.0001	1.56621
V1260	V1260 Total Pathogen Stress	-1.24132	0.39485	-3.14	0.002	2.03294
V855	V855 Niche Rainfall	-2.28053	0.65284	-3.49	0.0006	1.4644
V79	V79 Polygamy	2.95054	1.75657	1.68	0.0949	1.37957
V353	V353 Sex of Parent in Residence: Early Boy	5.4094	1.77529	3.05	0.0027	1.43635
V150	V150 Fixity of Residence	-1.41896	0.91557	-1.55	0.1231	1.82325
V154	V154 Land Transport	-2.35077	1.1751	-2	0.047	1.67645
V157	V157 Politcal Integration	2.56485	1.33416	1.92	0.0562	2.19442
V158	V158 Social Stratification	-2.45671	1.1415	-2.15	0.0328	2.46027
	R-Square	0.3121				
	Adj R-Sq	0.2714				
	F Value	7.67				
	Pr > F	<.0001				
	p-value on Moran's I: Distance	0.0650				
	p-value on Moran's I: Language	0.0102				

Table 4: Regression Explaining SCCS variable # 826 (Average Female Contribution to Subsistence)

Summary and Conclusions

Galton's problem refers to the fact that statistical inferences from cross-cultural data must control for relations of borrowing and descent. The Standard Cross-Cultural Sample is an important effort to address Galton's problem by utilizing a sample of cultures that have relatively weak relations of borrowing and descent. The paper showed, however, that about 44% of the variables in the Standard Cross-Cultural Sample exhibit autocorrelation in the spatial and/or linguistic dimensions, indicating the transmission of cultural traits through borrowing and/or descent in these cases. This level of autocorrelation is about the same as the level of autocorrelation in the dimension of cultural complexity—indicating that the degree to which borrowing or descent affect the presence of a cultural trait is about the same as the degree to which cultural evolution affects the presence of a cultural trait. Therefore, users of the Standard Cross-Cultural Sample must not assume that the cultures are sufficiently unrelated to allow one to ignore Galton's Problem.

The paper then demonstrated how the Moran's I statistic could be used in exploratory data analysis. The example focused on characteristics of adolescent initiation rituals, and showed that autocorrelation along the dimensions of borrowing and descent were similar for boys and girls, but differed sharply along the dimension of evolutionary development: girls' initiation rituals appear to be strongly influenced by cultural evolution, while those for boys are not. This pattern could constitute the starting point for a more rigorous and detailed analysis.

Finally, the paper presented an example of a regression model employing variables from the Standard Cross-Cultural Sample. A variant of Moran's I was used to estimate autocorrelation in the model's residuals, in the dimensions of distance (i.e., borrowing) and language (i.e., descent). The residuals were significantly autocorrelated in both dimensions, rendering the results of the regression analysis invalid. One might reasonably generalize that autocorrelation is likely to be a problem with other regression analyses using the Standard Cross-Cultural Sample, and that one should therefore routinely test for the presence of autocorrelation when using these data.

References

- Anselin, Luc. (1988). <u>Spatial Econometrics: Methods and Models.</u> Dordrecht: Kluwer Academic Publishers.
- Cavalli-Sforza, L. Luca, Paolo Menozzi, Alberto Piazza. (1994). <u>The History and Geography of Human</u> <u>Genes</u>. Princeton: Princeton University Press.
- Divale, William. (2000). "Pre-Coded Variables for the Standard Cross-Cultural Sample from <u>World</u> <u>Cultures.</u>" Volumes I & II. York College, CUNY, Spring 2000.
- Dow, M., M. Burton and D. White. (1982). "Network autocorrelation: A simulation study of a foundational problem in regression and survey research." <u>Social Networks</u>. 4:169-200.
- Dow, M., M. Burton, D. White and K. Reitz. (1984). "Galton's problem as network autocorrelation." <u>American Ethnologist</u>. 11:754-770.
- Gillies, Judith L. (2000). "Cross-Cultural Analysis." *Anthropological Theories: A Guide Prepared by Students for Students*. Department of Anthropology College of Arts and Sciences The University of Alabama. (http://www.as.ua.edu/ant/Faculty/murphy/crosscut.htm)
- Hays, David G. (1998). The Measurement of Cultural Evolution in the Non-Literate World: Homage to Raoul Naroll. New York: Metragram Press.
- Hoy, Andrew R. (1994). "The Relationship Between Male Dominance and Militarism: Quantitative Tests of Several Theories." <u>World Cultures</u> 8(2): 40-57
- Kennedy, Peter. (1998). <u>A Guide to Econometrics (4th edition)</u>. Cambridge: MIT Press.
- Loftin, C. (1972). "Galton's problem as spatial autocorrelation: Comments on Ember's empirical test" <u>Ethnology</u> 11: 425-35.
- Loftin, C. and S. Ward. (1983). "A spatial autocorrelation model of the effects of population density on fertility" <u>American Sociological Review</u> 48: 121-128.
- Mace, Ruth and Mark Pagel. (1994). "The Comparative Method in Anthropology." <u>Current Anthropology</u>. 35(5): 549-564.
- Murdock, George Peter and Douglas R. White. (1969). "A Standard Cross-Cultural Sample." <u>Ethnology</u> 9:329-369.
- Naroll, R. (1965). "Galton's problem: The logic of cross cultural research." Social Research 32: 428-51.
- Odland, John. (1988). Spatial Autocorrelation. Newbury Park, California: Sage Publications.
- Schlegel, Alice, and Herbert Barry, III. (1979). "Adolescent Initiation Ceremonies." <u>Ethnology</u> 18:199-210
- Silverman, Philip and Jacquelyn Messinger. (1999). *Introduction to the Standard Cross Cultural Survey Module*. SSRIC Teaching Resources Depository Standard Cross Cultural Survey, California State University, Bakersfield (http://www.csubak.edu/ssric/Modules/SCCS/SCCSMod/sccsin.htm)

Spencer, Herbert. (1897). The Principles of Sociology (third edition). New York: D. Appleton.

- Stocking, George W. Jr. (1968). "Edward Burnett Tylor." <u>International Encyclopedia of the Social Sciences</u>. David L. Sills, editor, New York, Mcmillan Company: v.16, pp. 170-177.
- White, D., M. Burton and M. Dow. (1981). "Sexual division of labor in African agriculture: A network autocorrelation analysis." <u>American Anthropologist.</u> 83:824-849.

SCCS	society	cultural	date	latitude	longitude	Region	Language Family
no.		complexity			•	-	
	Nome (Llattertet)		4000	07 500	47.000	Africo	Couthorn Khairs
	Nama (Hottentot)	8		-27.500			Southern Khoisan Southern Khoisan
	Kung (San)			-19.833			
	Thonga	12		-25.833			Bantoid
	Lozi	13		-16.000			Bantoid
-	Mbundu	13		-12.250			Bantoid
	Suku	12		-6.000			Bantoid
	Bemba	11		-10.500			Bantoid
	Nyakyusa (Ngonde)	11		-9.500			Bantoid
-	Hadza	1		-3.750			Northern Khoisan
	Luguru	11		-6.833			Bantoid
	Kikuyu	11		-0.667			Bantoid
	Ganda	15		0.333			Bantoid
	Mbuti (Pygmies)	1		1.500			Bantoid
	Nkundo (Mongo)	12		-0.750			Bantoid
	Banen	11		4.667			Bantoid
	Tiv	11		7.250		Africa	Bantoid
	lbo (Igbo)	14	1935	5.500		Africa	Kwa
18	Fon	15	1890	7.200	1.910	Africa	Kwa
19	Ashanti (Twi)	14	1895	7.000	-1.500	Africa	Kwa
20	Mende	13	1945	7.833			Mande
21	Wolof	15	1950	13.750	-15.333	Circum-Mediterranean	Atlantic
22	Bambara	15	1902	12.500	-7.000	Africa	Mande
23	Tallensi	13	1934	10.660	-0.567	Africa	Voltaic
24	Songhai	14	1940	16.583	-1.667	Circum-Mediterranean	Songhai
25	Wodaabe Fulani	7	1951	15.000	7.500	Circum-Mediterranean	Atlantic
26	Hausa	16	1900	10.500	7.500	Circum-Mediterranean	Chadic
27	Massa	10	1910	10.500	15.500	Africa	Chadic
28	Azande	13	1905	5.083	28.250	Africa	Eastern Niger-Congo
29	Fur	14	1880	13.500	25.500	Circum-Mediterranean	Fur
30	Otoro Nuba	11	1930	11.333	30.667	Africa	Kordofanian
31	Shilluk	13	1910	9.750	31.500	Africa	Eastern Nilotic
32	Mao	10	1939	9.267	34.667	Africa	Komam
33	Kaffa	14	1905	7.267	36.500	Circum-Mediterranean	Cushitic
34	Masai	8	1900	-3.500	36.750	Africa	Eastern Nilotic
35	Konso	14	1935	5.250	37.500	Circum-Mediterranean	Cushitic
36	Somali	12	1900	9.000	47.250	Circum-Mediterranean	Cushitic
37	Amhara	15	1953	12.500		Circum-Mediterranean	Semitic
38	Bobo	12	1855	15.750	38.750	Circum-Mediterranean	Cushitic
39	Kenuzi Nubian	14	1900	23.000		Circum-Mediterranean	Nubian
	Teda	9		20.500		Circum-Mediterranean	Saharan
-	Tuareg	12		23.000		Circum-Mediterranean	Berber
	Riffians	16		34.917		Circum-Mediterranean	Berber
	Egyptians (Fellah	18		24.750		Circum-Mediterranean	Semitic
	Hebrews	17		31.180		Circum-Mediterranean	Semitic
	Babylonians	19		32.583		Circum-Mediterranean	Semitic
	Rwala Bedouin	10		33.250		Circum-Mediterranean	Semitic
	Turks	18		39.333		Circum-Mediterranean	Turkic
	Gheg (Albanians)	15		42.000		Circum-Mediterranean	Albanian
	Romans	13		41.667		Circum-Mediterranean	Romance
-	Basques	19		43.250		Circum-Mediterranean	Basque
	Irish	17		43.250 53.500		Circum-Mediterranean	Celtic
						Circum-Mediterranean	Finno-Ugric
	Lapps	8		68.700			-
	Yurak (Samoyed)	7		68.000		East Eurasia	Samoyed
	Russians	18		52.667		Circum-Mediterranean	
	Abkhaz	14		43.125		Circum-Mediterranean	North Caucasian
	Armenians	16		40.000		Circum-Mediterranean	Armenian
	Kurd	16		36.500		Circum-Mediterranean	Indo-Iranian
58	Basseri	11	1958	29.000	53.000	East Eurasia	Indo-Iranian

SCCS no.	society	cultural complexity	date	latitude	longitude	Region	Language Family
59	West Punjabi	17	1950	32.500	74 000	East Eurasia	Indi-Iranian
	Gond	11		19.625		East Eurasia	Central Dravidian
	Toda	8		11.500		East Eurasia	Southern Dravidian
-	Santal	12		23.500		East Eurasia	Munda
	Uttar Pradesh	20		25.917		East Eurasia	Indo-Iranian
	Burusho	13		36.433		East Eurasia	Burusho
65	Kazak	13		42.500		East Eurasia	Turkic
66	Khalka Mongols	14	1920	47.167	96.083	East Eurasia	Mongolian
	Lolo	14	1910	27.500	103.500	East Eurasia	Lolo-Burmese
68	Lepcha	13	1937	27.500	89.000	East Eurasia	Bodo-Naga-Kachin
69	Garo	12	1955	26.000	91.000	East Eurasia	Bodo-Naga-Kachin
70	Lakher	12	1930	22.333	93.000	East Eurasia	Naga-Kuki
71	Burmese	18	1965	22.000	95.667	East Eurasia	Lolo-Burmese
72	Lamet	8	1940	20.000	100.667	East Eurasia	Palaung-Wa
73	Vietnamese	17	1930	20.500	106.250	East Eurasia	Annam-Muong
74	Rhade	12	1962	13.000	108.000	East Eurasia	Hesperonesian
75	Khmer	17	1292	13.000	103.833	East Eurasia	Khmer
76	Siamese	20	1955	14.000	100.850	East Eurasia	Thai-Kadai
77	Semang	3	1925	5.000	101.250	East Eurasia	Semang
78	Nicobarese	11	1870	7.000	93.750	East Eurasia	Nicobarese
79	Andamanese	5	1860	11.750	93.083	East Eurasia	Andamanese
80	Vedda	6	1860	7.750	81.250	East Eurasia	Indo-Iranian
-	Tanala	11	1925	-22.000	48.000	East Eurasia	Indonesian
82	Negri Sembilan	17	1958	2.583	102.250	East Eurasia	Indonesian
83	Javanese (Miao)	19	1954	-7.700	112.220	Insular Pacific	Indonesian
84	Balinese	18	1958	-8.500	115.333	Insular Pacific	Indonesian
	Iban	9	1950	2.000	113.000	Insular Pacific	Indonesian
86	Badjau	6	1963	5.000	120.000	Insular Pacific	Indonesian
87	Toradja	11	1910	-2.000	121.000	Insular Pacific	Indonesian
88	Tobelorese	12	1900	2.000	128.000	Insular Pacific	West Papuan
	Alorese	12	1938	-8.333	124.667	Insular Pacific	Moluccan
90	Tiwi	4	1929	-11.375	131.000	Insular Pacific	Australian
91	Aranda	4	1896	-24.250	133.500	Insular Pacific	Australian
92	Orokaiva	8		-8.500	148.000	Insular Pacific	Central Papuan
93	Kimam	8		-7.500		Insular Pacific	Central Papuan
	Kapauku	11		-4.000		Insular Pacific	Central Papuan
	Kwoma	11		-4.167		Insular Pacific	Central Papuan
	Manus	10		-2.167	-	Insular Pacific	Papuan Austronesian
-	New Ireland	10		-2.500		Insular Pacific	Papuan Austronesian
98	Trobrianders	10	-	-8.640	151.007	Insular Pacific	Papuan Austronesian
	Siuai	10		-7.000		Insular Pacific	Bougainville
	Tikopia	11				Insular Pacific	Eastern Oceanic
	Pentecost	9				Insular Pacific	Eastern Oceanic
	Mbau Fijians	14				Insular Pacific	Eastern Oceanic
	Ajie	11				Insular Pacific	Papuan Austronesian
	Maori	10		-35.333		Insular Pacific	Eastern Oceanic
	Marquesans	11		-8.917		Insular Pacific	Eastern Oceanic
	Western Samoans	11				Insular Pacific	Eastern Oceanic
	Gilbertese	12				Insular Pacific	Micronesian
	Marshallese	12				Insular Pacific	Micronesian
	Trukese	11				Insular Pacific	Micronesian
	Yapese	13				Insular Pacific	Micronesian
	Palauans	12				Insular Pacific	Northwest Austronesian
	Ifugao	12				Insular Pacific	Northwest Austronesian
	Atayal	20				East Eurasia	Formosan
	Chinese	14		31.000		East Eurasia	Wu Tungunin
	Maanchu	18		50.000		East Eurasia	Tungusic
	Koreans	20		37.600		East Eurasia	Korean
	Japanese	6				East Eurasia	Japanese
118	Ainu	8	1880	42.833	143.000	East Eurasia	Ainu

SCCS no.	society	cultural complexity	date	latitude	longitude	Region	Language Family
110.		oomplexity					
	Gilyak	7		54.000		East Eurasia	Gilyak
	Yukaghir	7		64.750		East Eurasia	Yukaghir
	Chukchee	11	1900	66.500		Insular Pacific	Chuckhee-Kamchatcha
	Ingalik	8		62.500		North America	Northern Athabaskan
	Aleut	9		55.250		North America	Aleutian
	Copper Eskimo	5		68.000		North America	Eskimoan
	Montagnais	6		50.000		North America	Algonquian
	Micmac	7		46.000		North America	Algonquian
	Saulteaux (Ojibwa	8		52.000		North America	Algonquian
	Slave	6		62.000		North America	Northern Athabaskan
	Kaska (Nahane)	3		60.000		North America	Northern Athabaskan
	Eyak	7		60.500		North America	Eyak
-	Haida	10		54.000		North America	Haida
-	Bellacoola	9		52.333		North America	Salishan
	Twana	9		47.433		North America	Salishan
-	Yurok	8		41.500		North America	Ritwan
	Pomo	9		39.000		North America	Pomo
	Yokuts	9		35.000		North America	Yokuts
	Paiute (Northern)	5		43.500		North America	Shoshonean
	Klamath	6		42.625		North America	Sahaptin
	Kutenai	7		49.000		North America	Wakashan
-	Gros Ventre	7		48.000		North America	Algonquian
	Hidatsa	10		47.000		North America	Siouan
	Pawnee	10		42.000		North America	Caddoan
	Omaha (Dhegiha)	11	1860	41.433		North America	Siouan
	Huron	12		44.500		North America	Iroquian
-	Creek	13		32.933		North America	Natchez-Muskogean
-	Natchez	13	-	31.500	-	North America	Natchez-Muskogean
	Comanche	7		34.000		North America	Shoshonean
	Chiricahua	6		32.000		North America	Southern Athabaskan
	Zuni	14		35.667		North America	Zuni
	Havasupai	8		35.833		North America	Yuman
	Papago	11	1910	32.000		North America	Sonoran
-	Huichol	11	1890	22.000		North America	Sonoran
	Aztec	16		19.000		North America	Aztecan
	Populuca	11	1940	18.250		North America	Oto-Manguean
	Quiche	14		15.000		South America	Mayan
	Miskito (Mosquito	10		15.000		South America	Misumalpan Western Chibchan
	Bribi (Talamanca)	9 13				South America South America	Western Chibchan
	Cuna	_		9.250			
	Goajiro Haitians	8 17		11.917 18.833		South America South America	Arawakan Romance
	Callinago	10				South America	Cariban
	Warrau (Warao)	5				South America	Warrauan
	Yanomamo	7				South America	Yanomaman
	Carib	7				South America	Cariban
-	Saramacca	, 11				South America	Romance
	Mundurucu	8				South America	Tupi-Guarani
	Cubeo (Tucano)	8				South America	Tucanoan
	Cayapa	9				South America	Paezan
	Jivaro	9				South America	Jivaroan
	Amahuaca	6				South America	Panoan
	Inca	14				South America	Quechuan
	Aymara	13				South America	Quechuan
	Siriono	4				South America	Tupi-Guarani
	Nambicuara	6				South America	Ge
	Trumai	7				South America	Timote
	Timbira	9				South America	Ge
170		9				South America	Ge Tupi-Guarani
177	Tupinamba						

SCCS society no.	cultural complexity	date	latitude	longitude	Region	Language Family
179 Shavante	5	1958	-13.500	-51.500	South America	Ge
180 Aweikoma	2	1932	-28.000	-50.000	South America	Ge
181 Cayua (Guarani)	6	1890	-23.500	-55.000	South America	Tupi-Guarani
182 Lengua	7	1889	-23.000	-58.500	South America	Mascoian
183 Abipon	8	1750	-28.000	-59.500	South America	Guaycuran
184 Mapuche	12	1950	-38.500	-72.583	South America	Araucanian
185 Tehuelche	6	1870	-40.500	-68.000	South America	Tehuelchan
186 Yahgan	2	1865	-55.500	-69.500	South America	Yaghan

ADOLESCENT INITIATION CEREMONIES

Schleg	gel, Alice, and Herbert Barry, III. 1979. Ceremonies. ETHNOLOGY 18:199-210.	Ado]	escent	In
		Boys	Girls	
	Occurrence: Boys			
530.	Occurrence: Girls			
	. = Missing data	4	3	
	0 = Absent for both boys and girls	80 39	81 17	
	1 = Absent for specified sex only 2 = Present	63		
	Time: Boys Time: Girls			
552.				
	. = Missing data	4		
	0 = Absent 2 = before genital maturation	120 13	100 9	
	3 = at first signs of genital maturation		11	
	4 = at genital maturation	б	57	
	<pre>5 = within one year after genital maturation 6 = later (up to 18 years)</pre>	17 8		
	o - facer (ap co to years)	0	-	
	Number of Concurrent Initiates: Boys Number of Concurrent Initiates: Girls			
	. = Missing data	4	3	
	0 = Absent	119		
	2 = Single 3 = Small group	29 7	73 6	
	4 = Large group	27		
EDE	Duration of Commons: Dour			
	Duration of Ceremony: Boys Duration of Ceremony: Girls			
	. = Missing data	4		
	0 = Absent 2 = Short	119 28	99 36	
	3 = Medium	7	21	
	4 = Long	28	27	
537. 538.	Number of Participants: Boys Number of Participants: Girls			
	. = Missing data	4		
	0 = Absent	121 7	99	
	2 = Immediate family 3 = Local group	25	40 29	
	4 = Large group	29	15	
539. 540.	Sexes of Participants: Boys Sexes of Participants: Girls			
	. = Missing data	4	3	
	0 = Absent	119	99	
	2 = Both sexes	12	11	
	3 = Partially limited to same sex as initiates 4 = Exclusively same sex as initiates	17 34	28 45	
	+ = Exclusively same sex as initiates	54	-15	
541. 542.	Primary Physical Components: Boys Primary Physical Components: Girls			
	. = Missing data	4	3	
	0 = Absent 2 = None	119 6	99 11	
	3 = Manipulations or activities	17	45	
	4 = Pain other than genital operation	20	21	
	5 = Genital operation 6 = Genital operation and other pain	13 7	7	
	- central operation and other pain	/		
543. 544.	Secondary Physical Components: Boys Secondary Physical Components: Girls			
	. = Missing data	4	3	
	0 = Absent	119	99	
	<pre>2 = Neither manipulations nor activities 3 = Activities</pre>	15 14	20 10	
	4 = Manipulation	9	26	
	5 = Both manipulations and activities	25	28	

Schlegel, Alice, and Herbert Barry, III. 1979. Adolescent Initiation

545. 546.	Primary Cognitive or Performance Components: P Primary Cognitive or Performance Components: C			
	 Missing data Absent Symbolic only Learning skills, sharing secrets, or other Observing taboos Seclusion Both seclusion and observing taboos Fear 	4 119 20 3 8 7 18 7	3 99 15 3 1 9 54 2	
547. 548.				
	 Missing data Absent Neither learning skills nor sharing secret Sharing secrets Learning skills Both learning skills and sharing secrets 	4 118 25 43 8 4 9	3 100 60 2 11 10	
549. 550.	Primary Emic Interpretations: Boys Primary Emic Interpretations: Girls			
	 Missing data Absent None Status marker, physical change, or behavior change Spiritual change Death-rebirth 	4 119 4 41 11 7	3 99 5 75 2 2	
551. 552.				
	 Missing data Absent No status marker General status marker Status marker for adolescence or youth Status marker for full adulthood 	4 118 8 17 14 25	3 100 8 25 12 38	
553. 554.	Tertiary Emic Interpretations: Boys Tertiary Emic Interpretations: Girls			
	 Missing data Absent Neither physical nor behavior change Behavior change Physical change Both physical and behavior change 	4 118 31 10 12 11	3 100 48 12 16 7	
555. 556.	Primary Social Consequences: Boys Primary Social Consequences: Girls			
	<pre>. = Missing data 0 = Absent 2 = None 3 = Familial integration, familial independence, or other 4 = Heterosexual intercourse 5 = Same-sex bonding 6 = Both same-sex bonding and heterosexual</pre>	4 118 19 14 8 17 6	3 100 32 20 25 3 3	
557.	intercourse Secondary Social Consequences: Boys	9	2	
558.	Secondary Social Consequences: Girls . = Missing data	4	3	
	<pre>0 = Absent 0 = Absent 2 = None 3 = Other 4 = Familial independence 5 = Familial integration</pre>	118 36 6 13 9	100 57 8 9 9	

Principal Focus: Boys Principal Focus: Girls		
. = Missing data	4	3
0 = Absent	120	111
2 = Fertility	11	34
3 = Sexuality	10	18
4 = Valor	б	1
5 = Wisdom	7	1
6 = Responsibility	26	23
7 = Other	2	7