
CS106X Handout 14
Winter 2008 January 18, 2008

Decomposition
Due to Nick Parlante.

Decomposition is the process of breaking a large problem into more manageable sub-
problems. The motivating principle is that large problems are disproportionately harder
to solve than small problems. It's much easier to write two 500-line programs than one
1000-line program.

Difficulty

Problem Size

In C the unit of decomposition is the function and the ADT. In C++ and Java, the unit of
decomposition is the class. For decomposition to work, the subparts of the whole
problem should be as independent from each other as possible. That does not mean that
they subparts will not depend on each other at all. They should just not depend on
details of each other unnecessarily.

Independence is especially important in group projects where different sub-problems are
attacked by different people. The programmer needs to be able to focus on each
problem without worrying about the rest of the program. The need for good
decomposition is magnified as the number of lines and the number of programmers
grows. It may seem like Stanford standards are unreasonably high for our 1000 line
assignments. We insist on excellence in all aspects of programming, including
decomposition, because we are trying to teach skills on 1000-line programs that will get
you through 100,000 line programs later.

The Black Box

A well-decomposed function or a well-designed class is sometimes likened to a "black
box". The point of the black box is that it is opaque— its inner workings are not
apparent. Instead the box is defined by what it accomplishes. The box has well-defined
behavior in terms of its input. The black box presents the simplest possible abstraction to
describe what the output will be and hides the implementation. A black box is a unit of
delegation— you get to define it in terms of what you want accomplished such as "I
want this data structure filled from this file", or " I want a vector of arbitrary size". All
the implementation details of how the desired result is achieved are safely isolated
inside.

2

Input OutputAcme
Black Box co

/* Abstracion = what does this
accomplish with its input? */

Message
Reception
Port

Acme
Object
co

/* Abstraction = What are the properties and
uses of this object? What messages does it
respond to ? */

Functional Object Oriented

The goal of decomposition is to divide the problem into independent sub-problems.
Black boxes are the natural extension of this goal. They can mostly be written
independently. To the extent they need to interact, it is through well-defined and
relatively simple mechanisms. A function is a possibly nasty computation wrapped up
in a neat package, ready to easily fit into any code. Similarly, a C++ or Java class
represents an object with a tidy abstraction and a complete suite of methods.

Abstraction

Decomposition is a divide-and-conquer strategy. The benefit comes from being able to
deal with subparts independently. From the outside, black boxes are as simple as
possible so they are easy to use and fit together. This process only works if the
abstraction presented by the black box basically makes sense. There should be a clear
relationship between the input and output. Typically there is a lot of complexity and
detail related to the implementation which should not be part of the abstraction. As
input, it should require only what is strictly needed to compute the output. The acid test
is: is it easy to describe what this component accomplishes? For functions, it's a good
sign if you can form a description where the name of the routine is the verb and the
parameters are the nouns. For a C++ method, the operation should have a clear
definition relative to the receiver.

Function Rules In Practice

What should the parameters be? When is a subtask sufficiently complex or independent
to merit being put in its own function? A function should solve one problem. Its
parameters should include only what is necessary. The abstraction of what the function
accomplishes with the parameters should make sense.

 One Problem
A function should solve one problem. That does not mean that the function needs to
be one line long— the lines in the function step through the subparts of the problem.
At some point, a subpart becomes sufficiently independent that it should be factored

3

out into its own function. It should be easy to describe what the function
accomplishes.

 Length
Length is a simplistic measure that cannot replace real analysis based on the structure
of the problem. A function may be too long because it solves more than one problem
or because some subparts need to be decomposed out. Some functions are forced to
be long because their problem demands a long sequence of related sub-parts where
no subpart is independent or complex enough to merit its own function. A long
function automatically creates doubts about the quality of its decomposition— so be
doubly sure that everything in the function needs to be there. Ideally a function
should be 5-15 lines long—that's a ballpark figure, of course; but a good rule of
thumb.

 Short Routines
Very short routines (just one to two lines of code) may be questionable. The added
decomposition is often not worth the additional conceptual overhead of another
function. Something that can be accomplished in two lines is probably not complex
enough to merit its own routine. The decomposition can be helpful if the lines are
very complex, are distracting in the calling function, require their own local variables,
or are called a large number of times. A short routine can also be worthwhile just for
readability. Replacing the expression:

sqrt((a.x - b.x)^2 + (a.y - b.y)^2)

with the expression Distance(a,b) makes the code much more readable, even
though the distance function is only one line long. Do not worry about the run-time
overhead of an additional function call. A modern compiler can inline the code
where appropriate to avoid the call overhead.

 Parameters
A function should have the smallest number of parameters possible to solve its
problem. The function should not add constraints on the input beyond those
demanded by the problem. This makes it easier to reuse the function later in the
largest number of contexts. Sometimes there is no way around having a large
number of parameters. As with function length above, a large number of parameters
is a warning sign that the decomposition may not be ideal. If a set of parameters
always seem to travel together— should they be packaged together in a struct?

 Complexity
The lines in a function should narrate the steps of the function's algorithm. If the
complexity or details of one "step" distract from the problem at hand, then the step
should be decomposed out to isolate its problem. It's suspicious if a step requires

4

several local variables that are not used in the other steps. It's good if the steps in a
function all operate at the same level of detail.

 Repetition
Avoid repeating more than a couple lines of code. A repeated sequence should be
put in its own function which is then called where the repeated code used to be. A
reasonable rule of thumb is: decompose out a repeated sequence of code if it will
make the program shorter including the new function declaration and calls. The
common sequences do not need to be identical. Slight differences may be factored
out in the parameters of the function. It's a sure warning sign that you've got some
duplication if you find yourself copying and pasting code.

 Generality
A sub-problem that is an extremely familiar or common idiom should be
decomposed out. Recurring, general problems such as Searching, Sorting, Distance,
Set intersection, etc… make excellent functions because their abstractions are
immediately understood since they have been seen so many times. Such functions
have the best chance of being reused in other parts of the program or in other
programs. Also, a modern language will include pre-canned solutions to all the
common general problems— so having identified the decomposition, you don't have
to write anything, you just call the library routine.

 Non-Local Access
Access to a variable outside the function should always be through the parameters.
Non-local access to a global variable violates the black-box paradigm. The routine is
no longer portable and its relationship with all the rest of the code in the program
becomes complex, especially when stepping through when debugging. The main
advantage of a black box is that it interacts with the outside world through a small,
well-defined parameter mechanism to keep the complexity in and the abstraction
simple. This helps decomposition and readability and makes the routine reusable in
other routines. Non-local access is only ok for constants.

