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A. Introduction 

In science, the terms uncertainties or 
errors do not refer to mistakes or blunders. 
Rather, they refer to those uncertainties that 
are inherent in all measurements and can 
never be completely eliminated. In some 
fields (e.g. certain areas of astronomy and 
cosmology), uncertainties may be measured 
in orders of magnitude while in other fields 
(e.g. precision spectroscopy) uncertainties 
may be less than parts per million, PPM. A 
large part of a scientist’s effort is devoted to 
understanding these uncertainties (error 
analysis) so that appropriate conclusions can 
de drawn from variable observations.  

A common complaint of students is 
that the error analysis is more tedious than 
the calculation of the numbers they’re trying 
to measure. This is generally true. However, 
measurements can be quite meaningless 
without knowledge of their associated errors. 
If you are told that Sue is 162 cm tall and 
Beth is 165 cm tall you might conclude that 
Beth is taller than Sue. But if you then learn 
that the measurements had errors of ±5 cm, 
you should realize that you can’t determine 
who is taller. A more precise measurement is 
required before you can make this compari-
son. In science and engineering, numbers 
without accompanying error estimates are 
suspect and possibly useless. For every 
measurement, you must record the uncer-
tainty in the measured quantity. 

Experimental errors may be divided 
into two classes: systematic errors and ran-
dom errors. These are illustrated in Figure 1 
for two sets of data points which are theo-
retically predicted to lie on the illustrated 
straight lines. The data in Figure 1a are rela-
tively precise. They exhibit small random 
errors and therefore have small fluctuations 

about a straight line. However, there is a 
systematic shift of the data points away from 
the expected straight line. We attribute this 
effect to a systematic error in the measure-
ments. The data in Figure 1b exhibit large 
random fluctuations, but they bracket the 
expected straight line. These data have large 
random errors but small systematic errors. 

A.1. Systematic Errors 
Systematic errors tend to produce inac-

curate results by introducing a common shift 
into measured values. This shift can be an 
offset or a percentage change. For example, 
if your wooden meter stick had the first mm 
cut off, there would be an offset in all of 
your measurements. If, on the other hand, the 
humidity in the room had caused the meter 
stick to expand by 1%, there would be a per-
centage error in all of your measurements. 
Systematic errors may be caused by incorrect 
calibration of the measuring equipment and 
often can be reduced by readjusting or 
recalibrating equipment. Systematic errors 
might also be caused by not correctly 

(a) (b) 

Systematic Errors Random Errors 

Figure 1: Examples of data where 
(a) systematic errors are larger than random 
errors and (b) random errors are larger than 
systematic errors 

Precise but inaccurate Accurate but imprecise 
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accounting for some phenomena in your 
model and might be corrected by adopting a 
more sophisticated model. The effects of 
systematic errors on an experiment should be 
estimated and, if they are important, they 
should be reported separately from the ran-
dom errors in the experimental results. 

Note that the systematic errors have no 
effect on the slope of the graph in Figure 1a, 
but lead to an incorrect value for the inter-
cept. Such systematic errors may or may not 
be important in an experiment, depending on 
whether the slope or the intercept (or both) 
provide critical information. (In other 
experiments, systematic errors could lead to 
an incorrect value for the slope.) 
A.2 Random Errors  

There are many sources of random 
errors, such as equipment limitations, read-
ing uncertainties, and statistical fluctuations. 
Common examples are the uncertainties in 
reading scale divisions of an analog voltme-
ter or a ruler and statistical fluctuations in 
counting rates from random processes. We 
can often reduce these uncertainties by 
repeated measurements. However, while it 
may be possible to reduce random errors, 
they can never be completely eliminated. 
B.  Determination of Uncertainties  
B.1. Uncertainties from Statistics  

If we make repeated measurements of 
the same quantity, we can apply statistical 
analysis to study the uncertainties in our 
measurements. This type of analysis yields 
internal errors, i.e., the uncertainties are 
determined from the data themselves without 
requiring further estimates. The important 
variables in such analyses are the mean, the 
standard deviation and the standard error 
(also known as the error in the mean).  
B.1.1  Mean or Average  

To obtain the best estimate of a meas-
ured quantity from N measurements of the 

quantity, calculate the mean <x> or average 
of the measurements. 
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B.1.2. Standard Deviation  
The standard deviation σ describes the 

scatter of measurements about the average, 
and is given by 
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The variance is the square of the standard 
deviation; v = σ2. 
B.1.3. Standard Error  

The standard error or error in the 
mean is 

 
N

σδ = . 

This quantity is also referred to as the stan-
dard deviation of the mean, because it is an 
estimate of the standard deviation of the 
distribution of means that would be obtained 
if the mean were measured many times. 
Taking more measurements of a given quan-
tity might not improve the standard devia-
tion, but it should make the standard error 
smaller (scaling it as N -½ ). 

So how do you know whether the stan-
dard deviation or the standard error is the 
more important quantity? It depends on the 
question. If you want to know where a 
measurement is likely to fall compared to the 
mean value, the standard deviation tells you 
this. On the other hand, if you want to know 
how well you have determined the average 
value itself, you need to find the standard 
error (standard deviation of the mean). You 
will usually, but not always, be most inter-
ested in the latter. 

As an example, let’s say that everyone 
in the class is asked to take 20 measurements 
of the height of a certain lab TA. Each stu-
dent can determine his or her own average 
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value and standard deviation. The standard 
error will be an indication of the spread in 
the average values reported by all the stu-
dents. It should be our best overall estimate 
of how well we know the TA’s height.  

One could also combine all the read-
ings from all of the students into one large 
file and calculate its mean and standard 
deviation. These might be very similar to the 
values reported by individual students and 
have a similar spread in values. Only when 
you consider the new standard error would 
you realize that the measurement really has 
been improved by adding a lot more data. 
B.1.4. Two Variables  

We can readily extend the concept of 
the standard deviation to the measurement of 
two variables where our N measurements of 
x and y are to be compared to the function 
y=f(x). The standard deviation for such 
measurements would be defined as 
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where m is the number of free parameters 
determined from the data. For a linear rela-
tion, with the intercept and slope determined 
from the data by a least-squares fit, m = 2. 
B.2. Error Estimates 

When we have made only a few obser-
vations, the laws of probability are not appli-
cable to the determination of uncertainties. 
The number of observations in a student 
laboratory may be too small to justify using 
the standard deviation to estimate the uncer-
tainty in a measurement. However, it is usu-
ally possible from an inspection of the meas-
uring instruments to set limits on the range in 
which the true value is most likely to lie. 

Consider a ruler graduated in centime-
ters with fine rulings in millimeters as shown 
in Figure 2 (with only the 5 and 6 cm marks 
visible). We wish to determine the position 
of the arrow. We are certain the arrow is 

between 5.3 and 5.4 cm and we should be 
able to estimate its position to a fraction of a 
division. A reasonable estimate might be 
5.34 + 0.02. (In reading most scales we 
should attempt to estimate some fraction of 
the smallest division, usually between one 
half to one tenth of the scale division.) 

Uncertainties estimated in this way are 
referred to as external errors, i.e., estimating 
the uncertainties requires additional steps 
beyond making the measurements. 

For a complete uncertainty analysis, 
both internal errors and external errors 
should be calculated and checks should be 
made that the results are consistent. In our 
experiments students will usually be 
instructed to choose one particular method or 
the other. 
C. Error Propagation  

In many cases, the quantity that we 
wish to determine is derived from several 
measured quantities. For example, suppose 
that we have measured the quantities t ± δt 
and y ± δy (the δ’s refer to the relatively 
small uncertainties in t and y). We have 
determined that 
 y = 5.32 ± 0.02 cm 
 t = 0.103 ± 0.001 s (1) 
 
We can find g from the relation 
 
 g = g(y,t) = 2y/t2, (2) 
 
which yields g = 10.02922…m/s2. To find 
the uncertainty in g caused by the uncertain-
ties in y and t, we consider separately the 
contribution due to the uncertainty in y and 
the contribution due to the uncertainty in t. 

 ↓ 
|_|_|_|_|_|_|_|_|_|_|_|_|_|_|_|_|  
 5 6 
Figure 2: Example ruler reading 
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Each contribution may be considered sepa-
rately so long as the variables y and t are 
independent of each other. We denote the 
contribution due to the uncertainty in y by 
the symbol δ gy (read as “delta-g-y” or 
“uncertainty in g due to y”). The total error 
in g is obtained by combining the individual 
contributions in quadrature: 
 
 22

yt ggg δδδ +=  (3) 

The basis of the quadrature addition is an 
assumption that the measured quantities have 
a Gaussian distribution about their mean val-
ues. (Distribution functions are described in 
Appendix VI.) When two (or more) inde-
pendent Gaussians are added, the width of 
the new, combined distribution of values is 
given by this same quadrature rule. The δ ’s 
describe the width of this distribution. This 
rule is the same as the rule for adding the 
lengths of vectors that are independent (i.e. 
at right angles to each other). 

This quadrature addition may be used 
when the function depends on more meas-
ured quantities. For a function f(a,b,...,z), 
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However, rather than blindly applying this 
formula, you may avoid needless computa-
tion by estimating separately the contribution 
to the uncertainty in the result from each of 
the individual variables and to ignore any 
terms that are much smaller than the largest 
terms. Because we add the squares of the 
individual contributions, relatively small 
terms have a very small effect on the total 
uncertainty. 

There are two methods by which one 
may calculate δ gy and δ gt, the contributions 
of y and t to the uncertainty in g. In each 
case, the basic idea is to determine by how 

much g would change if y (or t) were 
changed by its uncertainty. 
C.1. Derivative Method 

The variation of a function f with 
respect to a variable x is equivalent to taking 
the first term in the Taylor series expansions 
of f with respect to x:  
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The derivative in Eq. 5 (∂f/∂x) is a partial 
derivative. You may not have encountered 
partial derivatives yet in your math class. 
Simply put, when taking a partial derivative 
with respect to one variable, treat any other 
variables as constants.  

Since each uncertain variable will 
increase, not decrease the final uncertainty, 
we will usually quote the uncertainty in f due 
to the uncertainty in x as the absolute value 
of Eq. 5., i.e., 
 

 fx x
f
x
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=

∂
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The individual contribution to the 

uncertainty in f from a measured uncertainty 
in x is the product of the uncertainty in x 
with the partial derivative of f with respect to 
x. The total error in f is obtained by combin-
ing the individual contributions in quadra-
ture, as given in Eq. 4. 

For the example given in Eq. 2, the 
corresponding formulae are 

 
 δ gt = |∂g/∂t|δt = |-4y/t3|δt (6) 
 δ gy = |∂g/∂y|δ y = |2/t2|δy (7) 
 
so that 
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Substituting in the values from Eq. 1 yields a 
final answer: 
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C.2. Computational Method 
Equations 4 and 5 represent the begin-

ning of the formal method of error propaga-
tion. It is often a good estimate if we instead 
calculate the variations directly, thereby 
avoiding the need to take derivatives. 

We can approximate Eq. 5a by a finite 
difference such as 
 
 ( ) ( ), , ,f x xf x f xδ δ= + −… …  (9) 
 

Consider Eq. 2. We replace Eqs. 6 and 
7 by 
 
 δgt = |g(t+δt , y) - g(t,y)| (10) 
 
       = |2y/(t + δt)2 - 2y/t2| 
and 
 
 δgy = |g(t, y+δy) - g(t,y)| (11) 
 
       = |2(y+δy)/t2 - 2y/t2|. 
 
We again apply Equation 2 to obtain the total 
uncertainty in g. (For δ t << t, Equations 6 
and 10 are equivalent, and for δ y << y, 
Equations 7 and 11 are equivalent.) 

Note that in both methods, it is essen-
tial that the variations be performed sepa-
rately and that the results be added in 
quadrature.  
C.3.Simple Error Propagation 

Often you will simply add, subtract, 
multiply or divide measured values and it is 
helpful to know how to quickly calculate the 
associated errors.  

 
Addition & Subtraction 
 
If g = g(y,t) = y + t 
 
then δgy = δy and δgt = δt 
 
so that 2222

ytggg yt
δδδδδ +=+=  

 
Stated more simply, if you are adding 

two values, simply add their associated 
uncertainties in quadrature to obtain the 
uncertainty in the sum. The same principle 
holds if you are subtracting two numbers; 
add their uncertainties in quadrature to find 
the uncertainty in the difference. There are 
no negative uncertainties, uncertainties are 
always positive numbers and always add.  

Note also that if you are adding a con-
stant, such as 1, or a quantity with a very 
small uncertainty to some other quantity, the 
result above shows that the final uncertainty 
is simply the uncertainty in that other 
quantity. 
 
Multiplication 
If g = g(y,t) = y t  
 
then δgy = tδy and δgt = yδt 
 
so that 
 222222
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yt

δδδδδ +=+=  

Division 
If g = g(y,t) = y/t 
 
then δgy = δy (1/t) and δgt = (y/t2)δt 
 
so that 
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It’s also worth pointing out that frac-
tional or percentage uncertainties in multi-
plication and division behave much like 
absolute uncertainties in addition. In other 
words, if g = yt, 
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with the same result holding if g = y/t. 
If either y or t is a constant or has a 

relatively small fractional uncertainty, then it 
can be ignored and the total uncertainty is 
just due to the remaining term. 

Furthermore, if one of the measured 
quantities is raised to a power, the fractional 
uncertainty due to that quantity is merely 
multiplied by that power before adding the 
result in quadrature. For our original exam-
ple of g = 2y/t2, 
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For the values in our example, δy/y = 0.5% 
and δt/t = 1% (so 2δt/t = 2%), so we can see 
that the contribution from the uncertainty in 
y is negligible compared to the contribution 
from t. We can therefore conclude that the 
fractional uncertainty in our measured result 
for g is about 2%: 
 g = 10.0 ± 0.2 m/s2 
 
D. Significant Figures 

Significant figures are those figures 
about which there exists no or very little 
uncertainty. In the example illustrated in 
Figure 2, the “5” and “3” are known exactly, 
while the “2” is known to some degree of 
certainty. Thus, the number has 3 significant 
figures. Care should be taken to distinguish 
between significant figures and decimal 
places. The scale reading could have been 
expressed as 0.0532 m, but it would still 

have 3 significant figures. The zeros pre-
ceding the “5” are “place markers” and are 
not significant figures. On the other hand, 
quoting the result as 5.320 cm would imply 
that the 2 is well known while the trailing 0 
is also known, but with some degree of 
uncertainty. A trailing zero after the decimal 
point is thus considered to be significant. 
Reporting Results (Measurement 

Intervals) 
It is important to report your results 

with the correct number of significant fig-
ures. Suppose you have obtained from your 
calculations 
 g = 9.98328 m/s2 with δ g = 0.067695 m/s2. 

Begin by rounding the uncertainty in 
your result to one significant figure (or pos-
sibly 2), i.e., δ g = 0.07 m/s2. (Since the 
uncertainty only tells you how well you have 
measured your result, it doesn’t make sense 
to quote an uncertainty to more than one or 
two significant figures.) Then quote g to the 
same number of decimal places, i.e., 
 

g = (9.98±0.07) m/s2, 
not 

g = (9.98328 ±0.067695) m/s2 nor 
g = (9.98328 ±0.07) m/s2 nor 
g = (10 ±0.07) m/s2. 

 
The bold example above has a form some-
times referred to as a measurement inter-
val. If you are using scientific notation, al-
ways use the same power of 10 for both the 
quantity and its uncertainty. For example, 
quote 

h = (6.4±0.3)×10-34 J·s, 
not 

h = (6.4 × 10-34) J·s ± (3 × 10-35) J·s. 
 
You must include the units. 

 


