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Abstract—Most existing Peer-to-Peer (P2P) systems support of a data (i.e., peer that contains the data) can be determined
only title-based searches and are limited in functionality when by a hash function. Chord [15] is an example that employs
compared to today's search engines. In this paper, we present 5 pT.hased scheme. While this approach is scalable, it can
the design of a distributed P2P information sharing system that . . '
supports semantic-based content searches of relevant documents.Only support exapt match queries, and |ncur§ Fhe overhead of
First, we propose a general and extensible framework for search- frequent reorganization as nodes leave and join the network.
ing similar documents in P2P network. The framework is based  In this paper, we address the problem of semantic-based
on the novel concept of Hierarchical Summary Structure. Second, content search in the context of document retrieval. Given a
based on the framework, we develop our efficient document o1 \vhich may be a phrase, a statement or even a paragraph,
searching system, by effectively summarizing and maintaining all .
documents within the network with different granularity. Finally, W€ look for documents that are Semam'ca"y close to the quer_y'
an experimental study is conducted on a real P2P prototype, and WWe propose a general and extensible framework for semantic-
a large-scale network is further simulated. The results show the based content search in P2P network. The super-peer P2P
effectiveness, efficiency and scalability of the proposed system. garchitecture [21] which is more efficient for contents look-

Index Terms— content-based, similarity search, peer-to-peer, Up is employed as the underlying architecture. To facilitate
hierarchical summary, indexing semantic-based content search in such a setting, a novel index-
ing structure called Hierarchial Summary Indexing Structure,
is proposed. With such an organization, all information within

_ the network can be summarized with different granularity, and
Peer-to-Peer (P2P) computing has recently attracted a grggh efficiently indexed. Based on this framework, we develop

deal of research attention. In a P2P system, a large nUMBEF gistributed document search system in P2P network.

of nodes (e.g., PCs connected tq the Internet). can poFentlall)We have implemented a prototype P2P document retrieval
be pooled togethf_er to share their resources, information aé}%tem that employs our method, and evaluated the system per-
services. Many file-based P2P systems have already bg&fhance over a network containing 30 nodes (PCs). Our ex-
deployed. For example, Freenet [7] and Gnutella [8] enaligrimental results show that our hierarchial summary method
users to share digital files (e.g., music files, video, images), afthieves better precision than existing methods. To further
Napster [10] allows sharing of (MP3) music files. Howevegy,qy the scalability of the system, we also implemented a
these systems, including the most recent ones, only provigg,ation model. Our simluation results confirm the efficiency

title-based search facility, which means that the end US&f oy hierarchical indexing method even in very large P2P
cannot retrieve the content unless he knows its unique Namgmwork.

They lack support for semantic-based content search.
Current P2P search mechanisms can be classified into thye

types. First, a centralized index is maintained at a server, Hierarchical Summary Indexing framework. Based on the
all queries are directed to the server. An example of this az,n0sed framework, we develop our peer-based semantic text
proach is the Napster system [10]. However, with exponentigla cy system in Section IV. We address updating issues in

growth in the Internet, it is unlikely that a centralized searc§gtion v, We present results of an extensive performance
engine is capable of performing efficient search. Second, dy in Section VI, and finally, we conclude with directions
query will be flooded across the network to other peers - the ¢ ture work in Section VIL.

qguery node will broadcast the query to its neighboring nodes
who will then broadcast to their neighbors, and so on. Gnutella
[8] is an advocate of this scheme. Clearly, such an approach Il. RELATED WORK

will lead to poor network utilization. Yet another approach is e will first review previous work on P2P architecture. [19]
the Distributed Hash Table (DHT) based scheme where thgyvides an analysis ofiybid P2P architecture, develops an
peers and data are structurally organized so that the locatiginiytical model and uses it to compare various hybrid P2P
H.T. Shen is in Department of Computer Science, National University @frChiteCtureS' [21] eXten'dS [19_]’S hybrid architecture to dESiQn
Singapore. Tel: 68741195. Email: shenht@comp.nus.edu.sg. super-peer network, which strikes a balance between the in-
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I. INTRODUCTION

The rest of this paper is organized as follows. Section
rovides some related work. In Section lll, we introduce
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efficiency by designing good P2P routing and discovery pro-
tocols. However, current systems support only simple queries.
For example, Freenet[7], Gnutella[8] and Napster[10] only (@ SRR < roup index
provide filename-based search facility, which means that the Pealeva< # .............. mg
end user cannot retrieve content unless he knows a file's >

unique name. Queries are broadcast to neighbors which in turn
disseminate the queries to their neighbors and so on. Thus,

Much research effort has focused on improving search &papealevd< i ————————

@\ @\\ el @< Local index

these systems can lead to long response time. Chord[15] and B ! <
CAN[14] are designed for point queries and focus only on the Uit mig ‘jig ‘jtg ‘jtg
problem of query routing and object allocation. [20] and [5] [Document ] [ Document | [ Dooume ] -

support keyword queries with regular expressions. Hence so

far the query issued by clients are up to context of keyword®g. 1. Hierarchical Summary Indexing Structure

complexity and for keyword matching only. More recently,

PlanetP [6] presents a distributed text-base content search

algorithm in P2P communities. Each peer has a summaf¥e shall first discuss the super-peer P2P architecture, and then
produced by VSM. A local inverted index is then built orfook at how such a structure can facilitate the design of the
this summary. However, to our knowledge, there has not beRipposed framework.

much work done to facilitate efficiersemantic-based content

search for document retrieval in P2P sharing systems. IssieSuper-peer P2P Network

on fair load distribution has also been addressed by [16] In our framework, we have adopted a super node P2P

_ Summary techniques are crucial in P2P systems. Due dowitecture [21]. A super-peer P2P network is a P2P network
limit on network bandwidth and peer storage, it is not practicgl ¢ consists of two types of peers: super peers and their clients
to transmit tdhe complete information of a peer to the othegen called peers directly). A super peer is a node that acts
peers in the network: Moreover, a peer .usually contalilgih as a server to a set of clients, and as an equal in a network
thousands of shared files or more. To decu?ie which peer&f’super peers. A peer group is formed by a super-peer and its
route the query ’to_needs a similarity comparison between f¢.ts A straightforward query processing mechanism works
query and peer's information. From the above discussion,df foji0ws. A peer (client) submits its query to the super peer
is clear that effectlye summarization of peer information is jig group. The super peer will then broadcast the query to

is keywords representation. Existing P2P systems, such pgihioring super peer will broadcast the query to its clients,
[20], [5], [9], [3], [1] etc, summarize the peers/documentsyq fyrther forward the query to its neighboring super peers.
by keyword vectors which contain pairs of keyword angyig process is repeated until some criterion is satisfied, for

its weight. Given a query, which is also represented asggample a system specified TTL value that is decremented

vector, the similarity between the query and the summary gf , time the query is broadcast, and the query is dropped
peers/docuemnts are then computed. However, such techniqygs, T = 0.

are limited to exact keyword matching only and cannot be Clearly, while in such a simple approach a super peer

applied for semantic-based content search. In this paper, W8, qcasts the query, its communication overhead is high.
proposgamerarchmal summary |n.dexmg structure for effici sought to minimize this overhead using the concept of
semantlc—based content search in super-peer I_32P netwpikyarchical Summary Indexing Structure.
which can support complex semantic-based queries.

Another related area is high-dimensional indexing. In the , )
literature, many high-dimensional indexing methods have beBn Hierarchical Summary Indexing Structure
proposed. A survey can be found in [2]. However, exist- Summarization is a necessary step for efficient searching,
ing methods are typically not efficient for more than 30especially when the amount of information is very large. A
dimensions and are not scalable [17] due to the ‘dimensionaltymmary is a very compact representation. In our framework,
curse’ phenomenon when the dimensionality reaches high&e introduce a new interesting concept, Hierarchical Summary
VA-file [17] however, has been shown to be superior in nearlpdexing Structure (Summary and Indexing), which is closely
uniform datasets by.p distance functions. In this paper, werelated to the super-peer P2P architecture we employed. Our
extend VA-file to support a different similarity metric forscheme essentially summarizes information at different levels.
document similarity search. We have employed three levels of summarization in our
framework. The lowest level, named asit leve| an informa-
tion unit, such as a document or an image, is summarized. In
the second level, named peer level all information owned
by a peer is summarized. Finally, in the third level, named as

In this section, we present a novel Hierarchical Summasyper levelall information contained by a peer group is sum-
Indexing framework for P2P-based document search systemarized. Clearly, each level covers wider information scope

I1l. A GENERAL FRAMEWORK FORP2PBASED SEMANTIC
SEARCH



. other super peers
global index group index L IV. A SEMANTIC-BASED CONTENT SEARCH SYSTEM

= = Our system facilitates distributed document searching in
P2P network. Suppose there are a large number of peers in the
network, and each peer contains a large number of documents,
what we want to achieve is to find the most relevant documents
as quickly as possible, given a semantic query, such as a

local ind . .
= e sentence. Built on the above framework, the system first needs
local index g% to consider how documents can be effectively summarized, and
local index then how summaries can be efficiently maintained by indexing

techniques. After that, the real content-based search can begin.

Fig. 2. Summary indices in a peer group.

A. Building Summary

To be consistent with the framework, the document sum-
marization is also done in levels document level, peer
than its former level, while performing coarser summarizatiokevel and super peer leveFor each level, our summarization
Figure 1 depicts such a structure for document summary. process consists of two steps by techniques of Vector Space

With the summary information, queries only need to bMOdel (.VSM) [1.8] anq Latent Semantic Indexing (LS!) [13]
r&?pectwely. Briefly, in VSM, documents and queries are

forwarded to nodes that potentially contain the answers. Ea ed b " f weighted t f Th
super peer maintains two pieces of summaries: the su %ptresen € b y veg 'or? 0 We'.ght? erm tr:etzuenc;es. ree
level summaries of its group and its neighboring groups, al ors may be Used in term weighting, 1.€., the tefm frequency

F), the inverse document frequency (IDF), and the normal-

peer level summaries of its group. By examining super levi fion factor. TF s how f tI ¢
summaries, a super peer can determine which peer grou;ﬁZPs'on actor. represents how irequently a term appears
a document, IDF represents how frequently the term also

relevant. Similarly, by examining peer level summaries, a supf r in other d N hile th lization fact
peer can determine which of its peers have the answers. appears in other documents, while thé hormailzation factor
is used to reduce the side-effect of different document sizes

Note that the summarization method is domain specific. §h weights. TFx IDF is the most frequently used equation
fact, all three levels may use same or different summarizatigst calculating weights, which means that a term is important
methods. Generally, there’s a tradeoff between summarizatigfly if it can differentiate a document from others. Similarity
accuracy and the costs of storage and communication. Hig@emparisons among documents and/or between documents and

degree of accuracy requires more information to be retaingglieries are made via the similarity between two vectors, such
thus more storage and more communication overhead incurrgél.the dot product of two vectors.

Since the number of summaries may be large, to furtherLatent Semantic Indexing (LSI) has been proposed to over-
improve the efficiency of the system, we maintain indexes &®me synonymy, polysemy, and noise problems in information
the Summary information_ Figure 1 a|so ShOWS each |eve| Eﬂtrieval. LS| discovers the Underlying semantic correlation
summary has a corresponding index built on top of it. We nar@@ong documents by building a concept space. A technique
the three indexes for unit, peer and super level summariesk@§wn as Singular Value Decomposition (SVD) is used to
local index group indexand global indexrespectively. Figure reduce this concept space into a much lower dimensionality,
2 shows the hierarchical summary indexes in a peer grotigflecting the major associative pattern in documents, while
In each peer, there’s a local index for the retrieval of locall@noring the smaller and less important influences. With the
stored information, built from summaries of all informatiorfoncept space, searching is based on concepts, rather than
units within the peer. With summaries from all peers within @0 individual terms. For each document, it usually contains
group, each super peer maintains an index for quickly locatifiglarge number of terms. However, since the frequency of
specific peers in the group which may contain the need&ms in a document typically follows a Zipfian distribution,
information. Finally, each super peer also has an index bf-: @ small number of keywords can categorize a document's

summaries from all neighboring peer groups to limit the searéRNtent, thus we first use VSM to represent documents as
to a specific peer group. vectors, which is the first step of summarization, and each
omponent of the vector corresponds to the importance of a

Also note that there is no restriction on the index metho‘?g%{d(term) in all the documents of a peer. Document vectors

to be used and any index method (e.g. hash table, index tre then further summarized by SVD to be high-dimensional

can be used. In fact, our framework is g_eneral enough to a”%ints, which is the second step of summarization. This
each peer to autonomously deploy their preferred InOIeXes':summarization step reduces a very high-dimensional space (of
To summarize, in our framework, information searching caens of thousands) to a much smaller one (of less than two
become more guided: a peer group is first decided, then a péemdreds) to facilitate indexing in each peer. Before SVD is
finally, an information unit. Of course, searching performanagsed, we union all documents’ terms to build a dictionary for
largely depends on how a system built on this framewodach peer. Note that this dictionary is built dynamically, and
is implemented. In the next section, we will describe oudifferent peers may have different dictionaries. First all terms
semantic-based content search system in detail. that represent documents are merged to form a dictionary of a



peer, then according to this dictionary, each document vecto(is).
mapped to the dimensionality of the dictionary. Clearly, each
vector will be of very high dimensions. To reduce this largg Indexing Summary

dimensional space, SVD is then applied. . .
We can perform the same process as the above at the petlerr] the last sectlon,' we heve IQOkEd .at how 'to build the
) N . : summary representation - high-dimensional point dmcu-
level, since each peer’s dictionary is still represented by a
ment level peer level and super peer levelEach peer may

vector. First a peer group dictionary is formed by performingontain thousands of documents. Similarly, each group may
union on all peers’ dictionaries, and then SVD is applied tﬁ X !

produce the high-dimensional points. In the same way, we capve @ large number of peers and the whole P2P network

build the global level summaries on super peers. may mclude a large nymper 9f groups. .AS the network size
grows, efficient searching in high-dimensional space becomes

prevalently important. Hence at each level of summary, we

Algorithm 1: Building Hierarchical Summaries ; L . i
g g build an efficient indexing structure:lacal indexat document

; for efg(r:resgfrdocument level on single_ peer's documents, group index at peer
3. Generate its vectard by VSM level on peers in a group, and global |n.dexat super peer
4. Generate peer weighted term dictionagy level on _all gr_oupsj SUPer peers. Ir! this paper, we extend
5. for each document vectorl the existing hl_gh-d_lmensmnal indexing techmque - VA-file
6. transform it into D(vp) dimensionality (Vector Approximation f|_Ie)[17] to perform efficient K Nearest
7 generate high-dimensional point fod by Ne|ghbor (KNN) searching for t_ext documents. We chqse VA-
SVD flle fer seyeral reasons: 1) VA-fll.e outperfc_)rms eequentlall scan
8. Paswp 1o its super peer in h|gh-d|men5|onel space while other |nde>§|ng technlgues
9. for each super peer fail. 2) In P2P enwr_onr_nent, peers are changlng dynam_lcally
10. Generate group weighted term dictionasy and_ freqL_lentIy. _VA-f|Ie is extremely computationally e_fﬂm_ent
11. for eachup for .|nsert|on..lt is a flat _structure and when a new pomt is to
12 transform it into D(vs) dimensionality gtehlerls(ecr)tsetd, it can be simply appended to the file without any
13. g;r;e;aD'[e high-dimensional point fp A VA-file represents the original _data _points_ by _much
14. Passs to other super peers sm_al_ler vectors_. It represents each d|me_nS|o_rb fjts using
15. Generate global weighted term dictionany dividing leach dlmen5|on’s range equally irté mtervals.. By
16. for eachus s_equenually scanning the_ VA-file of a dataset, VA-file can
17 Transform it into D(vn) dimensionality filter .most of the data points and return a small number of
18. Generate high-dimensional point fos candidates for data access. To perform filtering, lower and

upper bounds on the distance from the query to the data
points have to be computed. KNN search is performed in two
phases. First, the VA-file is sequentially scanned to filter the
Algorithm 1 indicates the main routine of building summar%glz(:egtzsr'ttlzgh ﬁ\fe eci(:r?egﬁiissﬂgﬁ:ts i%pgrlfolng; t[hbeonu:ld

in the hierarchical structure as shown in Figure 3, Whe%filtered. Otherwise, it is added into the candidate list and

D represents the dimensionality of a vector. As shown, th
algorithm is bottom-up. For each peer, each of its documert@se K smallest upper bounds are updated. In the second step,

is first represented by a vector of documend)(by Vector candidates are randomly accessed in ascending order of lower

Space Model(VSM) (line 3). Then alids are combined to bounds unftilll the lower pound of the next candidate is greater
t@,ﬁ” the K*" smallest distance.

generate the peer’s weighted term dictionary - vector of pe i .
. . : . However, VA-file was proposed to search the nearest neigh-
by performing an union operation anis (line 4). Each ; ' : . . . .
(vp) by p g P ( ) bor with smallest.,, distance. But in text information retrieval,

vd is transformed into D(vp) dimensionality basedgn(line . o
6), followed by being reduced into a much lower dimension%ﬁlrlle releyance between two doeuments IS usuelly indicated by
e similarity measured by their dot product, i.e.,

point (denote its dimensionality d3,4,.) by SVD (line 7). So
far documents’ summaries Pg,. dimensional points, have D—-1
been built. Next, eachyp is passed to its super peer (line sim(Q, P) = > Q[i] * P[i
8). Each super peer will generate its group’s weighted term =0

dictionary - vector of super peerq) by performing an union  where Q and P are two high-dimensional point represen-
operation on itps (line 10). Similarly,ups are transformed tations of documents, and D is their dimensionality. Con-
into D(vs) dimensionality and reduced into a much smallesequently, the nearest neighbor refers to the point with the
dimensional point (denote its dimensionality &%..,) by largest similarity value. Hence VA-file becomes invalid for
SVD (lines 11-13). So far, each peer's summanD;.., such similarity matric. Here we extend VA-file to use similarity
dimensional point, has been generated. After a super pemstric for text retrieval.

receives other super peersss, it repeats the same step as The key of effective pruning in VA-file is the lower and
generating group’s summary (lines 15-18) by constructingupper bounds computation. The point satisfying the condition
global network’s weighted term dictionary - vector of networlf its lower bound greater than tHé'" smallest upper bound

Fig. 3. Building Hierarchical Summaries.



Qlll upper bound = v[xJ*vy] is no broadcast activity during the whole query processing in

_ our structure. This is one of the main achievements by our
v[x-1] vly-1] viyl .
‘ | | | | summary indices.

0 X VM y ! « Global index: When a query reaches the super peer, it
is first mapped into its high-dimensional point in global
index space, followed by KNN searching in the global
Fig. 4. An example of lower and upper bounds computation for one VA-file. Notice here that the gl_ObaI network for a super
dimension. peer refers to the network which can be reached by the
super peer. The query is then transmitted to Mg ..,
most relevant groups.
« Group index: At each group, the query is first mapped
into its corresponding high-dimensional point in its group
L — index space, followed by KNN searching in the group
VA-file to select the K most relevant peers. The query is
20 then broadcast to th&’,.., most relevant peers.

- mi o e o Peer index: At each peer, similarly, the query is first
ok » ? foc ndex transformed into the peer level’s high dimensional point,
- followed by KNN searching in the local index to select
the K,4,. most relevant documents for final document
Fig. 5. The routine of query processing initialized by the dark peer. similarity measure.

Finally, each peer return&,,. most similar documents to
the client peer issuing the query. At each level of index, the

can be safely pruned. By using the similarity metric, th& value may be set based on the user’s requirements.
lower and upper bounds computation are extended as follows.
Assume at thei’" dimension, the values of Q[i] and PJi] V. UPDATING ISSUES
are mapped into the?” and y*" intervals. Then the lower One crucial difference between P2P and traditional informa-
bound similaritysim;, and upper bound similarityim’, on tion retrieval is that P2P network is dynamic in nature. A peer
it" dimension are computed as below: can join and leave the network at any time. Hence the sum-

{ simiy(Q, P) = vlz — 1] # vy — 1] marization and indexing techniques have to be able to handle

lower bound = v[x-1]*v[y-1] P[i]

groupindex  global index group ind\ex global index

o dynamic operation efficiently. We propose the following peer
simyy(Q, P) = vla] « vly] inysertion aFI)gorithm in our h)i/erarcf?icarl) indexing structgrg as
where V[x] is the maximal value in interval x. Figure 4shown in Figure 6.
shows an example for one dimension’s lower bound and upper
bound computation. Algorithm 2: Peer Insertion
Hence the overall lower and upper bounds on full dimed- Build peer’s local index
sions is the sum ofim}, andsim’, for all . Correspondingly, 2. Pass peer'sp to its super peer
the pruning criterion has to change. For such similarity metrig; if AIRgroup > Ogroup

the point satisfying the condition that its upper bound is leds Re-build and index group peers summary
than K" largest lower bound can be safely pruned. In the Update super peeriss
second step of the search, candidates are randomly acce$sed =~ Broadcasws to other super peers
in descending order of upper bounds until the upper bound 6f for gach super peer
the next candidate is less than thé” largest similarity. 8. it AIRgiopar > Ogiobai
9 Re-build and index super peers
. summar

C. Query Processing 10. else y

Having discussed how the summary indices are constructed, Generate peer’s high-dimensional point
we are now ready to present the semantic-based query procegs- Insert the point into group’s index

ing based on the proposed summary indexing hierarchy. In this

section, we look at how our hierarchical indexing structurlg. 6. Process of a peer joining the P2P Network

can be used to support efficient evaluation of a query. Figure

5 depicts how a query is being processed in a P2P network. IlWWhen a peer joins a P2P network, its documents are first

the figure, dark arrow indicates the direction of a query beirsgmmarized into high-dimensional points on which a local

transmitted and blank arrow indicates the route of results beimglex is built (line 1). Meanwhile, the peer’s first level of

returned. summary -vp is passed to its super peer (line 2). Every
When a peer issues a query Q, Q is first passed to its supeper peer records the accumulated information which has

peer, followed by the hierarchical indexing search in ordé&een updated. To measure such information, we define the

of global index, group index and peer index, which is thillowing parameter called Accumulated Information Ratio

reverse order of the summary construction. Notice that thg®lR) as follows:



TABLE |
PARAMETERS AND SETTINGS

Dldicfuture]
Z |diC[i] - dinuture[iH Name Default Value  Description
AT R(dic. dic — i=0 Network Type Power-Law Topology of network, with
(dic, future) DIdic fupure] outdegree 3.2
> dicli) Max_UsetWait Time  60s Time for a user to wait an
1=0 answer
. . . uery Rate 8e-3 The expected number of
Wher_ed_zc anddicyyture are the current and future weighted Query queries pgr user per second
term dictionary at group or global levelv{ or wvn) . TTL 5 Time-To-Live of an mes-
Dldic is the dimensionality of the future dictionary. sage
[dic future] e y . Y Network Size Number of peers in the
Whenever a peer joins the group, the future weighted term network
dictionary is updated by adding the weight to the correspond-"PeerGroupSize Number of peers in each
ing term. If new terms appear, new entries will be created in = Eeefbgfoul?
the future dictionary. group Tearer Of super peers o
If the AIR at the group level is less than the predefined &, Number of peers for a su-
threshold6,,....,, the new peer’s high-dimensional point is per peer to return

Kyoc Number of documents for

generated and inserted into the index (line 11-12). Recall that a peer to return

we use VA-file technique for summary indexing. Insertion
into the group VA-file (group index) is just simply to append
the point into the end of the file. Otherwise, the whole TABLE Il

group’s index has to be rebuilt (line 4) based on the future CHARACTERISTIC OFREAL DATABSETS.
dictionary. At this time, future dictionary is treated as current

dictionary a_md a new future dictionary is initialize_d to be NUmBer of documents Mi'))% CIilGO CA§2“S4 T'M4EZSS
current dictionary. Then the super peer's summary is updated—Number of queries 30 76 &2 33
and broadcast to other super peers (line 5-6). Each super peerNumber of terms occur- 5831 5743 4867 10337
then checks if it is necessary to update the whole network’s E”mge'n”t more than one doc-

super peers’ summaries and re-built the global index (line 7-

9). The threshold on AIR ensures that the indexing are re-

built only when the information has been updated significantly.

Hence the most frequent operation is the insertion operatinBrwork to show that our proposals are very practical and

to VA-file, which takes constant cost only. applicable to P2P systems.
Our real network has 30 nodes. We use 4 benchmark col-
VI. EXPERIMENT lections of documents which were used by Smart [4], together

6h their queries and human ranking. Table Il presents the

We have evaluated the proposed hierarchical summary gryé‘ teristi f the datasets. We divid h dataset int
indexing scheme in a real P2P setting as well as via simulatighi2ractenstics ol the datasets. e divide each dataset into a
mber of smaller document collections, so that we have 30

In this section, we report the results of the performance study. . ) . .
P P ocument collections in total, each of which contains around
200 documents. Next, we allocate these 30 collections to the
A. Experiment Setup 30 nodes in the network individually. We then cluster the

Table | gives some experiment parameters and their ¢ nodes into 6 groups. One peer in the group is appointed
fault settings for both the real system and the simul&S the super-peer randomly. Finally we build our hierarchical
tor respectively. The system hasetworkSize peers, and Summary structure in the super-peer architecture and evaluate
PeerGroup.Sizepeers per group. For simplicity, we assumé& Py comparing with the VSM summary technique used in
that each group has the same number of peers. Thus, [ple The software we used to compute the truncated SVD is
total number of peer groupsYsuper, is determined byNet- provided in SVDPACK.pack.age [11]. . .
work SizéPeerGroup.Size The topology of super-peer is 1) Effect of Dimensionality:We begin by looking at the
based on power-law, generated according to the PLOD a@ﬁect of dimensionality of summaries. Notice the dimension-
rithm presented in [12] with the average outdegree of 3.2. ality of high-dimensional points (i.e., the dimensionality of

We compare our proposals with the methods applied f¥mmaries) generated by SVD affects the retrieval precision.
[6], both on summary technique and indexing technique. Different datasets may have different optimal dimensionality
Precision of results, Query Response Time, and Load are thf@@chieve the best precision by using SVD [13]. We select the

metrics we are interested, which are used to measure sysf@fr group that contains MED dataset to present the result and
performance. show how the dimensionality of summary affects the precision

result. First, we look at the local document level by selecting
a single peer in the group. Figu? shows the changes of
the average precision when the summary for the documents
In this experiment, we examine the effectiveness of ois reduced to different dimensions with SVD technique. The
summary technique. We first implement a relatively small reptecision of the VSM method is also tested and marked in

B. Retrieval Precision



the figure for comparison. We can see that the precision of 3000 , , —

SVDd by SVD reaches the highest point when the dimension mgigﬂpgégfigg'j;

is reduced to around 100. We also observe that our method £ 2400 peergrouﬁgzémo ke
outperforms VSM method greatly if the dimension is adjusted E

to the proper value. Notice that the precision of our method ; 1800 - % .
can reach 85%. This is because the number of documents 5
in a single peer is small (i.e., around 200). This experiment @' 1200 w -
confirms the superiority of SVD. Furthermore, notice that the = P i

VSM representation of a document is typically in tens of 5 600 * >< 7
thousands of dimensions. However, the summary produced by ’FX ; —
SVD s typically in dimensions of less than two hundreds, 04 é 1'2 1'6 20

which is in a different order of magnitude. It is obvious
that both peer processing time and storage overhead will be
reduced dramatically due to much smaller representation. rig. 7. Effect of Peer Group Size on Query Response Time.

2) Precision of the Whole Systerm the above subsection,
we have seen how the dimensionality of summary affects the
precision at each individual level. After the dimensionality of i ] )
summary at different levels has been determined, the hierd@00 documents in a peer, only 20ms is needed for processing
chical summary structure is constructed. In this experimet duery when VA-file is used, while about 50ms is needed
we integrate the three levels and test the overall precision"(élf'en inverted file is used [6]. As this is expected, we put more
the whole system. The precision is measured by the ratio f@Fus on studying what factors are involved in a super-peer
the number of relevant documents over the number of return@&fting, which may potentially affect the retrieval efficiency.
documents after the whole network has been searched. Good indexing method and high network bandwidth are

Table 11l compares the overall precision achieved by syeertainly beneficial for the retrieval efficiency. Though network
and VSM in the system. We tested a pair of combinations f§andwidth is an uncertain factor in a real setting, which
(K groups Kpeerr Kaoe): (2,2,4) and (1,2,4). For both combi-can be varied from several Kbps to hundreds of Mbps, for
nationS, SVD Outperforms VSM by near'y 3%, or re'ative|yjur Simulation, we Only use two kinds of bandwidth: LAN
20%. Notice that the precision for combination (2,2,4) is mudidOMbps) and WAN (56Kbps). Since experiments results from
lower than combination (1,2,4). This is because the numberlghN and WAN have the same trend, due to space limitations,
returned documents for (2,2,4) is 16 and 8 only for (1,2,4ye only present the results for WAN network.
This experiment proves that our hierarchical summary methodStill, there are some other factors, whose effect may not be
is much more effective and it is applicable for the documef® apparent as the above, such as peer group size. To study all
search in P2P systems. this in more detail, several experiments were conducted. First,
we study the effect of peer group size on Query Response
Time, given a certain query scheduling rate; second, the
relationship between peer group size and the system load is
thoroughly analyzed; and finally, we study the role of super

Queries per user per second(* 10e-3)

TABLE Il
OVERALL HIERARCHICAL SYSTEM SUMMARY PRECISION.

224 124 Al - Y
SVD  0.16 0.28 peer capability in the retrieval efficiency, when the peer group
VSM 013  0.255 size is increased (in our experiment, capability is modelled by

the number of messages peer can process simultaneously and
the number of network connections).
In Figure 7, each super peer's capability is 5 times than
C. Retrieval Efficiency an ordinary peer's, which means the number of messages the
In this experiment, we simulate our system with 10,008uper peer can process and the number of network connections
peers. A large set of synthetic documents were generat@ 5 times than an ordinary pets. From the figure, we
based on the distribution of terms in the real documents wan see that as query rate increases, Query Response Time
used, with each peer having an average of 2000 documemtl increase correspondingly. This can be explained by the
In our simulation, we only consider results from the first 100®llowing: larger query rate results in less time interval for
queries, though queries themselves are generated continuodslgry scheduling, thus increasing larger possibility of query
and endlessly for better simulation. messages to compete for network and computing resources.
We hope we could compare our system with other conteri-there are not enough resources, some messages must wait
based P2P systems, but all these systems employed unstuntd other messages are processed first.
tured P2P architecture, which is certainly less efficient thanMeanwhile, we vary peer group size to study its effect on the
our system, which is built on super-peer structure. Retriev@uery Response Time. From experiments, we found that larger
efficiency of our system is largely attributed to our novgbeer group size may result in worse Query Response Time. In
summary hierarchy built on super-peer architecture. Wiffigure 7, three peer group size configurations are compared:
indexes maintained in super peers, search becomes much n2@@ 400 and 600. Their differences in Query Response Time
efficient than pure P2P network. Given an average numberlmcome more apparent as query rate increases: the Query



Response Time for peer group size 600 is much longer than

12€ | , 1150 Capability improved by 5 —+—
the one when the peer group size is 200. With larger peer Capability improved by 0 ---x---

group size, a super peer is more inclined to be overloaded for
processing queries coming from its peer group. And higher
query rates further make more queries generated and competed
for super peer resources within a time interval, thus further
increasing the delay.

System Load is also analyzed, especially, Load on super
peers, with varying peer group size. Here, Load is measured
by the following aspects:

« Total Messages Transmitted over the whole network (L1);
« Average Messages Received by a Super Peer(L2);
« Average Message Queue length of a Super Peer, measured
in per 20ms(L3); Fig. 8. The effect of super peer capability on search(peer group size=400).
Among the above, the first one (L1) represents the overall
network load, the other two (L2, L3) represent the load on a
super peer, i.e., how many messages are received by a super
peer, how many are still waiting for a super peer to procesare expired. When the simulation is terminated, there may be
some messages still waiting for super peer’s processing. The
TABLE IV more load on the super peer, the more messages in the super
SYSTEM LOAD (THE CAPABILITY OF SUPER PEER IS SAME AS PEER). peer’'s process queue, thus, the less total messages transmitted
over the network when the simulation is terminated.

950

750

550

Query response time(ms)

350

150 1

Queries per user per second(* 10e-3)

size=200 size=400 size=600 size=800 size=1000

[T 227419 149028 123218 108821 99547 ~ To offset the effect of larger peer group size, one way is to
2 575 850 1092 1309 1597 increase super peer capability, making more capable super peer
L3 0015 0.038 0.071 0.116 0.225 cope with more load resulted from larger peer group size. We

do two sets of experiments, first, each super peer’'s capability
is improved by 5; second, each super peer's capability is
TABLE V improved by 10. Table V and Table VI are experiment results
SYSTEM LOAD (THE CAPABILITY OF SUPER PEER IS IMPROVED BY5). from these two sets respectively.
By analyzing these two tables, it is easy to see, by improving
size=200 size=400 size=600 size=800 size=1000 the super peer's capability, fewer messages are left in the
5 327421210 3124318948 3220152672 2143%68 ggggez process queue. Also, we may expe_q the query response time
L3 5517e-6 3.31e-5 8.113e-5 0.0003 0.0009 to improve as super peer’s capablllty improves, since more
messages can be handled by more powerful super peers.

Figure 8 proves our guess, larger super peer's capability
TABLE VI does offset the delay resulted from larger peer group size and

SYSTEM LOAD (THE CAPABILITY OF SUPER PEER IS IMPROVED BYL0). hlgher_ query rate. _By Increasing average _supe_r-peer capability
by 5 times to 10 times, query response time improves a lot.

size=200 size=400 size=600 size=800  size=1000 From above experiments, we can see that, besides two
L1 324273 324218 324167 324093 323745  {actors we listed at the beginning of this section, three factors
2 723 850 2070 2700 3500 i oval offic .
I3 5 5 5 5 5 may affect retrieval efficiency, i.e., query rate, super peer

capability, and peer group size. Query rate is usually user-
decided. A super peer with more capability is always desirable,
From Table IV, we find larger peer group size imposes motkough it may not be much helpful for small load within

load on the super peer. This is expected as more messapesnetwork. In our experiments, for a certain configuration,
are received, and more messages remained in the procgssfound though the Query Response Time improves a lot
gueue. However, it may seem strange that, while the loadhen increasing super-peer capability by 10, there’s little
on the super peer is increased with larger peer group simaprovement when we increase super peer capability further.
the total messages transmitted over the network is decreadddch consideration needs to be given in selecting appropriate
This can be explained by the following: In theory, varying peqreer group size. Though experiments show larger peer group
group size should have no effect on total messages transmittesk is not beneficial for retrieval efficiency, this does not
in the network, since the number of queries scheduled onfyean that a small peer group size is preferred. There is a
depends on query scheduling rate, and, the path length of etreldeoff: Smaller peer group size results in more peer groups,
guery message are same. Therefore, if the simulation contintless more communication overhead when building super-
with no end, total messages transmitted over the netwdsvel indexes. Also, experiments results from [21] showed
for different peer group sizes should be same. However, dbhat increasing peer group size decreases aggregate load, but
simulation ends when waiting times of the first 1000 queriescreases individual load, which can be applied here as well.
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