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Abstract— Most existing Peer-to-Peer (P2P) systems support
only title-based searches and are limited in functionality when
compared to today’s search engines. In this paper, we present
the design of a distributed P2P information sharing system that
supports semantic-based content searches of relevant documents.
First, we propose a general and extensible framework for search-
ing similar documents in P2P network. The framework is based
on the novel concept of Hierarchical Summary Structure. Second,
based on the framework, we develop our efficient document
searching system, by effectively summarizing and maintaining all
documents within the network with different granularity. Finally,
an experimental study is conducted on a real P2P prototype, and
a large-scale network is further simulated. The results show the
effectiveness, efficiency and scalability of the proposed system.

Index Terms— content-based, similarity search, peer-to-peer,
hierarchical summary, indexing

I. I NTRODUCTION

Peer-to-Peer (P2P) computing has recently attracted a great
deal of research attention. In a P2P system, a large number
of nodes (e.g., PCs connected to the Internet) can potentially
be pooled together to share their resources, information and
services. Many file-based P2P systems have already been
deployed. For example, Freenet [7] and Gnutella [8] enable
users to share digital files (e.g., music files, video, images), and
Napster [10] allows sharing of (MP3) music files. However,
these systems, including the most recent ones, only provide
title-based search facility, which means that the end user
cannot retrieve the content unless he knows its unique name.
They lack support for semantic-based content search.

Current P2P search mechanisms can be classified into three
types. First, a centralized index is maintained at a server, and
all queries are directed to the server. An example of this ap-
proach is the Napster system [10]. However, with exponential
growth in the Internet, it is unlikely that a centralized search
engine is capable of performing efficient search. Second, the
query will be flooded across the network to other peers - the
query node will broadcast the query to its neighboring nodes
who will then broadcast to their neighbors, and so on. Gnutella
[8] is an advocate of this scheme. Clearly, such an approach
will lead to poor network utilization. Yet another approach is
the Distributed Hash Table (DHT) based scheme where the
peers and data are structurally organized so that the location
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of a data (i.e., peer that contains the data) can be determined
by a hash function. Chord [15] is an example that employs
a DHT-based scheme. While this approach is scalable, it can
only support exact match queries, and incurs the overhead of
frequent reorganization as nodes leave and join the network.

In this paper, we address the problem of semantic-based
content search in the context of document retrieval. Given a
query, which may be a phrase, a statement or even a paragraph,
we look for documents that are semantically close to the query.
We propose a general and extensible framework for semantic-
based content search in P2P network. The super-peer P2P
architecture [21] which is more efficient for contents look-
up is employed as the underlying architecture. To facilitate
semantic-based content search in such a setting, a novel index-
ing structure called Hierarchial Summary Indexing Structure,
is proposed. With such an organization, all information within
the network can be summarized with different granularity, and
then efficiently indexed. Based on this framework, we develop
our distributed document search system in P2P network.

We have implemented a prototype P2P document retrieval
system that employs our method, and evaluated the system per-
formance over a network containing 30 nodes (PCs). Our ex-
perimental results show that our hierarchial summary method
achieves better precision than existing methods. To further
study the scalability of the system, we also implemented a
simuation model. Our simluation results confirm the efficiency
of our hierarchical indexing method even in very large P2P
network.

The rest of this paper is organized as follows. Section
II provides some related work. In Section III, we introduce
our Hierarchical Summary Indexing framework. Based on the
proposed framework, we develop our peer-based semantic text
search system in Section IV. We address updating issues in
Section V. We present results of an extensive performance
study in Section VI, and finally, we conclude with directions
for future work in Section VII.

II. RELATED WORK

We will first review previous work on P2P architecture. [19]
provides an analysis ofhybid P2P architecture, develops an
analytical model and uses it to compare various hybrid P2P
architectures. [21] extends [19]’s hybrid architecture to design
super-peer network, which strikes a balance between the in-
herent efficiency of centralized search, and the autonomy, load
balancing and robustness to attacks provided by distributed
search.



Much research effort has focused on improving search
efficiency by designing good P2P routing and discovery pro-
tocols. However, current systems support only simple queries.
For example, Freenet[7], Gnutella[8] and Napster[10] only
provide filename-based search facility, which means that the
end user cannot retrieve content unless he knows a file’s
unique name. Queries are broadcast to neighbors which in turn
disseminate the queries to their neighbors and so on. Thus,
these systems can lead to long response time. Chord[15] and
CAN[14] are designed for point queries and focus only on the
problem of query routing and object allocation. [20] and [5]
support keyword queries with regular expressions. Hence so
far the query issued by clients are up to context of keyword’s
complexity and for keyword matching only. More recently,
PlanetP [6] presents a distributed text-base content search
algorithm in P2P communities. Each peer has a summary
produced by VSM. A local inverted index is then built on
this summary. However, to our knowledge, there has not been
much work done to facilitate efficientsemantic-based content
search for document retrieval in P2P sharing systems. Issue
on fair load distribution has also been addressed by [16]

Summary techniques are crucial in P2P systems. Due to
limit on network bandwidth and peer storage, it is not practical
to transmit tdhe complete information of a peer to the other
peers in the network. Moreover, a peer usually contains
thousands of shared files or more. To decide which peer to
route the query to needs a similarity comparison between the
query and peer’s information. From the above discussion, it
is clear that effective summarization of peer information is
absolutely needed in P2P network. So far, the only known
summarization technique for text documents in P2P systems
is keywords representation. Existing P2P systems, such as
[20], [5], [9], [3], [1] etc, summarize the peers/documents
by keyword vectors which contain pairs of keyword and
its weight. Given a query, which is also represented as a
vector, the similarity between the query and the summary of
peers/docuemnts are then computed. However, such techniques
are limited to exact keyword matching only and cannot be
applied for semantic-based content search. In this paper, we
propose a hierarchical summary indexing structure for efficient
semantic-based content search in super-peer P2P network,
which can support complex semantic-based queries.

Another related area is high-dimensional indexing. In the
literature, many high-dimensional indexing methods have been
proposed. A survey can be found in [2]. However, exist-
ing methods are typically not efficient for more than 30-
dimensions and are not scalable [17] due to the ’dimensionality
curse’ phenomenon when the dimensionality reaches higher.
VA-file [17] however, has been shown to be superior in nearly
uniform datasets byLP distance functions. In this paper, we
extend VA-file to support a different similarity metric for
document similarity search.

III. A G ENERAL FRAMEWORK FORP2P-BASED SEMANTIC

SEARCH

In this section, we present a novel Hierarchical Summary
Indexing framework for P2P-based document search system.
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Fig. 1. Hierarchical Summary Indexing Structure

We shall first discuss the super-peer P2P architecture, and then
look at how such a structure can facilitate the design of the
proposed framework.

A. Super-peer P2P Network

In our framework, we have adopted a super node P2P
architecture [21]. A super-peer P2P network is a P2P network
that consists of two types of peers: super peers and their clients
(often called peers directly). A super peer is a node that acts
both as a server to a set of clients, and as an equal in a network
of super peers. A peer group is formed by a super-peer and its
clients. A straightforward query processing mechanism works
as follows. A peer (client) submits its query to the super peer
of its group. The super peer will then broadcast the query to
other peers within the group. At the same time, the super peer
will also broadcast the query to its neighboring super peers. A
neighboring super peer will broadcast the query to its clients,
and further forward the query to its neighboring super peers.
This process is repeated until some criterion is satisfied, for
example, a system specified TTL value that is decremented
each time the query is broadcast, and the query is dropped
when TTL = 0.

Clearly, while in such a simple approach a super peer
broadcasts the query, its communication overhead is high.
We sought to minimize this overhead using the concept of
Hierarchical Summary Indexing Structure.

B. Hierarchical Summary Indexing Structure

Summarization is a necessary step for efficient searching,
especially when the amount of information is very large. A
summary is a very compact representation. In our framework,
we introduce a new interesting concept, Hierarchical Summary
Indexing Structure (Summary and Indexing), which is closely
related to the super-peer P2P architecture we employed. Our
scheme essentially summarizes information at different levels.

We have employed three levels of summarization in our
framework. The lowest level, named asunit level, an informa-
tion unit, such as a document or an image, is summarized. In
the second level, named aspeer level, all information owned
by a peer is summarized. Finally, in the third level, named as
super level, all information contained by a peer group is sum-
marized. Clearly, each level covers wider information scope
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Fig. 2. Summary indices in a peer group.

than its former level, while performing coarser summarization.
Figure 1 depicts such a structure for document summary.

With the summary information, queries only need to be
forwarded to nodes that potentially contain the answers. Each
super peer maintains two pieces of summaries: the super
level summaries of its group and its neighboring groups, and
peer level summaries of its group. By examining super level
summaries, a super peer can determine which peer group is
relevant. Similarly, by examining peer level summaries, a super
peer can determine which of its peers have the answers.

Note that the summarization method is domain specific. In
fact, all three levels may use same or different summarization
methods. Generally, there’s a tradeoff between summarization
accuracy and the costs of storage and communication. Higher
degree of accuracy requires more information to be retained,
thus more storage and more communication overhead incurred.

Since the number of summaries may be large, to further
improve the efficiency of the system, we maintain indexes on
the summary information. Figure 1 also shows each level of
summary has a corresponding index built on top of it. We name
the three indexes for unit, peer and super level summaries as
local index, group indexandglobal indexrespectively. Figure
2 shows the hierarchical summary indexes in a peer group.
In each peer, there’s a local index for the retrieval of locally
stored information, built from summaries of all information
units within the peer. With summaries from all peers within a
group, each super peer maintains an index for quickly locating
specific peers in the group which may contain the needed
information. Finally, each super peer also has an index on
summaries from all neighboring peer groups to limit the search
to a specific peer group.

Also note that there is no restriction on the index methods
to be used and any index method (e.g. hash table, index trees)
can be used. In fact, our framework is general enough to allow
each peer to autonomously deploy their preferred indexes.

To summarize, in our framework, information searching can
become more guided: a peer group is first decided, then a peer,
finally, an information unit. Of course, searching performance
largely depends on how a system built on this framework
is implemented. In the next section, we will describe our
semantic-based content search system in detail.

IV. A SEMANTIC-BASED CONTENT SEARCH SYSTEM

Our system facilitates distributed document searching in
P2P network. Suppose there are a large number of peers in the
network, and each peer contains a large number of documents,
what we want to achieve is to find the most relevant documents
as quickly as possible, given a semantic query, such as a
sentence. Built on the above framework, the system first needs
to consider how documents can be effectively summarized, and
then how summaries can be efficiently maintained by indexing
techniques. After that, the real content-based search can begin.

A. Building Summary

To be consistent with the framework, the document sum-
marization is also done in levels -document level, peer
level and super peer level. For each level, our summarization
process consists of two steps by techniques of Vector Space
Model (VSM) [18] and Latent Semantic Indexing (LSI) [13]
respectively. Briefly, in VSM, documents and queries are
represented by vectors of weighted term frequences. Three
factors may be used in term weighting, i.e., the term frequency
(TF), the inverse document frequency (IDF), and the normal-
ization factor. TF represents how frequently a term appears
in a document, IDF represents how frequently the term also
appears in other documents, while the normalization factor
is used to reduce the side-effect of different document sizes
on weights. TF× IDF is the most frequently used equation
for calculating weights, which means that a term is important
only if it can differentiate a document from others. Similarity
comparisons among documents and/or between documents and
queries are made via the similarity between two vectors, such
as the dot product of two vectors.

Latent Semantic Indexing (LSI) has been proposed to over-
come synonymy, polysemy, and noise problems in information
retrieval. LSI discovers the underlying semantic correlation
among documents by building a concept space. A technique
known as Singular Value Decomposition (SVD) is used to
reduce this concept space into a much lower dimensionality,
reflecting the major associative pattern in documents, while
ignoring the smaller and less important influences. With the
concept space, searching is based on concepts, rather than
on individual terms. For each document, it usually contains
a large number of terms. However, since the frequency of
terms in a document typically follows a Zipfian distribution,
i.e., a small number of keywords can categorize a document’s
content, thus we first use VSM to represent documents as
vectors, which is the first step of summarization, and each
component of the vector corresponds to the importance of a
word(term) in all the documents of a peer. Document vectors
are then further summarized by SVD to be high-dimensional
points, which is the second step of summarization. This
summarization step reduces a very high-dimensional space (of
tens of thousands) to a much smaller one (of less than two
hundreds) to facilitate indexing in each peer. Before SVD is
used, we union all documents’ terms to build a dictionary for
each peer. Note that this dictionary is built dynamically, and
different peers may have different dictionaries. First all terms
that represent documents are merged to form a dictionary of a



peer, then according to this dictionary, each document vector is
mapped to the dimensionality of the dictionary. Clearly, each
vector will be of very high dimensions. To reduce this large
dimensional space, SVD is then applied.

We can perform the same process as the above at the peer
level, since each peer’s dictionary is still represented by a
vector. First a peer group dictionary is formed by performing
union on all peers’ dictionaries, and then SVD is applied to
produce the high-dimensional points. In the same way, we can
build the global level summaries on super peers.

Algorithm 1: Building Hierarchical Summaries
1. for each peer
2. for each document
3. Generate its vectorvd by VSM
4. Generate peer weighted term dictionaryvp
5. for each document vectorvd
6. transform it into D(vp) dimensionality
7. generate high-dimensional point forvd by

SVD
8. Passvp to its super peer
9. for each super peer
10. Generate group weighted term dictionaryvs
11. for eachvp
12. transform it into D(vs) dimensionality
13. generate high-dimensional point forvp

by SVD
14. Passvs to other super peers
15. Generate global weighted term dictionaryvn
16. for eachvs
17. Transform it into D(vn) dimensionality
18. Generate high-dimensional point forvs

Fig. 3. Building Hierarchical Summaries.

Algorithm 1 indicates the main routine of building summary
in the hierarchical structure as shown in Figure 3, where
D represents the dimensionality of a vector. As shown, the
algorithm is bottom-up. For each peer, each of its documents
is first represented by a vector of document (vd) by Vector
Space Model(VSM) (line 3). Then allvds are combined to
generate the peer’s weighted term dictionary - vector of peer
(vp) by performing an union operation onvds (line 4). Each
vd is transformed into D(vp) dimensionality based onvp (line
6), followed by being reduced into a much lower dimensional
point (denote its dimensionality asDdoc) by SVD (line 7). So
far documents’ summaries -Ddoc dimensional points, have
been built. Next, eachvp is passed to its super peer (line
8). Each super peer will generate its group’s weighted term
dictionary - vector of super peer (vs) by performing an union
operation on itsvps (line 10). Similarly,vps are transformed
into D(vs) dimensionality and reduced into a much smaller
dimensional point (denote its dimensionality asDpeer) by
SVD (lines 11-13). So far, each peer’s summary -Dpeer

dimensional point, has been generated. After a super peer
receives other super peers’vss, it repeats the same step as
generating group’s summary (lines 15-18) by constructing a
global network’s weighted term dictionary - vector of network

(vn).

B. Indexing Summary

In the last section, we have looked at how to build the
summary representation - high-dimensional point fordocu-
ment level, peer level, and super peer level. Each peer may
contain thousands of documents. Similarly, each group may
have a large number of peers and the whole P2P network
may include a large number of groups. As the network size
grows, efficient searching in high-dimensional space becomes
prevalently important. Hence at each level of summary, we
build an efficient indexing structure: alocal indexat document
level on single peer’s documents, agroup index at peer
level on peers in a group, and aglobal indexat super peer
level on all groups’ super peers. In this paper, we extend
the existing high-dimensional indexing technique - VA-file
(Vector Approximation file)[17] to perform efficient K Nearest
Neighbor (KNN) searching for text documents. We chose VA-
file for several reasons: 1) VA-file outperforms sequential scan
in high-dimensional space while other indexing techniques
fail. 2) In P2P environment, peers are changing dynamically
and frequently. VA-file is extremely computationally efficient
for insertion. It is a flat structure and when a new point is to
be inserted, it can be simply appended to the file without any
other cost.

A VA-file represents the original data points by much
smaller vectors. It represents each dimension byb bits using
dividing each dimension’s range equally into2b intervals. By
sequentially scanning the VA-file of a dataset, VA-file can
filter most of the data points and return a small number of
candidates for data access. To perform filtering, lower and
upper bounds on the distance from the query to the data
points have to be computed. KNN search is performed in two
phases. First, the VA-file is sequentially scanned to filter the
false ’positive’. As each VA is processed, if its lower bound
is greater than the currentKth smallest upper bound then it
is filtered. Otherwise, it is added into the candidate list and
the K smallest upper bounds are updated. In the second step,
candidates are randomly accessed in ascending order of lower
bounds until the lower bound of the next candidate is greater
than theKth smallest distance.

However, VA-file was proposed to search the nearest neigh-
bor with smallestLp distance. But in text information retrieval,
the relevance between two documents is usually indicated by
the similarity measured by their dot product, i.e.,

sim(Q,P ) =
D−1∑
i=0

Q[i] ∗ P [i]

where Q and P are two high-dimensional point represen-
tations of documents, and D is their dimensionality. Con-
sequently, the nearest neighbor refers to the point with the
largest similarity value. Hence VA-file becomes invalid for
such similarity matric. Here we extend VA-file to use similarity
metric for text retrieval.

The key of effective pruning in VA-file is the lower and
upper bounds computation. The point satisfying the condition
of its lower bound greater than theKth smallest upper bound
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can be safely pruned. By using the similarity metric, the
lower and upper bounds computation are extended as follows.
Assume at theith dimension, the values of Q[i] and P[i]
are mapped into thexth and yth intervals. Then the lower
bound similaritysimi

lb and upper bound similaritysimi
ub on

ith dimension are computed as below:{
simi

lb(Q,P ) = v[x− 1] ∗ v[y − 1]
simi

ub(Q,P ) = v[x] ∗ v[y]

where v[x] is the maximal value in interval x. Figure 4
shows an example for one dimension’s lower bound and upper
bound computation.

Hence the overall lower and upper bounds on full dimen-
sions is the sum ofsimi

lb andsimi
ub for all i. Correspondingly,

the pruning criterion has to change. For such similarity metric,
the point satisfying the condition that its upper bound is less
thanKth largest lower bound can be safely pruned. In the
second step of the search, candidates are randomly accessed
in descending order of upper bounds until the upper bound of
the next candidate is less than theKth largest similarity.

C. Query Processing

Having discussed how the summary indices are constructed,
we are now ready to present the semantic-based query process-
ing based on the proposed summary indexing hierarchy. In this
section, we look at how our hierarchical indexing structure
can be used to support efficient evaluation of a query. Figure
5 depicts how a query is being processed in a P2P network. In
the figure, dark arrow indicates the direction of a query being
transmitted and blank arrow indicates the route of results being
returned.

When a peer issues a query Q, Q is first passed to its super
peer, followed by the hierarchical indexing search in order
of global index, group index and peer index, which is the
reverse order of the summary construction. Notice that there

is no broadcast activity during the whole query processing in
our structure. This is one of the main achievements by our
summary indices.
• Global index: When a query reaches the super peer, it

is first mapped into its high-dimensional point in global
index space, followed by KNN searching in the global
VA-file. Notice here that the global network for a super
peer refers to the network which can be reached by the
super peer. The query is then transmitted to theKgroup

most relevant groups.
• Group index: At each group, the query is first mapped

into its corresponding high-dimensional point in its group
index space, followed by KNN searching in the group
VA-file to select the K most relevant peers. The query is
then broadcast to theKpeer most relevant peers.

• Peer index: At each peer, similarly, the query is first
transformed into the peer level’s high dimensional point,
followed by KNN searching in the local index to select
the Kdoc most relevant documents for final document
similarity measure.

Finally, each peer returnsKdoc most similar documents to
the client peer issuing the query. At each level of index, the
K value may be set based on the user’s requirements.

V. UPDATING ISSUES

One crucial difference between P2P and traditional informa-
tion retrieval is that P2P network is dynamic in nature. A peer
can join and leave the network at any time. Hence the sum-
marization and indexing techniques have to be able to handle
dynamic operation efficiently. We propose the following peer
insertion algorithm in our hierarchical indexing structure as
shown in Figure 6.

Algorithm 2: Peer Insertion
1. Build peer’s local index
2. Pass peer’svp to its super peer
3. if AIRgroup > θgroup
4. Re-build and index group peers summary
5. Update super peer’svs
6. Broadcastvs to other super peers
7. for each super peer
8. if AIRglobal > θglobal
9. Re-build and index super peers

summary
10. else
11. Generate peer’s high-dimensional point
12. Insert the point into group’s index

Fig. 6. Process of a peer joining the P2P Network

When a peer joins a P2P network, its documents are first
summarized into high-dimensional points on which a local
index is built (line 1). Meanwhile, the peer’s first level of
summary - vp is passed to its super peer (line 2). Every
super peer records the accumulated information which has
been updated. To measure such information, we define the
following parameter called Accumulated Information Ratio
(AIR) as follows:



AIR(dic, dicfuture) =

D[dicfuture]∑
i=0

|dic[i]− dicfuture[i]|

D[dicfuture]∑
i=0

dic[i]

Wheredic anddicfuture are the current and future weighted
term dictionary at group or global level (vs or vn) .
D[dicfuture] is the dimensionality of the future dictionary.
Whenever a peer joins the group, the future weighted term
dictionary is updated by adding the weight to the correspond-
ing term. If new terms appear, new entries will be created in
the future dictionary.

If the AIR at the group level is less than the predefined
thresholdθgroup, the new peer’s high-dimensional point is
generated and inserted into the index (line 11-12). Recall that
we use VA-file technique for summary indexing. Insertion
into the group VA-file (group index) is just simply to append
the point into the end of the file. Otherwise, the whole
group’s index has to be rebuilt (line 4) based on the future
dictionary. At this time, future dictionary is treated as current
dictionary and a new future dictionary is initialized to be
current dictionary. Then the super peer’s summary is updated
and broadcast to other super peers (line 5-6). Each super peer
then checks if it is necessary to update the whole network’s
super peers’ summaries and re-built the global index (line 7-
9). The threshold on AIR ensures that the indexing are re-
built only when the information has been updated significantly.
Hence the most frequent operation is the insertion operation
to VA-file, which takes constant cost only.

VI. EXPERIMENT

We have evaluated the proposed hierarchical summary and
indexing scheme in a real P2P setting as well as via simulation.
In this section, we report the results of the performance study.

A. Experiment Setup

Table I gives some experiment parameters and their de-
fault settings for both the real system and the simula-
tor respectively. The system hasNetworkSize peers, and
PeerGroup Sizepeers per group. For simplicity, we assume
that each group has the same number of peers. Thus, the
total number of peer groups,Nsuper, is determined byNet-
work Size/PeerGroup Size. The topology of super-peer is
based on power-law, generated according to the PLOD algo-
rithm presented in [12] with the average outdegree of 3.2.

We compare our proposals with the methods applied in
[6], both on summary technique and indexing technique.
Precision of results, Query Response Time, and Load are three
metrics we are interested, which are used to measure system
performance.

B. Retrieval Precision

In this experiment, we examine the effectiveness of our
summary technique. We first implement a relatively small real

TABLE I

PARAMETERS AND SETTINGS.

Name Default Value Description
Network Type Power-Law Topology of network, with

outdegree 3.2
Max UserWait Time 60s Time for a user to wait an

answer
Query Rate 8e-3 The expected number of

queries per user per second
TTL 5 Time-To-Live of an mes-

sage
Network Size Number of peers in the

network
PeerGroupSize Number of peers in each

peer group
Kgroup Number of super peers to

return
Kpeer Number of peers for a su-

per peer to return
Kdoc Number of documents for

a peer to return

TABLE II

CHARACTERISTIC OFREAL DATABSETS.

MED CISI CACM TIMES
Number of documents 1033 1460 3204 425
Number of queries 30 76 64 83
Number of terms occur-
ring in more than one doc-
ument

5831 5743 4867 10337

network to show that our proposals are very practical and
applicable to P2P systems.

Our real network has 30 nodes. We use 4 benchmark col-
lections of documents which were used by Smart [4], together
with their queries and human ranking. Table II presents the
characteristics of the datasets. We divide each dataset into a
number of smaller document collections, so that we have 30
document collections in total, each of which contains around
200 documents. Next, we allocate these 30 collections to the
30 nodes in the network individually. We then cluster the
30 nodes into 6 groups. One peer in the group is appointed
as the super-peer randomly. Finally we build our hierarchical
summary structure in the super-peer architecture and evaluate
it by comparing with the VSM summary technique used in
[6]. The software we used to compute the truncated SVD is
provided in SVDPACK package [11].

1) Effect of Dimensionality:We begin by looking at the
effect of dimensionality of summaries. Notice the dimension-
ality of high-dimensional points (i.e., the dimensionality of
summaries) generated by SVD affects the retrieval precision.

Different datasets may have different optimal dimensionality
to achieve the best precision by using SVD [13]. We select the
peer group that contains MED dataset to present the result and
show how the dimensionality of summary affects the precision
result. First, we look at the local document level by selecting
a single peer in the group. Figure?? shows the changes of
the average precision when the summary for the documents
is reduced to different dimensions with SVD technique. The
precision of the VSM method is also tested and marked in



the figure for comparison. We can see that the precision of
SVDd by SVD reaches the highest point when the dimension
is reduced to around 100. We also observe that our method
outperforms VSM method greatly if the dimension is adjusted
to the proper value. Notice that the precision of our method
can reach 85%. This is because the number of documents
in a single peer is small (i.e., around 200). This experiment
confirms the superiority of SVD. Furthermore, notice that the
VSM representation of a document is typically in tens of
thousands of dimensions. However, the summary produced by
SVD is typically in dimensions of less than two hundreds,
which is in a different order of magnitude. It is obvious
that both peer processing time and storage overhead will be
reduced dramatically due to much smaller representation.

2) Precision of the Whole System:In the above subsection,
we have seen how the dimensionality of summary affects the
precision at each individual level. After the dimensionality of
summary at different levels has been determined, the hierar-
chical summary structure is constructed. In this experiment,
we integrate the three levels and test the overall precision of
the whole system. The precision is measured by the ratio of
the number of relevant documents over the number of returned
documents after the whole network has been searched.

Table III compares the overall precision achieved by SVD
and VSM in the system. We tested a pair of combinations for
(Kgroup, Kpeer, Kdoc): (2,2,4) and (1,2,4). For both combi-
nations, SVD outperforms VSM by nearly 3%, or relatively
20%. Notice that the precision for combination (2,2,4) is much
lower than combination (1,2,4). This is because the number of
returned documents for (2,2,4) is 16 and 8 only for (1,2,4).
This experiment proves that our hierarchical summary method
is much more effective and it is applicable for the document
search in P2P systems.

TABLE III

OVERALL HIERARCHICAL SYSTEM SUMMARY PRECISION.

(2,2,4) (1,2,4)
SVD 0.16 0.28
VSM 0.13 0.255

C. Retrieval Efficiency

In this experiment, we simulate our system with 10,000
peers. A large set of synthetic documents were generated
based on the distribution of terms in the real documents we
used, with each peer having an average of 2000 documents.
In our simulation, we only consider results from the first 1000
queries, though queries themselves are generated continuously
and endlessly for better simulation.

We hope we could compare our system with other content-
based P2P systems, but all these systems employed unstruc-
tured P2P architecture, which is certainly less efficient than
our system, which is built on super-peer structure. Retrieval
efficiency of our system is largely attributed to our novel
summary hierarchy built on super-peer architecture. With
indexes maintained in super peers, search becomes much more
efficient than pure P2P network. Given an average number of
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Fig. 7. Effect of Peer Group Size on Query Response Time.

2,000 documents in a peer, only 20ms is needed for processing
a query when VA-file is used, while about 50ms is needed
when inverted file is used [6]. As this is expected, we put more
focus on studying what factors are involved in a super-peer
setting, which may potentially affect the retrieval efficiency.

Good indexing method and high network bandwidth are
certainly beneficial for the retrieval efficiency. Though network
bandwidth is an uncertain factor in a real setting, which
can be varied from several Kbps to hundreds of Mbps, for
our simulation, we only use two kinds of bandwidth: LAN
(10Mbps) and WAN (56Kbps). Since experiments results from
LAN and WAN have the same trend, due to space limitations,
we only present the results for WAN network.

Still, there are some other factors, whose effect may not be
so apparent as the above, such as peer group size. To study all
this in more detail, several experiments were conducted. First,
we study the effect of peer group size on Query Response
Time, given a certain query scheduling rate; second, the
relationship between peer group size and the system load is
thoroughly analyzed; and finally, we study the role of super
peer capability in the retrieval efficiency, when the peer group
size is increased (in our experiment, capability is modelled by
the number of messages peer can process simultaneously and
the number of network connections).

In Figure 7, each super peer’s capability is 5 times than
an ordinary peer’s, which means the number of messages the
super peer can process and the number of network connections
are 5 times than an ordinary peer′s. From the figure, we
can see that as query rate increases, Query Response Time
will increase correspondingly. This can be explained by the
following: larger query rate results in less time interval for
query scheduling, thus increasing larger possibility of query
messages to compete for network and computing resources.
If there are not enough resources, some messages must wait
until other messages are processed first.

Meanwhile, we vary peer group size to study its effect on the
Query Response Time. From experiments, we found that larger
peer group size may result in worse Query Response Time. In
Figure 7, three peer group size configurations are compared:
200, 400 and600. Their differences in Query Response Time
become more apparent as query rate increases: the Query



Response Time for peer group size 600 is much longer than
the one when the peer group size is 200. With larger peer
group size, a super peer is more inclined to be overloaded for
processing queries coming from its peer group. And higher
query rates further make more queries generated and competed
for super peer resources within a time interval, thus further
increasing the delay.

System Load is also analyzed, especially, Load on super
peers, with varying peer group size. Here, Load is measured
by the following aspects:

• Total Messages Transmitted over the whole network (L1);
• Average Messages Received by a Super Peer(L2);
• Average Message Queue length of a Super Peer, measured

in per 20ms(L3);

Among the above, the first one (L1) represents the overall
network load, the other two (L2, L3) represent the load on a
super peer, i.e., how many messages are received by a super
peer, how many are still waiting for a super peer to process.

TABLE IV

SYSTEM LOAD (THE CAPABILITY OF SUPER PEER IS SAME AS PEER’ S).

size=200 size=400 size=600 size=800 size=1000
L1 227419 149028 123218 108821 99542
L2 575 850 1092 1309 1597
L3 0.015 0.038 0.071 0.116 0.225

TABLE V

SYSTEM LOAD (THE CAPABILITY OF SUPER PEER IS IMPROVED BY5).

size=200 size=400 size=600 size=800 size=1000
L1 324110 323848 321272 274668 235062
L2 722 1419 2056 2436 2884
L3 5.517e-6 3.31e-5 8.113e-5 0.0003 0.0009

TABLE VI

SYSTEM LOAD (THE CAPABILITY OF SUPER PEER IS IMPROVED BY10).

size=200 size=400 size=600 size=800 size=1000
L1 324273 324218 324167 324093 323745
L2 723 850 2070 2700 3500
L3 0 0 0 0 0

From Table IV, we find larger peer group size imposes more
load on the super peer. This is expected as more messages
are received, and more messages remained in the process
queue. However, it may seem strange that, while the load
on the super peer is increased with larger peer group size,
the total messages transmitted over the network is decreased.
This can be explained by the following: In theory, varying peer
group size should have no effect on total messages transmitted
in the network, since the number of queries scheduled only
depends on query scheduling rate, and, the path length of each
query message are same. Therefore, if the simulation continues
with no end, total messages transmitted over the network
for different peer group sizes should be same. However, our
simulation ends when waiting times of the first 1000 queries
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Fig. 8. The effect of super peer capability on search(peer group size=400).

are expired. When the simulation is terminated, there may be
some messages still waiting for super peer’s processing. The
more load on the super peer, the more messages in the super
peer’s process queue, thus, the less total messages transmitted
over the network when the simulation is terminated.

To offset the effect of larger peer group size, one way is to
increase super peer capability, making more capable super peer
cope with more load resulted from larger peer group size. We
do two sets of experiments, first, each super peer’s capability
is improved by 5; second, each super peer’s capability is
improved by 10. Table V and Table VI are experiment results
from these two sets respectively.

By analyzing these two tables, it is easy to see, by improving
the super peer’s capability, fewer messages are left in the
process queue. Also, we may expect the query response time
to improve as super peer’s capability improves, since more
messages can be handled by more powerful super peers.

Figure 8 proves our guess, larger super peer’s capability
does offset the delay resulted from larger peer group size and
higher query rate. By increasing average super-peer capability
by 5 times to 10 times, query response time improves a lot.

From above experiments, we can see that, besides two
factors we listed at the beginning of this section, three factors
may affect retrieval efficiency, i.e., query rate, super peer
capability, and peer group size. Query rate is usually user-
decided. A super peer with more capability is always desirable,
though it may not be much helpful for small load within
the network. In our experiments, for a certain configuration,
we found though the Query Response Time improves a lot
when increasing super-peer capability by 10, there’s little
improvement when we increase super peer capability further.
Much consideration needs to be given in selecting appropriate
peer group size. Though experiments show larger peer group
size is not beneficial for retrieval efficiency, this does not
mean that a small peer group size is preferred. There is a
tradeoff: Smaller peer group size results in more peer groups,
thus more communication overhead when building super-
level indexes. Also, experiments results from [21] showed
that increasing peer group size decreases aggregate load, but
increases individual load, which can be applied here as well.



VII. C ONCLUSION

In this paper, we have examined the issues of supporting
content-based searches in a distributed peer-to-peer informa-
tion sharing system. We have proposed the first general and
extensible hierarchical framework for summary building and
indexing in P2P network. Based on this framework, we have
presented an effective two-step summarization technique to
transform large size representations of documents, peers, and
super peers into small high-dimensional points, and extend
known indexing technique to index transformed points at
corresponding level for efficient peer and document search.
A prototype and a simulated large-scale network have been
designed to evaluate the system performance. Our experiments
showed that such a hierarchical summary indexing structures
can be easily adopted and our prototype system achieves
remarkable achievements.
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