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Abstract

Conventional shape matching for engineering models primarily considers rigid shape similarity. They do not seek global shape
similarity while considering large local deformations. However, engineering models created by some parametric-based design can
involve large parametric changes. As a result, they do not share similarity in their global shape. Hence our goal is to develop shape
representations for global matching of part models that can have large dissimilarity through stretching and/or bending.

This paper presents a strategy of an integrated shape matching for contours of engineering drawings inspired by the divide and
conquer paradigm. The original shape is decoupled into two levels of shape representations namely, higher level structure and
lower level geometry. The higher level structure matching is then achieved driven by optimal integrated solutions from matching
of lower level local geometry. Feature points are first extracted using curve evolution to attain the two levels of representations.
In order to suit engineering semantics, a new significance function for a point is defined to suppress small features using discrete
curve evolution. To conduct the integrated shape matching, a mechanism of using lookup tables is employed to associate these two
levels of representations. Dynamic Time Warping and Elastic Matching are employed at different levels of shape representations in
order to achieve the optimal integration. To demonstrate the advantages of the proposed work for engineering shapes, experiments
for contour evolution, feature point registration, and shape-based similarity for retrieval are conducted. They are also compared
with the existing methods. The experimental results show that the structure-oriented contour representation and matching is more
meaningful and consistent from an engineering perspectives.
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1. Introduction ing drawings automatically is an important task for the
engineering community.

Matching the shape of engineering drawings ! has caught
attentions from many research fields in recent years [1-5].
However, a primary shortcoming of existing engineering
shape matching is that they seldom seek global similarity
while considering large local deformations. Besides, there is
limited practice in conducting shape matching by incorpo-
rating the notion of the geometric constraints or the struc-
ture content. Therefore, engineering parts with large local
disparity, although similar in global structure, do not share
similar shape representations. Hence, it is necessary to de-

Engineering drawings have played an essential role in
carrying engineering specifications throughout the prod-
uct lifecycle. As the start of 2D and most 3D part mod-
eling, sketches and embodiment drawings serve to express
and communicate ideas at either the earlier stage of design
or the manufacturing process, respectively. Among the ar-
eas of specified knowledge, 2D geometric constraints and
related structure information possess strong associations
with product modeling including design intent, manufac-
turing constraints and operations, functional parameters,
and so on. Therefore, retrieving and reusing past engineer-

1 In this paper, we refer engineering drawings as all kinds of 2D visual
data in binary form for engineering parts including CAD drawings,
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scanned images and orthogonal projection views of 3D engineering
parts.
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Fig. 1. Motivation for structure-oriented shape matching. (a) Examples resulting from parametric-based modeling. (b) Examples from the
handle class of ESB [6] to illustrate the structure-based shape classification.

velop shape representations and corresponding matching
strategies that can retrieve engineering drawings for such a
purpose. In order to achieve this goal, we explore the struc-
ture content embedded in the shape while allowing large
local variations through stretching and bending. For this
study, we define local deformation as the change of form
by stretching or bending of local features, such that the re-
sult of the deformation is distinct from the original. Here
local features refer to those geometric entities that encom-
pass topology and geometry. In this paper, shape is defined
as a closed external boundary or contour from engineering
drawings. First, the contour carries engineering significance
by embedding the topology through vertex/point connec-
tivity, and some geometric constraints such as perpendic-
ularity and tangency by local geometry. Second, the con-
tour captures significant visual parts of the objects includ-
ing both the global structure and the local geometry. Be-
sides, it articulates the deformations from both the struc-
tural and geometric perspectives. Hence, the study of the
contour will support the targeted structure-oriented shape
representation and matching.

The structure-oriented shape matching proposed in this
paper is motivated by its engineering utilities as described
below:

Parametric-based modeling : Geometric constraints and
related structure information serve important roles in
variant-based design such as feature-based parametric
modeling. In Fig. 1(a), the part in the middle is derived
from the part on the left by local stretching, and becomes
the part on the right by further local bending. However,
these local deformations throughout the process do not
change the structure or even some of the local geometric
constraints completely at each stage. It is because of
the insensitiveness to local geometry alterations of the
structure that drives the reuse of the existing parts. The
feasibility of adapting local geometry to create new parts
motivates retrieval of parts using structural similarity.

Partial dissimilarity recognition : It has been an important
task to identify what has been changed on different ver-
sions of the same part during product lifecycle. For exam-
ple, design engineers may change the geometry to opti-
mize the performance during analysis, while manufactur-
ing engineers may revise the geometry to address manu-
facturing concerns.

Shape-based classification : Shape-based structure infor-

mation has been an essential property for similarity judg-
ment and therefore, a shape-based classification criteria.
Examples in Fig. 1(b) not only share a similar appear-
ance, but also possess a similar functionality and maybe
manufacturing process. In many classes of shapes, users
may have classification criteria not just based on rigid
similarity but also allowing stretching, bending, or even
adding and removing local features within the classes.

Partial matching : It is a common interest for people to
look for global shape similarity, local similarity or dissim-
ilarity for potential knowledge reuse. Therefore partial
matching is a good motivation to this study.

2. Related Work

In this section, we review some of the related work from
the fields of computer vision and engineering.

2.1. Technical drawing retrieval

This paper addresses the problem of matching engineer-
ing drawings using shape content. 2D engineering shape
matching has been under study using various shape de-
scriptors.

Graph-based methods : Fonseca et al. [2] proposed a graph-
based shape descriptor to encode spatial relations such
as adjacency and inclusion among the components ex-
tracted from the drawing. Graph spectrum was then used
for matching. Park et al. [4] also proposed a graph-based
descriptor to represent spatial compositions of union and
subtraction among the dominant components extracted
from the drawing. However, the components defined have
a limited capability to deal with freeform shape. Both
methods are built upon the idea that the content stored
in each node and each edge of the graph can be ex-
tracted from the drawings. However, these methods may
encounter difficulties when the drawings under study do
not possess the properties to construct the graph.

Feature vector-based methods : Compared with the graph-
based shape representation, this category has more va-
rieties in representing the shape. Among the various ap-
proaches, one of them is string-based representation: Gero
et al. [7] represented the shape of an architecture drawing
by encoding the convexity and concavity of the boundary



in a string representation. Then they used string match-
ing to retrieve similar drawings. Bai and Xu [8] recog-
nized elements along a boundary by simulating a chain
code for boundary representation. In addition to con-
vexity and concavity, geometries such as angle, length,
or area are also important properties for contour-based
shape matching. Berchtold et al. [9] represented the con-
tour using the above geometric properties under different
parameterization-based methods such as Mehrotra-Gary,
angular profile, and section coding. In addition, Berch-
told et al. [3] developed an extended feature objects built
upon Fourier descriptor to perform partial matching. Be-
sides the above two groups of methods, statistics-based
methods have also been applied in engineering draw-
ing retrieval. Pu and Ramani [1] used spherical harmon-
ics and histograms to conduct engineering drawing re-
trieval, which showed robustness for most kinds of 2D
drawings. Miiller and Rigoll in [5] employed pseudo 2D
Hidden Markov Model to retrieve user-specified shapes.
However, the feature vector-based approaches represent
the overall shape while mixing global structure and lo-
cal geometry. Therefore, they resulted in unexpected and
inconsistent retrievals.

2.2. Contour-based multimedia image retrieval

There are some methods using skeleton graph [10] and
shock graph [11] for structure matching. However, to be
more specific to this context, we only review those using
contour /boundary as the subject for the structure-based
shape matching. Many efforts have been taken to compare
contour-based shape descriptors such as Safar’s work in
[12]. Well known classical methods for 2D contour match-
ing include curvature scale space [13,14], chain code [15],
turning function [16], and Fourier descriptors [17]. Specif-
ically, there are two major approaches for the structure-
oriented contour matching: one is the similarity distance-
based method, which relies on matching selected points us-
ing distance functions. The other is the morphing-based
method which typically involves finding the mapping be-
tween two sets of the selected points that minimizes the
energy needed to deform a set of points into another set
of points. For both, the first step is to sample the fea-
ture points from the boundaries which can either be ran-
dom/uniform points or points with geometric significance.
The second step is to find an optimal warping path that
the corresponding feature points transverse.

Similarity distance-based : Various papers have been pub-
lished on contour matching using similarity distance be-
tween feature points. Belongie et al. [18] developed a lo-
cal shape descriptor, called shape context, to identify the
best correspondence between the sampling points from
the query and the ones from the target. Various stud-
ies have extended Belongie’s work: Jain and Zhang [19]
used geodesic shape context to find the feature point
correspondence; Zheng and Doermann [20] incorporated

relaxation labelling to optimize the graph matching of
the shape context; Grauman and Darrell [21] used Earth
Mover’s distance to calculate the shape context similar-
ity between two feature points. Latecki [22] developed a
strategy of using a group of convex or concave segments
to recognize the visual correspondence between the query
and the target. The similarity between the corresponding
parts is computed using the classical turning function.
Liu et al. [23] developed a list of local geometric proper-
ties as the shape descriptors for the feature points. Then
they used Dynamic Time Warping (DTW) to find the
best feature point correspondence. Gdalyahu et al. [24]
treated the contours as strings and employed string edit
operations to identify the optimal feature point align-
ment during the DTW matching process. Grigorescu et
al. in [25] proposed to use a local shape descriptor of
a feature point, called distance set, to find the feature
point correspondence. The distance set was composed of
the relative distances between the feature point and its
K nearest neighbors. Both Petrakis et al. [26] and Scott
[27] devised strategies to adapt DTW for the special pur-
pose of contour matching. Petrakis excluded cases where
the feature points have no possibility of matching, while
Scott enforced order preserving conditions during the
matching process.

Morphing-based methods : These methods have been used
recently in curve matching under non-rigid deformations.
The idea was derived from a physics analogy to iden-
tify the minimum total work needed to deform one curve
into another. Two major mathematical models to calcu-
late the morphing energy have been used in recent years,
one of which is Elastic Matching (ET) and the other is
Thin Plate Spline (TPS) model. Basri [22] developed a
spring model, a linear model, and a continuous model
to include both stretching and bending energy into the
cost functions of continuous contour matching. Sebas-
tian [28] employed another ET function for continuous
contour matching. The alignment of the starting points
was considered for better matching. Sederberg [29] de-
veloped a deformation cost function including stretching
and bending energy for discrete contour blending. Singh
[30] used the deformation cost defined in [29] for contour
matching. Strategies based on triangle inequality were
used to reduce the computational cost for matching. The
TPS model has been popular for non-rigid registration
recently. Unlike the ET, the TPS model does not include
the computation of the stretching energy explicitly. Chui
and Rangarajan [31] proposed an optimization frame-
work of the TPS model for robust point matching using
simulated annealing and a softassign algorithm. Simi-
larly, Wang et al. [32] optimized the TPS model by land-
mark sliding. However, the existing techniques have only
been applied to multimedia contour matching.

In summary, there has been no distinctive effort to first de-

couple the structure from the overall shape by excluding

some geometry, and then retrieve the geometry ignored be-
fore for structure matching optimization. In addition, ge-



ometry constraints are not of any concern in the existing
work and there has been no study in engineering shape
matching society to address non-rigid shape similarity.

3. Overview of Contour Representation and
Matching

In this section, we present the major procedures involved
in developing the proposed work. Our target is to con-
duct the contour matching in conformity with engineering
semantics in addition to be invariant to scaling, transla-
tion, and rotation. To be more specific, the shape repre-
sentation should conform to the topology and the geome-
try supported by engineering semantics; the matching re-
sult should be consistent with engineering interpretation:
in this case overall structure similarity with tolerance to lo-
cal stretching and bending. The following part presents the
algorithm along with the pseudo code and the explanation
for each procedure. The details are presented in Section 4.

Contours are first extracted from images of the engi-
neering drawings. Polygon representations of the contours
are constructed next. The primitives of the polygon are
line segments with attributes being length and absolute
orientation. We scale the image before polygonization for
the purpose of normalization. Our algorithm then captures
the higher-level structure by extracting the feature points
which manifest themselves as the end positions of the geo-
metric primitives in an engineering drawing. In this paper,
structure is reflected from the topology defined by these fea-
ture points and the local geometry carried by these points.
Matching these feature points indicates possible structure
conformity between two contours. Nevertheless, the infor-
mation carried by the feature points does not support ev-
ery detail of the shape matching. A geometry comparison is
conducted based on the results from the candidate feature
point correspondence. Each case of the feature point cor-
respondence depends on the choice of starting points from
both contours, where rotational alignment is considered.
Therefore, iterative processes of the feature point corre-
spondence and the geometry comparison are performed in
order to exhaust the rotational alignments stored before-
hand. The structure matching is optimized when the sys-
tem achieves its minimal integrated cost at local geometry
comparison.

More specifically, let P and P’ be the representations of
two contours, with P = {p;|i = 1,..., N}, p; € R?, a list
of N consecutive points and P’ = {p},|i’ =1,..,N'}, pl, €
RZ2, alist of N’ consecutive points. A cyclically ordered list
of N segments S = {s1, S2,...s5} is derived from P with
si = (pi,pj), ¢ and j are two consecutive indexes in P.
Similarly, S’ = {s}, s5,...s'y } can be derived from P’.

The procedure FEATURE-POINT-EXTRACTION ex-
tracts those points that contain engineering implications. In
image processing, feature points are defined as points with
curvature extreme, cusp, inflection points, and the discon-
tinuities of curvature because they usually carry perceptual

Algorithm 1 Contour Matching
Input Contour representation P and Contour representa-
tion P’.
Output Correspondence I' between feature points and sim-
ilarity cost cost™.
1: F,F' «— FEATURE-POINT-EXTRACTION(P, P')
2: U« INITTALIZE-STARTING-PAIRS-FEATURE-
POINTS(F, F")
3: cost™ «— oo
4: for i = 0 to |¥| do

r - FEATURE-POINT-
REGISTRATION(P, P ,F,F' ;).
6:  cost* —  INTEGRATED-GEOMETRY-

COMPARISON(P,P',I")
if cost* < cost* then
: I — I and cost* — cost*.
9:  endif
10: end for
11: return Correspondence I' and similarity cost cost*

significance [23]. In this paper, we define feature points as
those points that are end points of lines and arcs. ? Based on
this definition, points carrying geometric constraints such
as perpendicularity and tangency are included in feature
points. On the other hand, the initial data P and P’ at
hand usually includes some features of small protrusions or
depressions as well as noise. Their existence perturbs the
intended structure matching. In this paper, we adapt the
idea of discrete curve evolution from [33] to extract defined
feature points. Given P at the initial stage, we delete the
point carrying the least significance in a stepwise manner
until the curve evolution breaks the stopping condition.
Full descriptions are given in Section 4.1.1 to explain the
defined significance function and the stopping condition.
The end of the evolution gives a set of feature points F' =
{frlk = 1,...K}, where k maps to the index of P through
a look-up table described in Section 4.1.2. The same pro-
cedure applies to P’ and all the other database models as
well. The result from extracting the feature points of P’ is
F ={fk =1,..K'}.

The procedure of INITIALIZE-STARTING-PAIRS-
FEATURE-POINTS prunes the search of the starting
pairs of feature points and returns a list of candidate pairs
U, = (fx, fi,) where f; and f}, share similar local geom-
etry. Matching P and P’ uniquely determines the relative
global rotation between two contours. We assume that the
optimal alignment is well approximated by at least one of
the K K' possible selections of fi and f;,. The details are
presented in Section 4.1.1. This procedure leaves us with a
set of ¥ C F' x F’ candidate global alignments, such that
normally |¥| < KK’ and |¥| < NM.

Given a member ¥; = (f, f;,) from ¥, the procedure
of FEATURE-POINT-REGISTRATION will establish

2 In this paper, we regard polylines as a list of line segments. In
addition,we only deal with simple curves of uniform curvature or
compound curves composed of simple curves.



the candidate correspondence path T' = {(fx, fi,).r =
1,...R, fr € F,and f, € F'}. In reality, not every feature
point has its corresponding point for matching. We there-
fore employ the relaxed DTW to identify the optimal path
such that the matching cost between F' and F”’ is minimum.
Full descriptions of this procedure are presented in Section
4.2.1. The procedure of INTEGRATED-GEOMETRY-
COMPARISON computes the total matching cost between
two contours fed by the path of I' from FEATURE-POINT-
REGISTRATION. The result of ' will segment P and P’
into \R| groups of geometric entities. We use ET to quantify
the dissimilarity of each pair of groups. The total cost in-
tegrated from overall geometry comparison is then used as
an indicator of the best correspondence between F and F’.

The search for the best I" and the least cost* continues un-
til ¥ is exhaustively visited. The set of procedures inside the
loop is the core part of the structure-oriented shape match-
ing. The prior intention of the structure-oriented shape
matching is clearly indicated inside the algorithm. That is,
we establish the feature point correspondence using only
structure-related content and evaluate the similarity cost
by retrieving all the geometric content involved. We do not
use the cost from the structure matching as the function for
evaluation because its influence is embedded in the compu-
tation of the integrated geometry comparison. In addition,
the integrated geometry comparison is a more comprehen-
sive evaluation of the overall matching.

The bottleneck of Algorithm 1 is from the for loop where
K and K’ are the main factors for the computational com-
plexity. The size of the for loop is dependent on the size
of ¥ which has an upper bound of KK’. Inside the for
loop, it is O(K K’ + max(K, K')) to compute the matching
cost using DTW, and O(min(K, K')) to compute the inte-
grated geometry comparison using ET. Overall, the com-
plexity from the for loop is O(K?K'?). Outside the for
loop, the complexity is O(N 4 N’) for feature point extrac-
tion and O(K K’) for the procedure of initialization. Sec-
tion 4 will explain the reasons. Finally, the overall compu-
tational complexity of Algorithm 1is O(N + N’ + K2K'?).
The real computational time of the proposed algorithm is
lower than what the complexity indicates. The number of
feature points K is limited in reality. This is because our
work only focuses on engineering shapes with obvious struc-
ture and low frequency of small features, as is explained in
Section 5. Therefore, the real computation involved is man-
ageable, even though the complexity is O(K?K"?+N+N").

4. Methods of Contour Representation and
Matching

In this section, we present the details of the various proce-
dures involved in Algorithm 1. Section 4.1 explains how the
two levels of shape representation are constructed and asso-
ciated using extracted feature points. Section 4.2 presents
the process of matching with two levels of shape represen-
tation.

4.1. Structure-oriented contour representation

4.1.1. Feature point extraction

Feature points are extracted to formalize geometric enti-
ties to reflect the structure. It is important to locate those
desired feature points without changing their local geom-
etry. Therefore, it is not applicable to extract interesting
points by involving smoothing which will change the posi-
tions of the points. There are several related works on find-
ing so-called critical points from polygonal curves without
changing the positions of these critical points. Marji and Siy
[34] used Region of Support to identify dominant points.
Latecki and Lakdmper [33] evolved polygon contours by re-
moving the least significant point stepwise. Similar to [33],
Zhuang et al. [35] employed a method called Conservative
Bounding Contour for the same purpose. They employed a
sliding circle to remove points on contours of CAD draw-
ings. However, the simplification was dependent on the ra-
dius of the sliding circle.

We adopt the method of discrete contour evolution
from [33] because it helps to remove small features and
noises while extracting the feature points. In addition,
this method does not depend on any extra parameters,
but only the intrinsic geometry. At each evolution step, a
pair of consecutive segments s; and s;1 is replaced with a
single segment connecting the endpoints of s; and s;41 if
the relevance measure defined in Eq. (1) is the minimum.

Bsis si41)l(si)l(si+1) (1)

Usi) +U(siv1)
where [(s;, s;4+1) is the turning angle at the joint point p;
of s; and s;41; {(s;) is the length of s; normalized with
regard to the perimeter of the contour. The main property
of the relevance measures quantifies the contribution of the
joint point of s; and s;41 to the overall shape. However,
the relevance measure does not consider the relative region
around the interesting points. Instead, it only takes into
account of the absolute relevance at the points in question
during the evolution. Therefore, smoothness on an arc is
not well-maintained and will cause false positive feature
points later on. At the same time, small perturbations may
resist evolution because of their high relevance measures
compared with those of points on smooth curves. (see Fig.
2(a) and Fig. 2(c))

The algorithm of how feature points are attained is de-
scribed in Algorithm 2, with details of each procedure ex-
plained in the following parts. Let P™ = {p;|i = 1,...N™}
be a contour representation at the my;, stage of the evolu-
tion. Initially, m is set to O.

Relative Relevance Measure RK: We compute K of each
point in P using Eq. (1) at first. In this paper, we use the
signed turning angle instead of the absolute turning angle.
The sign of the turning angle is related to the traverse di-
rection of the contour, which is indicated by the direction
vector s, of s;. Top n candidate points that have the small-
est | K| are selected to compute RK, where n = 25%N by
default. We then choose the point that has the biggest RK

K(p;) =
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Fig. 2. (a)-(e) Comparison of contour evolution results for examples (1% row) using the Relevance Measure in [33] (2"¢ row) and the proposed
Relative Relevance Measure (3"? row). Red circles highlight the portions where the process of evolution are different between these two

methods.

Algorithm 2 Feature Point Extraction

Input A contour representation P™
Output A set of feature points F'.

1: k—m

2: repeat

3:  p; «— RELATIVE-RELEVANCE-MEASURE(P*)
4: Pkl — PF with p; removed from P*

5: k—k+1

6: until STOPPING-CONDITION-

CHECK(P’“,P’“*,PO)
7. F FINALIZE—FEATURE—POINT(Pk)
8: return I

for the stepwise evolution until the steady state defined
later is broken.

The Relative Relevance Measure RK defined in Eq. (2)
is obtained as follows: we first pick up a region around
the point p; using a circle of radius r, where r = p if
p > max(l(s;),l(six1)) or r = max(l(s;),l(si+1)) if p <
min(l(s;),1(si+1)),(p > 0). As a result, a number of L
points from P are included in the region on the left-hand-
side of p;, and a number of R points from P are included
in the region on the right-hand-side of p; .

RE (p;) = miwx (1K (p) = K (pice)]) - 2)

The idea behind RK is to quantify the dominance of those
points carrying small visual significance measured by K.
The reason to choose max function is to find out the max-
imal visual difference between the points in question and

3 In the implementation, k = (k+N) mod N for an arbitrary index
k where N is the number of points in P.

their neighbors. Points on an arc usually share similar K
with its neighbors, while points on small perturbations have
opposite signs of K to at least one of their neighbors, which
will incur a high value of RK. This is especially true when
small perturbations are located on long line segments (see
Fig. 2(a)).

Stopping condition for contour evolution: The contour
will finally converge to a line segment if there is no stopping
condition exerted on the evolution process. We employ a self
shape similarity measure Y defined in Eq. (3) to determine
the stage at which the steady state is broken, i.e. the change
of the overall shape is significant enough to be larger than
the threshold of Y.

A(f(P*), f(P*1)
f(PY)
where A is a distance function and f is a shape function on
contour. In this paper, we use L distance and the area of
the contour as the default. The self shape similarity mea-
sure defined above takes the relative change into account.
The evolution process stops at T > ~y where - is an experi-
mental parameter. Fig. 2 shows the comparisons of the con-
tour evolution using the method in [22] and the proposed
method on engineering drawings. The stopping condition
defined by Eq. (3) is the same for both methods regarding
each example. The performance demonstrates its advan-
tages over the existing method and the results are more
meaningful from an engineering perspectives. The proposed
contour evolution with the definitions of RK is more sta-
ble at smooth curves than the method in [33]. It gives more
priority to remove small perturbations than to merge seg-
ments on curves during evolution as is demonstrated from
Fig. 2(a) to Fig. 2(d). Based on our observation, the pro-

Ty = (k>=1), 3)
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indicate feature point correspondence. (a) Lower level original point set and higher level feature point set. (b) Lookup table to associate two

levels of data representations.

posed method is also more stable when Yy, is relaxed (see
Fig. 2(e)). This is because the method in [33] may select
a point on a smooth curve to be deleted at one step. The
deletion may cause a small change of the shape which may
be within the acceptance of Y. However, a small relax-
ation of T}, may cause a significant change of the shape by
allowing accumulation of small changes of the shape. On
the contrary, the proposed evolution method takes priority
to select a point from a perturbation during one evolution
step, which may cause a large change of the shape. There-
fore, a small relaxation of Y is not large enough to allow
the deletion of the selected point, thus keeping the evolu-
tion stable under small relaxation of Y.

Feature point finalization: Recall from the feature point
definition that points on an arc except the end points are
not regarded as the feature points because their existence is
mainly due to the process of polygonization and the evolu-
tion. Besides, our desire of the structure matching without
influence from local bending will have difficulties if these
points are regarded as the feature points. In the procedure
of FINALIZE-FEATURE-POINT, points with turning an-
gle |5(p;)| < o are not included in F' if they also satisfy the
heuristic conditions below:

B(pi—1) = B(pi) =~ B(pir1) N min(l(s;),(si41))

max(1(s;), [(si41))

>¢. (4)

The bottleneck of Algorithm 2 is from the repeated pro-
cesses of the contour evolution. The computation cost in-
side each process is O(N). The number of iterations is
dependent on the result from STOPPING-CONDITION-
CHECK. In this implementation, T} is set to be a tight
threshold in order not to miss any feature point. Therefore,
it is unlikely that the times of the iterations is close to N.
Hence, the system takes only a polynomial complexity of
O(N) in this procedure.

4.1.2. Two levels of shape representation and their
association

We decouple the original shape into two levels of repre-
sentations: a set of feature points F' = {fx|k = 1,...K} and
groups of segments G = {g,|r = 1, ..., R}, where g, is a list
of segments derived from P. The key to link F' and G is
the use of a look-up table T' = {tx|k = 1, ..., K}, where t
stores the corresponding index of F'in P. The association is
established during the decoupling process in Section 4.1.1.
The relationship is that the end points of g, and g/. are two
consecutive pairs of feature points on the correspondence
path . For example, let (fx, fx') and (fi+i, fr4+1) be two
consecutive pairs of feature points on I' resulted from the
structure matching of F' and F’. As a result, two groups

gr = {se|r =t .t} and g = {s), |7 =t} .., t 0}
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Fig. 4. Shape functions: a) Turning angle: + indicates convexity/concavity [16]. b) Shape context [18]: the reference axis defined by the
feature point and the center of the shape makes the shape context rotation invariant. ¢) Turning function [16].

from P and P’ are formed. A geometry comparison between
the corresponding groups is conducted after the feature
point correspondence I" between two shapes is established.
The system regroups the segments each time after estab-
lishing the correspondence path in order to evaluate the
overall similarity. As a result, |G| = |G’|. Fig. 3 illustrates
the relationship between the two shape representations. It
illustrates the role of the lookup tables between the feature
point correspondence from the structure matching and the
group correspondence for the geometry comparisons. No-
tice that the third corresponding group is obtained by ig-
noring some feature points during the structure matching.
The advantage of using two level of shape representation
is that the structure matching is not affected by local vari-
ations, while the local dissimilarities are resolved through
the comparison inside the lower level geometry representa-
tions which are groups of segments defined by the feature
point correspondence. In this way, we seek a system-level
solution by leveraging the higher level abstract with the
lower level detail first, and then optimize the solution by
resorting to the content ignored before.

Geometric properties of feature points: We adopt two
popular shape functions to describe the local geometric
property of the feature points. One is the turning angle
[16] and the other is the shape context [18]. These two geo-
metric quantities are both invariant to scaling, translation
and rotation. Turning angle is an absolute measure of the
local geometry. However, it does not consider the relation
between the feature point and the global shape. Therefore,
two non-corresponding feature points which have the same
turning angle may falsely match. Shape context encodes
the relative shape of the local feature point with regard to
the global shape into a two dimensional histogram. How-
ever, a statistical measure can also get a false match due
to the nature of statistical computation. The advantage of
combining them is to achieve more accuracy for the struc-
ture matching. For each feature point in F', we use 5(fx)
to denote its signed turning angle (see Fig. 4(a)) and 7 (fx)
to its shape context (see Fig. 4(b)).

Geometric properties of a group: The geometry within
each group is represented by its turning function 9(g,) [16]
(see Fig. 4(c)). Turning function is an aggregation of turn-
ing angles at a set of consecutive sampling points parame-

terized by the length of the segments. The merits of turn-
ing function are that it captures the characteristics of con-
vexity /concavity, perpendicularity /tangency, and smooth-
ness/sharpness along the contour. Besides, it is invariant
under translation and scaling. In this paper, rotational in-
variance is not of concern since each group has a linear se-
quence of segments. A circle is the only place where the end
points of a group are the same. In such a case, the turning
function per se is rotation invariant. The vertical variation
along the turning function can be used to infer the deforma-
tion caused by bending, while the horizontal information
along the turning function reflects the effects from stretch-
ing. A single representation of ¥(g,) can therefore be used
for the geometry comparison.

4.2. Integrated matching with two levels of shape
representation

In this part, Section 4.2.1 describes the process of how
feature point registration is established for potential match-
ing of the structure. Section 4.2.2 then presents the geom-
etry comparison which is used to select the best structure
matching.

4.2.1. Feature point correspondence

Similarity cost of two feature points: Similar feature
points should have similar geometric properties. In this
paper, we use turning angle to narrow down the necessity
for the feature point comparison. If two feature points have
opposite polarities, i.e. convexity and concavity, the cost
between them is set as infinity. Otherwise, the similarity
cost between two feature points f, on F' and f;, on F' is
measured by:

FeaSimDis(fi, fr,) = x*(n(fu), 7(fir)) ,  (5)

where x? is the Hungarian distance between two shape
context measures [18]. The similarity distance defined in
Eq. (5) is not just used for the structure matching dis-
cussed in the later part of this section, but is also help-
ful in the procedure of INITTALIZE-STARTING-PAIRS-
FEATURE-POINTS. In this paper, we choose only convex
feature points with FeaSimDis(fx, fi,) < ¢ as the start-
ing pair of feature points.
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Fig. 5. Examples of merging feature points: (a) A = A’ and E = D’ by discarding both B — D and B’ — C’, or B = B’ and D = C’ by
discarding C. (b): 1 = 1’ and 6 = 2’ by discarding 2 — 5, or 1 = 1’ and 5 — 2’ by discarding 2 — 4; No discarding of 2 or 2 — 3 because
of the polarity conflict between them. (¢) Computation of the merging cost in DTW implementation.

Merging cost of discarding feature points: In reality, it is
unnecessary to enforce every feature point to be registered
with another during the structure matching. These con-
straints may bring undesirable results since the size of F
and F” may not be the same in most of the cases. Fig. 5(a)
and Fig. 5(b) illustrate the motivation to discard some fea-
ture points during the structure matching. However, ignor-
ing some feature points does not work without a penalty.
The strategies to define the merging costs for each shape
descriptor are different. Eq. (6) and Eq. (7) give the defini-
tions of the merging costs.

My = 0(fr) (6)
k=p

Mﬂ:f(q_],}_lk;lw(fk), S(r(f) +7fa) ()

The final merging cost to discard feature points from p to
q in F is defined as following:

MergeCost(p, q, F) = WGMG + w‘n'Mﬂ' ) (8)

where wy and w,: are parameters to leverage the effects from
these two shape functions. The merging cost is defined as
above because the ignorance of feature points from p to ¢ is
equivalent to connecting feature point from p — 1 to ¢ + 1.
The algebraic sum of the signed turning angle aggregates
the cost if all feature points share the same polarity (convex
or concave) and cancels the structure change if there is any
difference in the polarity (see Fig. 5(a) and Fig. 5(b)). The
way it calculates the merging cost from the shape context
is to reflect the difference before and after the merge. The
intuition behind it is that the difference will be little if the
gap from p — 1 to g+ 1 is small. We then combine the costs
using weighted summation to measure the overall effects
from merging.

Structure matching by relaxed DTW : The purpose of this
part is to establish a path I' = {(frs fl)rlr =1,..., R, fi €
F,and f;, € F'} to register F with F” so that the matching
cost is minimal. Thus the formulation of the problem is

mFin MatchingCost(F, F', T, (fx, fir)) » 9)

where (fx, f7.) is the pair of the starting feature points fed
by W. We solve the problem by adopting DTW. In this

approach, all point-wise relationships are presented in a
K x K’ table where K is the size of F and K’ is the size
of F'. Each node (4, j) of the DTW table characterizes the
relationship between a pair of feature points (f;, fJ’) It in-
cludes its own index (4, j), the index (ip,jp) of its parent
node, which is the pair of feature points previous to this
node along the path, and node(i, j), the minimal cost of
matching at this node so far along the path.

In this paper, several considerations are included to relax
the matching by DTW: 1) there is no necessity to enforce
each feature point to be registered with another, except the
first pair of feature points which is designated by ¥. 2) the
parent node is not necessary to be the adjacent previous
node to the node of interest on DTW table. The optimal
cost of the incomplete path ending at node (i, 7) is defined
in Eq. (10).

node(i, j) = min(Prevnode + Merge) + FeaSim  (10)
r,c

Prevnode = node(i — r,j — ¢) (11)

FeaSim = FeaSimDis(f;, f}) (12)

Merge = MergeCost(i—r,i, F)+MergeCost(j—c, j, F'),
(13)

where the optimal cost at node (i, j) is obtained by travers-
ing all possible values of (r,¢),0 <r < C,,0<c¢ < C.. C,
and C, are constants designated as the number of feature
points that can be skipped at most. We choose appropriate
C,- and C. in the implementation in order to make the fea-
ture point registration less constrained by its position in F’
and F’. The specific (r, ¢) that gives the minimal cost is used
to locate the parent node (see Fig. 5(c)). As a result, the
complete path that has the minimal cost computed from
the DTW table represents the optimal structure matching.

It is worthwhile to point out that the proposed DTW
matching uses feature points that are not uniformly sam-
pled from the original shape. They are not even close to
each other in geodesic distance space in most of the cases.
Therefore, the parameter behind the D'TW table in this pa-
per is the feature point sequence rather than the geodesic
distance which is the arc length for the 2D contour. Tra-
ditional matching of uniform sampling points using DTW
is highly dependent on the arc length-based parameteriza-
tion. Hence, two feature points which correspond to each
other in their structure representations may reside too far
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Fig. 6. Examples to illustrate the purpose of using feature points for structure matching: (a) DTW matching using uniform sampling points:
corresponding points do not match because they are out of the constraint region for matching (b) DTW matching using feature points:
corresponding feature points match because they occupy close positions in the feature point sequences.

away and not be registered as the result (see Fig. 6(a)). An
example in Fig. 6 explains the motivation to use the pro-
posed structure matching strategy for engineering draw-
ings. We only use the geometry properties from the feature
point for the structure matching, thus ignoring the effects
caused by geodesic distance-based parameterization.

4.2.2. Geometry comparison

The process of ET can be treated as deforming a group
of segments into another group of segments. In order to
conduct ET with both stretching and bending, a pair of
corresponding segments has to be provided. In reality, the
numbers of segments inside the corresponding groups are
different from each other. Therefore, it is hard to conduct
ET when the segment correspondences are unknown.

During this implementation, we propose a simple idea to
compare the difference between g, and ¢... Recall from Sec-
tion 4.1.2 that turning function ¥(g,) is used to represent
the geometry inside a group g, so is it for every group in G.
Let 9(G) be the concatenation of ¥(g,)s. We therefore col-
lect U > N values from ¥(G) by uniform sampling without
breaking (g, )s. Similarly, we collect U values from 9(G’).
Let N, and N/ be the number of sampling values inside
¥(gr) and ¥(g..) respectively, and Ngr = average(N,, N!).
We then recollect a number of Ng values from ¥(g,) and
9¥(gl.) respectively by uniform sampling. In this way, the cor-
respondences are automatically built to support pairwise
ET without creating new segments. Let [, = L/Ng, where
L is the total length of the segments in g,., Il = L' /Ng for
g 0, be the iy, sampling value from the turning function
¥(gr) of g,, and 0., for 9(g.) of g... The ET adopted from
[29] is then defined as follows:

NR NR

ET(g,,9,) =Y EBi+» ES, (14)
=1 1=1

EB; = ky(0r; — 0., ;) (15)
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- —10)°

(1 — ¢s) min(l,, 1) + ¢s max(l,,17)
where kg, Kp and cs are user-defined parameters. In this
paper, we favor more on finding parts revised by local
stretching by adjusting ks over k; in the implementation.
This is because stretching is a more common operation to
change the local geometry of engineering models. The over-
all matching cost is simply the aggregation from each ge-
ometry comparison between the corresponding groups.

ES1 = Ks

, (16)

R
cost* = ZET(gT,gL) .

r=1

(17)

5. Experimental Comparisons and Discussions

Two kinds of experiments were conducted to demon-
strate the quality of the structure-oriented shape matching.
The first experiment in Section 5.1 demonstrated the capa-
bility of establishing the feature point correspondence using
the proposed method. The second experiment in Section
5.2 showed the feasibility of the structure-oriented shape
matching when used for the shape-based similarity for re-
trieval. Real data from our Engineering Shape Benchmark
database [6] were employed here to examine the quality. At
the same time, we compare the results using the proposed
method with the ones using some existing methods.

5.1. Feature point correspondence

Fig. 7 shows the comparison of feature point correspon-
dence using the proposed method, the method from the
perceptually-based shape morphing [23], and the method
from shape context-based shape matching [18,36].

The target in [23] is to identify the feature point cor-
respondence for contours of multimedia shapes. In order
to have a fair ground for comparison, we used our own
method to extract the feature points, while using two dif-
ferent methods for the feature point correspondence. There
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(a) Example with local bending

(b) Example with local stretching

Fig. 7. Comparison of the feature point correspondence using the proposed method (1% row), the method in [23] (2"¢ row), and the shape
context-based method in [18] (37¢ row). In the first two rows, the left figures in each window are the queries while the right figures in each

window are the targets. Color points indicate feature point correspondence. In the

374 row, the figure on the left is the deformed query after

the warping process and the right figure indicates the correspondence between the query and the target with the minimum warping cost.
Red ¢ represents the target shape while the blue 4 represents the query shape.

are two major differences between the proposed method
and the method in [23] even though they share similarities
in both the process and the algorithm. First, the proposed
method is built upon two levels of shape representation and
matching, while the method in [23] has only one level of
shape matching which performs only on the shape repre-
sentation of those feature points. Therefore the method in
[23] does not consider the geometry information located be-
tween any two feature points. Second, we chose shape con-
text as the shape descriptor for the feature points, because
shape context represents the content of the feature point
with regard to the overall shape. The relative shape rep-
resentation even follows human perception of the feature
point correspondence. This can be explained that when hu-
man decides correspondence, he/she not only uses local ge-
ometry at each feature point, but also refers to the relative
positions of the feature points regarding the overall shape.
However, the shape descriptor for the feature point in [23]
only considers the geometric information within a limited
neighboring area of the feature point, thus ignoring the re-
lation of the feature point to the overall shape.

Shape context-based shape matching in [18] has been
used as a benchmark method for non-rigid shape matching
and correspondence identification recently. It has shown
good performance for non-rigid image registration for mul-
timedia shapes. However, this method is built upon uni-
form sampling. Therefore it mixes topological information
with geometry details, which is not applicable for match-
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ing engineering shapes when topological structure match-
ing is desired. Fig. 7 shows two comparisons of the feature
point correspondence: an example with large local bend-
ing and small protrusions on the left and an example with
large local stretching and small protrusions on the right. In
both examples, the proposed method determined the fea-
ture point correspondence better than the method from [23]
even when there were large local deformations and small
features. The result shows that the method from [23] falsely
matched some feature points since they shared similar local
geometry. On the other hand, the result using the method
from [18] did not reflect the structural correspondence be-
cause the uniform sampling mixes the topology with the
geometry. Both examples shows that the deformations did
not conserve the original topology of the query shapes dur-
ing the warping process. The examples in Fig. 7 justifies
the notion that the structure-oriented shape matching can
achieve results in better conformity with engineering se-
mantics. The proposed method has overall better match-
ing of the feature points than the method in [23]. It is also
apparent from the examples that the system can identify
the best structure matching by ignoring some unnecessary
feature points using the relaxed structure matching.

The proposed matching strategy works well when two
shapes share large portions of structure similarity even
though local geometry deformation and local structure dis-
similarities coexist (see Fig. 8(a) to Fig. 8(e)). However, the
performance of correspondence identification is under the
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Fig. 8. (a)-(e) Feature point correspondence with different kinds of deformations. (f) Cases when feature point correspondence may fail.

influence from the feature points recognized. The matching
will have difficulty to identify exact correspondence when
the feature points recognized are not as good as what is
defined in Section 4.1.1. First of all, the number of feature
points recognized depends on the frequency of local fea-
tures appearing. When the shape has a large number of
feature points, it takes relatively more computational time
for matching. In such a case, the structure representation
becomes highly coupled with the geometry because high
frequency of small features are dominant (see left of Fig.
8(f)). Second, the target of the structures matching almost
has no meaning when the shape has no apparent structure,
such as the example on the right of Fig. 8(f). Therefore,
the real intentions of the proposed strategy are difficult to
be reflected in such examples.

5.2. Shape-based similarity for retrieval

In this experiment, we demonstrated the performance of
the shape-based similarity for retrieval using the proposed
shape matching strategy. Fifty-five orthogonal projection
images from ESB models were used in the test. We designed
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our own data set for testing instead of using a public engi-
neering drawing database such as the one from [9]. This was
because existing public data seldom reflect the intention of
matching global structures with the presence of large lo-
cal variations. The selected engineering drawings from ESB
were different from each other with obvious visual distinc-
tions. We chose those examples in order to demonstrate the
robustness of matching higher level structures even when
local geometries vary distinctively. These examples were
categorized into five categories (see Fig. 9). However, this
categorization was not for the purpose of building a ground
truth database for retrieval. This is because first, the evalu-
ation of the non-rigid shape similarity has more flexibilities
than the evaluation of the rigid shape similarity. The result
of categorization is highly dependent on how user evalu-
ates the non-rigid similarity and how deformation evolves.
Engineering shapes have so many variations derived from
large local deformations. For example, the shape in Fig.
9(f) can be categories into the same group as the rectangle
shape (see Fig. 9(c)) because it results from the bending
of the rectangle. However it can also be put into Category
IV because we can stretch it radially into the shape in Fig.
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Fig. 9. (a)-(e) Representative shapes from five shape-based categories I to V. (f) An example of an ambiguous shape.

9(d). Second, this categorization was only to help us to un-
derstand the applicability and the performance of the pro-
posed method. The categorization did not have a direct im-
pact on evaluation because the evaluation was observation-
based rather than quantitative analysis-based. Retrieval of
different categories of parts did not mean low quality per-
formance. Instead, it can help us to understand the non-
rigid shape similarity better if the retrievals can be created
by certain deformations from the query shape. Neverthe-
less, we present this work to the user not only for the non-
rigid shape similarity for retrieval, but also to encourage
more efforts to understand how to improve the method to
evaluate non-rigid shape similarity for engineering shapes.

Fig. 10 lists the results of the top 6 retrievals from 10 en-
gineering drawings using the proposed structure-oriented
contour matching and the shape context-based shape
matching. Two examples from each category are involved
in the comparison such as the first two are from Category
I in Fig. 9(a); the second two are from Category II in Fig
9(b), and so on. The results demonstrated the superiority
of the proposed method and even showed some interesting
results.

First, the overall performance of the proposed method
was better than the method in [18] for engineering drawing
retrieval. This was especially obvious for queries with ap-
parent structure such as those in the first six rows of Fig. 10.
The proposed method obtained more consistent retrievals
than the method in [18]. Shape context-based matching has
been tested for freeform multimedia image retrieval such
as digit matching [18] where relatively small deformation
happens. However, it has not been tested on engineering
drawings before. Based on our observations, it did not give
good output when local variations involve stretching such
as the cases in Fig. 7(b), or when two images look very dif-
ferent such as the cases in Fig. 7(a). The reason for it not to
work well for engineering drawings is because engineering
models can have large local variations through stretching
or bending while sharing the similar structure.

Second, the proposed method worked better when the
results of feature point detection have fewer false positives.
This was demonstrated by the examples from the first five
rows which have more consistent retrievals than the ones
from the last five rows (left) of Fig. 10. The examples from
the first five rows had less freeform shapes than the ones
from the last five rows. Therefore, the examples from the
last five rows may have more false positive feature points.
Most of the retrievals from the first five rows were from the
same categories as the queries, and they shared a similar
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process of local deformations. The remaining retrievals were
from one or two other categories which can be obtained
by involving different deformations. However, the retrievals
from the last five rows were mixtures of data from several
categories. Most of the retrievals coming from the different
categories as the query can be deformed from the query
either by stretching or bending or even both. However, some
of them can be hardly deformed from the query shape

One interesting finding was that queries from the Cate-
gory V retrieved data from Category I commonly. The op-
posite also happened to queries from the Category I. Based
on the notion of the structure-based shape similarity, it can
be explained that shapes from both categories shared large
structural similarity defined by the feature points. Only
one geometric entity changed from line segment in Cate-
gory I to an arc in the Category V, which can be explained
as the result of local bending. These two kinds of shapes
can coexist in the retrievals because their similarity is al-
lowed in the proposed shape matching. Another interesting
observation from the experiments is about the ambiguous
query in Fig. 9(f). This example was originally put in Cat-
egory III. However, it obtained more data from Category
IV than from its preliminary category. This fact indicates
that stretching is more favored during the computation of
the matching cost in the current implementation. In the
future, user will be enabled to leverage the cost from the
stretching and the cost from the bending.

Overall, the success of the proposed matching strategy
gives us a new perspective on how to evaluate shape simi-
larity for engineering shapes. It lays a good foundation to
develop new classes of shapes that allows certain specific
deformations by stretching and bending.

6. Conclusions

A perspective to evaluate shape similarity for engineering
models is developed using a shape matching strategy driven
by the structure from the contours of engineering draw-
ings. The contribution of this paper is threefold. First, two
levels of shape representation and matching are developed
with the structure and the geometry decoupled, associated,
and optimally integrated throughout the process. Second,
a new Relevant Relevance Measure is defined for the fea-
ture point extraction using the discrete contour evolution.
Third, the Dynamic Time Warping (DTW) algorithm is
adapted to perform the relaxed feature point correspon-
dence. Two levels of shape matching which are conducted
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(b) Results using the proposed method

Fig. 10. Shape-based similarity retrieval comparison. Pictures in the first column of each figure are the queries.

using different and appropriate approaches synergies with
each other to achieve the optimal matching. Experiments
show better results against the existing methods for real
engineering shapes with large local variations, at both fea-
ture point correspondence and shape-based similarity for
retrieval. The goodness of structure-oriented shape match-
ing is reflected from the results that the retrievals are more
meaningful and consistent from the engineering standpoint.
In addition, the results show that shape matching is less
sensitive to large local deformations when global structure
matches. The proposed strategy works better when struc-
ture can be decoupled from local geometry. Therefore, it
provides a strong incentive to further improve the over-
all shape-based similarity retrieval by complementing the
structure-based shape matching with the statistics-based
shape matching.
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