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Chapter 1
Using the libproj4 Library.

Although this cartographic projection library contains a large number of projections
the programmatic usage is quite simple. The main burden of usage is the selection
and correct usage of the parameters of the individual projections which is, in most
cases, a burden placed upon the user, not the programmer. Usage is very similar to
I/0 programming where a file is opened and a structure is returned that is used by
various I/O operation routines—a structure that contains all the details related to a
particular file. Other similarities with file handling is that more than one projection
can be processed concurrently and the structure is closed when finished.

1.1 Basic Usage

A cartographic projection is also a mathematical process like functions included
in a compiler’s mathematics library such as sin(x) to compute sinx and asin(x)
to compute the inverse, arcsinz (also referred to as sin™!'z). But unlike most
mathematical library functions, the forward, P, and inverse, P~!, cartographic
projection functions have a multivariate argument and a bivariate return value:

(/\’(b) — P_l(l‘,y,-”) (1'2)

where x and y are the planar, Cartesian coordinates, usually in meters, and A and
¢ are the respective longitude and latitude geographic coordinates in radians.

The biggest complication is the type and number of the additional functional
arguments constituting the complete argument list. There is always either the
Earth’s radius or several techniques for defining the Earth’s ellipsoid shape as well as
specifications for false origins and units of Cartesian measure. Individual projections
may have additional parameters that need to be specified. In all cases, it is necessary
for the user to refer to the individual projection description for details about the
individual projection parameters required.

Because of the large number of selectable projections, each with their own special
list of arguments, the following method was chosen to simplify the number of library
entries needed by the programmer to the following prototypes defined in the header
file projects.h:

#include <lib_proj.h>

void *pj_init(int nargs, char *args[]);
XY pj_fwd(LP 1lp, void *PJ);

LP pj_inv(XY xy, void *PJ);

void pj_free(void *PJ);
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The complexity of this system is not in programmatic usage as described in the
following text, but in understanding and properly using the cartographic control
parameters.

The procedure pj_init must be called first to select and initialize a projection.
Parameters for the projection are passed in a manner identical with the normal
C program entry point main: a count of the number of parameters and an ar-
ray of pointers to the characters strings containing the parameters. In this case,
the parameter strings are those cartographic parameters discussed in the sections
describing the individual projections. By using character strings as arguments the
selection of the projection and its arguments can be left to the user and thus avoid a
great deal of programming time decoding and implementing a traditional argument
list.

Upon successful initialization pj_init returns a void pointer to a data structure
that is used as the second argument with the forward, pj_fwd, and inverse, pj-inv,
projection functions. Because the data structure returned by pj-init contains all
the information for the computing the projection selected by the initialization call,
any number of additional initialization calls can be made and used concurrently.

If the initialization call failed then a null value is returned. See Section for
details on determining cause of failure.

The first argument argument to the forward and inverse projection function and
the function return is a type declared (in the header file projects.h) as:

typedef struct { double x, y; } XY;
typedef struct { double lam, phi; } LP;

which are the respective x and y Cartesian coordinates respective longitude, A,
and latitude, ¢, geographic coordinates in radians. If either the forward or inverse
function fail to perform a conversion, both values in the returned structure are set
to HUGE_VAL as defined in the math.h.

Two additional notes should be made about the header file projects.h: it
contains includes to the system header files stdlib.h and math.h, and several
predefined constants such as multipliers DEG_TO_RAD and RAD_TO_DEG to respectively
convert degrees to and from radians.

To illustrate usage, the following is an example of a filter procedure designed
to convert input pairs of latitude and longitude values in decimal degrees to corre-
sponding Cartesian coordinates using the Polyconic projection with a central merid-
ian of 90°W and the Clarke 1866 ellipsoid:

#include <stdio.h>
#include <lib_proj.h>
main(int argc, char **argv) {
static char *parms[] = {
"proj =p01y" ,
"ellps=clrk66",
"lon_O=90W"
};
PJ *ref;
LP idata;
XY odata;

if (! (ref = pj_init(sizeof (parms)/sizeof(char *), parms)) ) {
fprintf (stderr, "Projection initialization failed\n");
exit(1);

}

while (scanf("%1f %1f", &idata.phi, &idata.lam) == 2) {
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idata.phi *= DEG_TO_RAD;
idata.lam *= DEG_TO_RAD;
odata = pj_fwd(idata, ref);
if (odata.x !'= HUGE_VAL)
printf ("%.3£\t%.3f\n", odata.x, odata.y);
else
printf("data conversion error\n");
}
exit(0);
}

To test the program, the script

./a.out <<EOF

0 -90
33 -95
77 -86
EOF

should give the results:

0.000 0.000
-467100.408 3663659.262
100412.759 8553464 .807

When executing pj-init the projection system allocates memory for the struc-
ture pointed to by the return value. This allocation is complex and consists of one
or more additional memory allocations to assign substructures referenced within
the base structure. In applications where multiple calls are to pj_-init are made
and where the previous initializations are no longer needed it is advisable to free up
the memory associated with the no longer needed structures by calling pj_free.

In some cases it is convenient to include:

#define PROJ_UV_TYPE

before the inclusion of the 1ib_proj.h header file. This changes the declaration of
the forward and inverse entries to having a

typedef struct { double u, v; } UV;

type for both the first argument and functional return. The included program
lproj is an example where this is used and facilitates the processing of the I/0O
that can be either forward or inverse projection which is performed by substituting
the appropriate forward or inverse procedure interchangeably.

1.2 Projection factors.

Various details about a projections behavior including scale factors at selected ge-
ographic coordinates can be determined with the function:

#include <lib_proj.h>

int pj_factors(LP lp, PJ *P, double h, struct FACTORS *fac);

Argument 1p is the coordinate where the factors are to be determined, P points to
the projection’s control structure, h numerical derivative increment and fac is a
structure defined in 1ib_proj.h as:
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struct DERIVS {

double x_1, x_p; /* derivatives of x for lambda-phi */
double y_1, y_p; /* derivatives of y for lambda-phi */
};

struct FACTORS {

struct DERIVS der;

double h, k; /* meridional, parallel scales */

double omega, thetap; /* angular distortion, theta prime */
double conv; /* convergence */

double s; /* areal scale factor */

double a, b; /* max-min scale error */

int code; /* info as to analytics, see following */

};

#define IS_ANAL_XL_YL 01 /% derivatives of lon analytic */
#define IS_ANAL_XP_YP 02 /* derivatives of lat analytic */
#define IS_ANAL_HK 04 /* h and k analytic */

#define IS_ANAL_CONV 010 /* convergence analytic */

The variable code has bits set according to the defines where “analytic” refers to
equations within the projections providing the values rather than their determina-
tion by numerical differentiation.

The argument h may be 0. and a suitable default value will be used.

For a more complete, mathematical description of the elements in FACTORS see

Section [B.8]

1.3 Error handling.

Error detection is a combination of using the C library facilities relating to error
and the global projlib variable pj_error. To simplify matters for the user, the
application program only need to sense the pj_error for a non-zero value. If the
value is greater than zero a C library procedure detected an error and if less than
zero a libproj4 procedure detected an error.

To get a string that describes the error use the following:

#include lib_proj.h
char *emess;

emess = pj_strerror(pj_errno);

A null pointer is returned if pj_errno==0.

1.4 Character/Radian Conversion.

Two procedures in the LIBPROJ4 library are provided to perform conversion between
human readable character representation of geodetic coordinates and internal float-
ing point binary. These procedures are summarized by the following prototypes:

#include <lib_proj.h}

double pj_dmstor(const char * str, char ** str)
char *pj_rtodms(char *str, double rad, const char * signt)
void pj_set_rtodms(int frac, int con_w)
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The pj_dmstor function is patterned after the C language library strtod function
where str is a character string to be read for a DMS value to be returned as the
function value and the second character pointer returns a pointer to the next char-
acter in the string after the successfully decoded string. If a proper DMS value is
not found then a 0 is returned and a HUGE_VAL is returned for bizarre conversion
errors. In the latter case pj_errno may be set with a -16 value.

Function rtodms performs output formatting and creates a DSM string from the
input rad. The argument signt is a two character string where the first character
is to be taken as the positive sign suffix and the second as the negative sign suffix.
Normally, signt will either be "NS" or "EW". If signt is O then normal numeric
minus sign prefixes the numeric output.

Normal output of pj_rtodms formats to 3 decimal digits of seconds but this
precision can be adjusted with the pj_set_rtodms function by specifying the number
of significant digits to use with frac. If the argument con_w argument is not 0 then
constant width values are output (often useful in map labeling or tabular values).

1.5 Limiting Selection of Projections

Many applications will only need a small subset of the projections contained in the
library 1ibproj.a, but unless some action is taken, all of the projections will be
linked into the final process. This is not a problem unless the memory requirements
of the application are to be kept small or access to projections is to be restricted.
If there is a need to limit the number of projections, a simple two-step process

needs to followed. First create a header file, my _list.h for example, that contains
a list of macro calls PROJ_HEAD (id, text’, one for each projection to be part of the
application program. Argument id is the acronym of the projection and argument
text is the ASCII string describing the program (what appears after the colon in
proj’s -1 execution. The header file, nad_1ist, for program nad2nad is a an
example:

/* projection list for program my_prog */

PROJ_HEAD(lcc, "Lambert Conformal Conic")

PROJ_HEAD (omerc, "Oblique Mercator")

PROJ_HEAD (poly, "Polyconic (American)")

PROJ_HEAD (tmerc, "Transverse Mercator")

PROJ_HEAD (utm, "Universal Transverse Mercator (UTM)")

An easy way to create this list is to copy and edit the file pj_list.h in the source
distribution, which contains the entire listing of available projections, and edit out
of the copy all lines of unwanted projections.

Next, in one of the program code modules that includes the header file projects.h,
precede the include statement with:

#define PJ_LIST_H "my_list.h"
Be careful to only put this include in only one of the code modules because this define

action causes the initialization of the global pj_-1ist and multiple initializations will
cause havoc with the linker.
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Chapter 2

Internal Controls

To discuss the internal control of this system the description will be based upon
following the flow of the process from projection initialization to coordinate conver-
sion. Although extracts of the code and data structures will be presented here it
may be helpful for the reader to follow the description with frequent references to
the source code.

2.1 Initialization Procedures.

To initiate the cartographic transformation system it is necessary to execute a pro-
cedure that will decode the user’s control input into internally recognized parame-
ters and to establish a myriad of computational constants and process controls and
return to the calling procedure a reference to employ when performing transforma-
tions. In this system the entry is the procedure pj_init is passed a argument count
and character array in a manner similar to a C program’s main. The first operation
pj-init performs is to put the list of arguments into a linked list described in the
next section.

The reason for this copy operation is that it allows the system to add arguments
to the list and not violate const attributes of the input list and it also allows
marking each argument element that is used by the system. This latter feature is
useful in giving an audit trail for debugging usage of system.

The first extraction from the input list is to determine the identifier of the
projection to be used (+proj=<id>) and locating the entry id in the list:

struct PJ_LIST {
char *id; /* projection keyword */
PJ *(xproj) (PJ *); /* projection entry point */
char * const *descr; /* description text */

};

The following extract from the 1ib_proj.h header file shows how the projection list
is declared and initialized:

/* Generate pj_list external or make list from include file */
#ifndef PJ_LIST_H

extern struct PJ_LIST pj_list[];

#else

#define PROJ_HEAD(id, name) \

extern PJ *pj_##id(PJ *); extern char * const pj_s_##id;
#define DO_PJ_LIST_ID

#include PJ_LIST_H

15
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#undef DO_PJ_LIST_ID

#undef PROJ_HEAD

#define PROJ_HEAD(id, name) {#id, pj_##id, &pj_s_##id},
struct PJ_LIST

pj_list[]l = {

#include PJ_LIST_H

{0, 0, 0},
};

#undef PROJ_HEAD
#endif

In all but one situation of the usage of 1ib_proj.h the identifier PJ_LISTH is
undefined and thus only the external declaration of the projection list pj_list is
made. In the case of the file pj_list.c the only code in the file is:

#define PJ_LIST_H "pj_list.h"
#include "lib_proj.h"

which result in the following actions:

e the PROJ_HEAD macro is defined as a declaration of the external projection
function and an external description character string,

e the header file pj_list.h containing a list of PROJ_HEAD statement is read,

e PROJ_HEAD is redefined so as to create a structure array and initializes that
array by re-reading the header file pj_1ist.h

The reason for this seemingly convoluted operation is to simplify the installation
of new projections by merely creating the the PROJ_HEAD macro once in the file
containing the projection code and then simply copying this line into the list-defining
header file.

Once the projection initialization entry is determined from the list the next
operation is to call the projection entry defined in the list structure with a zero
(null) argument. The projection procedure will return a pointer to the PJconsts
structure whose top portion is defined in 1ib_proj.h. This structure pointer is
what is eventually returned by pj_init to the calling program after its contents are
fully initialized. The reason for having the projection return the structure pointer
is that the complete definition and size is defined by the selected projection.

At this stage all of the elements after the first five of the structure PJconsts
are filled in by following operations of pj_init. These components are found to be
commonly used and projection independent and thus more efficiently determined
by a common process.

The final step is to re-call the projection entry point previously used but now
with the pointer to the PJconsts stucture as the argument and allow the projection
to complete the initialization of the structure based upon the already initialize ele-
ments and other options in the argument link list that are unique to the projection.
Note that the base address of the base address of the argument list is now stored
in the structure.

If all goes well, the pointer to the structure PJconsts is returned to the user as
the functional return of pj_init.

2.1.1 Setting the Earth’s figure.

In initializing the PJconsts stucture the elliptical parameters are the first parame-
ters determined by a call to the function pj_ell_set. Its first operation is to search
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the parameter link-list for the definition of +R=<radius> and if found, the remain-
der of the initialization is for a spherical earth regardless of any ellipsoid parameters
on the list.

If the radius is not on the list, then a search the argument +ellps=<id> and a
search of the table

struct PJ_ELLPS {
char xid; /* ellipse keyword name */
char *major; /* a= value */
char =xell; /% elliptical parameter */
char #*name; /* comments */

};

is made and if found, the ellipsoid parameters from the second and third character
fields are pushed onto the parameter linked list.

The remainder of the PJconsts fields related to the ellipsoid or sphere are now
determined.

If neither a radius nor ellipsoid constants are found, an error condition exists.

2.2 Determinations from the argument list.

Control options are the list of projection parameters typically obtained from run
lines of programs or data bases. They consist of the option name optionally followed
by an equal sign and an option value that may be a integer, floating, degree-minute-
second (MDs or character string value. Control options may be prefixed with a +
sign that is ignored by following functions.

2.2.1 Creating the list.

One of the first functions of initialization of projection procedures in LIBPROJ4 is
to convert the string array argv into a linked list with the structure:

struct ARG_list {
struct ARG_list *next;
char used;
char param[1];

};

When each control parameter is stored in the list, the flag used is set to zero. If the

parameter is somehow tested or the argument used the flag is set to one. This serves

as an audit trail on projection usage if the verbose diagnostic call is employed.
The argument string is placed into the list with execution of the function:

#include <lib_proj.h>

paralist *pj_mkparam(char *str);

where paralist is a typedef of list structure. If pj_mkparam is unable to allocate
memory for the new argument then a NULL value is returned.

The calling program must use the returned pointer to either establish the starting
point of a list or add to the “next” value at the end of an existing list.

2.2.2 Using the parameter list

The function pj_param provides for searching for parameters and returning their
value from paralist.
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#include <lib_proj.h>

PVALUE pj_param(paralist *pl, const char *opt)

where

typedef union {

double f£;

int 1i;

const char *s;
} PVALUE;
\begin{center}

Upon calling pj_param the argument opt character string contains the name of
the option desired with a prefix character of how the the option argument is to be
treated. The following is a list of the prefix characters and the nature of the return
value of pj_param.

t test for the presence of the string in the list. Re-
turn integer 1 is present else 0.

i treat the option argument as integer and return
the binary value.

d treat the option argument as a real number and
return double as the result.

r argument is degree-minute-second input and re-
turn type double value in radians.

s argument is a character string and return pointer
to string.

b argument is boolean; return integer 0 if value “F”,
“f”, “0” or integer 1 if the value is “T”, “t” or
“17,

In all cases where there is no argument value a 0 or NULL value is returned.
In practice, the b type is rarely used and it is understood that the presences or
absence of the option serves as a boolean flag with the t test.

2.3 Computing projection values

A review of the operations that are performed by the entry points pj_fwd and
pj-inv is necessary in order to understand what is performed by the system before
calling the individual projection procedures. The following operations are deemed
to be common to all forward projections even though they maybe seldom used in
some cases:

e The range of the latitude and longitude arguments is check. The absolute
value of latitude must be less than or equal to 90° (7/2 radians) and the
absolute value of longitude must be less than or equal to 10 radians (573°).

e (lear error flags.

e If geocentric latitude option is selected the latitude is changed to geodetic
latitude.

e Central meridian is subtracted from the longitude.

o If over-ranging is not selected the longitude is reduced to be between +180°.
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e The projection procedure is called.

e It errors, then set z—y to HUGE_VAL and return, else z—y values are multiplied
by the Earth’s radius or major elliptical axis, false Northing and Easting are
added and each are scaled to the selected units.

The main thing to note is that the projection functions only deal with longitude
reduced to the central meridian (no A — A\g terms) and an unit radius/major-axis
Earth.

In the case of the inverse projection, fewer checks of the input data can be done
by the inverse projection entry:

e (lear error flags.

e Adjust the Cartesian coordinates by rescaling, subtracting the false Easting
and Northing and dividing out the Earth’s radius or major-axis.

e (Call the inverse projection.

e If errors, set A—¢ to HUGE_VAL and return.

e Add central meridian to returned longitude.

e If over-ranging not selected reduce longitude range to between

e If geocentric latitude specified, change geodetic latitude to geocentric.

2.4 Projection Procedure.

Because the library was intended to have a large number of projection procedures
care was given to facilitating the coding of the procedures and to make them have
a similar structure. By following this guideline it is easy to develop new projections
(at least as far as the controlling code).

The following is the skeletal outline of a projection procedure:

<boiler plate---copyright/disclaimers, etc.>
#define PROJ_PARMS__ \

<local extensions to PJconsts structure>
#define PJ_LIB__

#include <lib_proj.h>
PROJ_HEAD(<entry_id>, "<expanded descriptive name>") "\n\t<type>,
<local defines, static variablesi, functions, ...>

FORWARD (<forward_id>) ;
<declarations and code for forward>
Xy.x =
Xy.y =
return (xy);
¥
INVERSE(<inverse_id>);
<declarations and code for inverse>

lp.phi =
lp.lam =
return (1p);
}
FREEUP;

if (P)
free(P);
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}

ENTRYO (<entry_id>)
<initialization code>
P->inv = <inverse_id>;
P->fwd = <forward_id>;
ENDENTRY (P)

where the material enclosed in angle braces is a form of comment for this demon-
stration.

The first thing to note is the defining of PJ_LIB__ which enables sections of
the header file that contain definitions and other material unique to the projection
procedures. The next item is the definition of PROJ_PARMS__ that defines extensions
to the structure that are unique to the current projection. Looking at the definition
in the header file 1ib_proj.h

typedef struct PJconsts {
XY (xfwd) (LP, struct PJconsts *);
LP (*inv) (XY, struct PJconsts *);
void (*spc) (LP, struct PJconsts *, struct FACTORS *);
void (*pfree) (struct PJconsts *);
const char *descr;

paralist *params; /* parameter list */
int over; /* over-range flag */

int geoc; /* geocentric latitude flag */
double

a, /* major axis or radius if es==0 */
e, /* eccentricity x/
es, /x e "~ 2 %/
ra, /*x 1/A %/
one_es, /* 1 - e"2 x/
rone_es, /* 1/one_es */
lam0, phiO, /* central longitude, latitude */
x0, yO, /* easting and northing */
kO, /* general scaling factor */
to_meter, fr_meter; /* cartesian scaling */
#ifdef PROJ_PARMS__
PROJ_PARMS__
#endif /* end of optional extensions */
} PJ;

shows how the projection unique values are treated. In cases of very simple pro-
jections, the definition may be omitted. Finally the inclusion of the 1ib_proj.h
header file.

The PROJ_HEAD macro is used to define the entry point to the projection, an
expanded description string and a string containing expanded information. The
first argument <entry_id> must match the name used in the ENTRYO macro. This
identifier argument is prefixed with PJ_ and is used as the external reference for the
projection and is the point where the projection is called for initialization.

There may be more than one entry point and thus more than one PROJ_HEAD and
ENTRYO combinations. A good example of this is the Transverse Mercator projection
which has two entries: tmerc and UTM. The Universal Transverse Mercator is a usage
of the Transverse Mercator with added constraints and controls of parameters but
remaining computations are identical.

Additional variants of ENTRYO(<id> are ENTRYn,<id>,<args> where n is 1 or
2 and which have a corresponding number of identifier args in the macro. The



2.5. SETTING NEW ERROR NUMBERS. 21

identifiers must be contained in the PJ_consts structure as pointers that are to be
set to 0 (NULL) at the beginning of initialization.

In all entry cases, the ENTRY macros checks the non-null status of the input
argument pointing to the structure and if null allocates memory for the structure
PJ_consts and clears or sets the first five members of the structure and returns
with with the structure address. For a non-null input argument control is passed
to the following code which should conclude with the macro ENDENTRY (<arg>). In
most cases arg is the pointer to the structure PJconsts but it can be a call to an
static, local function that also returns the pointer.

The FORWARD and INVERSE macros define the local, static entry points for the
respective forward and inverse projection calculations and their addresses are stored
in the PJconsts structure. In many cases there are two forward and inverse entries
for the cases of elliptical and spherical earth and the initializing entry will select the
ones to be stored on the basis of non-zero e previously set in PJconsts. Occasionally
there is only a forward projection for the spherical case and thus only a FORWARD
section. These two macros also declare the arguments and return structures xy and
1p.

In all cases, including initialization, the identifier pointing to PJ_consts is P.

Error conditions are best handled by four macros:

e F_ERROR for use in forward projection code and sets the global pj_errno to
-20 and returns,

e T FRROR is the same as above but for inverse projection code,

e E_FRROR_O for use in initialization code and it free allocated PJ_consts mem-
ory and returns a null pointer. It is assumed that some procedure call by the
initializing code has already set pj-errno.

e E_FRROR(<no>) same as above but also sets the external pj_errno to the
negative argument value.

The complexity of the entry to free the memory allocated to the structure
PJ_consts is dependent upon how many additional sub allocations have been made.
For projections of the spherical Earth there are usually no sub-allocations and the
prototype listed earlier is complete. Additional memory sub-allocations to be re-
leased is the same as the number of arguments in the initialization entry macros.

2.5 Setting new error numbers.

When developing new procedures or projections for the libproj library where er-
ror detection is part of the code do the following steps. Check the program file
pj-strerrno.c which contains a listing of all the libproj4 error numbers. If a
current error condition applies to the new error condition, then use that negative
number as the value to be assigned to pj_errno. Otherwise, install a new descrip-
tive string at the next to last line of the list pj_err_list with a new, negative error
number.
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Chapter 3

Analytic Support Functions

The material in this chapter expands upon equations and procedures employed
by the projection functions and how they are implemented in the C programming
environment. In most cases a description of the originating mathematical function
is presented rather than just the series or other simplification used for evaluation.
The reason for this is that the reader may have insights into how to improve the
evaluation and further enhance the performance of the system.

In many cases function naming goes back to early FORTRAN versions of GCTP
where an effort was made to collect common computing operations into globally
available subroutines. As with projection descriptions, all procedures that deal
with ellipsoidal or spherical operations are performed for the unit ellipsoid (a = 1)
or unit sphere (R = 1).

3.1 Ellipsoid definitions

N

S

Figure 3.1: The meridional ellipse.

From Fig. the components and symbols used in this document for defining

23
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the ellipsoid are summarized as follows:

semimajor axis a

semiminor axis b

a? —v?
excenticity e?> = 5
a
6/2
T 11
= 2 p
2 32
a®—b
second excentricity €2 = =
o 1-—e?
a—"b
flattening f =
a

The angle ¢ is geographic or geodetic latitude and A is geodetic longitude (the angle
of rotation of the meridianal plane about the N-S axis). Geocentric latitude, v, is
infrequently used in projection applications.
The distances PQ’ and PQ are the respective radii of the ellipsoid surface in the
plane of the meridianal ellipse and normal to the plane of the meridianal ellipse.
) Cl(l — 62)
PQ =R = 1 g)i? (3.1)
a

PQ =N = (1 — e2sin? ¢)1/2 (3:2)

3.2 Meridian Distance—pj mdist.c

A common function among cartographic projections for the ellipsoidal earth is to
determine the distance along a meridian from the equator to latitude ¢. The def-
inition of this distance is the integral of the radius of the spheroid in the plane of
the meridian (equation

® do
_ 2
M(p)=a(l—e )/0 1 st )2 (3.3)
which can be computed as
e2sin ¢ cos ¢
M(¢p)=al| E(¢,e) — ————— 34
(@) a( (6.¢) 1§$§¢> (3.9

where FE(¢,e) is the elliptic integral of the second kind. When e is small (as in
the case of the Earth’s eccentricity) a means of evaluating the elliptic integral is as
follows:

2 2.4
E(¢,e) = E¢+singcosp(by+ §b1 sin? ¢ + ﬁbg sinfp+---)

bp = 1—-F
b = b (2n — 1N 2 e
v ot 21! on — 1

1 123 (2n — 1)N]?  e2n
E = 1— —¢2— 4_ ...

22 T 92 p2¢ [ ol | 2n— 1
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In the LIBPROJ4 library three functional entries are used in the meridional
distance calculations:

void *pj_mdist_ini(double es)
double pj_mdist(double phi, double sphi, double cphi, const void
double pj_inv_mdist(double dist, const void *emn)

Function pj-mdist_ini determines E and the series coefficients b,, for the specified
eccentricity argument (e?) and returns a pointer to a structure of these values, en,
for use by the forward and inverse functions. In the case of an unreasonably large
value of €2, function pj.mdist_ini could fail and thus return a null pointer. The
degree required by the series is automatically determined by the procedure so as to
ensure precision commensurate with the type double on the host hardware.

Function pj-mdist returns the distance from the equator to the latitude phi.
In the interests of avoiding repeated evaluation of sine (sphi) and cosine (cphi)
of latitude (almost always computed for other reasons in the calling procedures)
these values are included in the argument list. Function pj_inv_mdist returns the
latitude for a distance dist from the equator. In both the forward and inverse
case the sign of the latitude and distance is carried though the evaluation so that a
negative latitude gives a negative meridian distance and conversely.

3.2.1 Rectifying Latitude

The rectifying latitude, u (or w) is a latitude on a sphere determined by the ratio
of the distance from the equator for a point on the ellipsoid at latitude ¢ divided
by the distance over the ellipsoid from the equator to the pole:

M(¢)

2 M(x/2) (3:5)

‘LL =

where the function M is the meridian distance from (3.4)).

3.3 Conformal Sphere—pj gauss.c

Determinations of oblique projections on an ellipsoid can be difficult to solve and
result in long, complex computations. Because conformal transformations can be
made multiple time without loss of the conformal property a method of determining
oblique projections involves conformal transformation of the elliptical coordinates
to coordinates on a conformal sphere. The transformed coordinates can now be
translated /rotated on the sphere and then converted to planar coordinates with a
conformal spherical projection. Pearson [10] gives a development of the conformal
transformation but assumes a zero constant of integration.

The conformal transformation of ellipsoid coordinates (¢, A) to conformal sphere
coordinates (x, A.) is

1+ esing
Ae = CA (3.7)
V1—e?

R = ———— 3.8
1 — e2sin? ¢y (3:8)

. Ce/2
X = 2arctan [Ktanc(ﬂ/4+¢/2) (HSlm’b) ] —7/2 (3.6)

where A is relative to the longitude of projection origin, R, is radius of the conformal

xen) ;
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sphere and
e2cost dg
= 1 _— .
C + T (3.9)
Xo = arcsin <sm %) (3.10)
C
c 1 —esin¢g Ce/2

where Y is the latitude on the conformal sphere at the central geographic latitude
of the projection.

To determine the inverse solution, geographic coordinates from Gaussian sphere
coordinates, execute:

A= A/C (3.12)
¢ = 2arctan tan'/® (/2 + m/4) — /2 (3.13)
K1/C (1 — esin@-,l)‘g/2
1+esing; 1

with the initial value of ¢;_1 = x and ¢;_; iteratively replaced by ¢ until |¢ — ¢;_1]
is less than an acceptable error value.
Procedures to compute the transformation are:

#include <lib_proj.h>

void *pj_gauss_ini(double es, double phiO,
double *chiO, double *rc)

LP pj_gauss(LP arg, const void *en)

LP pj_gauss_inv(LP arg, const void *en)

The initialization procedure pj_gauss_ini returns a pointer to a control array for
forward and inverse conversion at the latitude of origin phiO (¢¢). It also returns
the radius of the Gaussian sphere (rc). Procedures pj-gauss and pj-gauss_inv
are respective forward and inverse conversion of the latitude and longitude to and
from the Gaussian sphere. The storage pointed to by en should be release back to
the system upon completion of conversion usage.

3.3.1 Simplified Form of Conformal Latitude.

A common determination of the conformal latitude is made by setting K = 1 (based
upon zero constant of integration which causes y — 0 as ¢ — 0) and set C' = 1 which
seems to be equivalent to similar to having x — 7/2 as ¢9 — 7/2. Equation
now becomes:

. e/2
X = 2arctan [tan(ﬂ/4+¢/2) <1_T_Z:2§> ]77/2 (3.14)
A = A (3.15)

Determining ¢ from x is the same as discussed for equation [3.13]
The radius of the conformal sphere is determined by:

R = =& %o (1—e*sin® ¢) /2 (3.16)
€oS X0
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This new sphere radius is not how it is phrased by Snyder [14, page 160] or
Thomas [I8, page 134] but it serves as a useful equivalence when making a re-
placement funtion for pj_gauss_ini. The derivation of this factor was based upon
the requirement of unity scale factor at the Stereographic projection origin. For
the moment, this is the only projection that employs this procedure so beware in
applying it in other cases.

Although the precedure to perform the simplified Gauss latitude need not be as
complex, the operations are made compatible with the general use for compatibility.

#include <lib_proj.h>

void *pj_sgauss_ini(double es, double phiO,
double *chiO, double *rc)

LP pj_sgauss(LP arg, double *en)

LP pj_sgauss_inv(LP arg, double *en)

3.4 Authalic Sphere—pj_auth.c

Authalic operations relate to the sphere having the same surface area of an elliptical
earth. From the integral definition:

/R%osﬁdﬁ = a2(162)/(1._(;288?;2¢)2d¢ (3.17)

which is readily solved by binomial expansion of the denominator and term-by-term
integration:

2, 4
R%*sinf3 = a2(1—62)sin¢<1 36 sin? ¢+ e sint ¢ + € 65in% - )
L+n o21 in2"
= a*(1—¢? squE 1—|—2n 0] (3.18)

The constants of integration are eliminated to main equality when ¢ = § = 0 and
R (radius of the authalic sphere) is determined by ensuring ¢ = § = 7/2 and thus
is obtained from:

1
R = a(1-e)) < j;;e?" (3.19)
n=0

Finally, the authalic latitude is:

2n : 2n
. SlnqSZ T 2 10)
B = arcsin Z TTn - (3.20)
= 1+2n

= arcsin (sin o) Z Con Sin®" (b) (3.21)
where co,, are the collapsed constants determined by the initializing process speci-
fying e.

To obtain the geodetic latitude from the authalic latitude the Newton-Raphson
process can be used where the initial value of ¢ = :

sin 8 — sin ¢ Z Con SIN" ¢

oy = o+ — (3.22)
. )
cos ¢ nE:O 1 sin“" ¢
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Another authalic factor (currently lacking a name) is the ¢ function typically

defined as:
g = (1—¢% {% — 2—16 In <mﬂ (3.23)
= 2(1—€?)sin (br;) 11:—27:1 e*" sin®" ¢
= % sin 3

The series form of the function is used in the library function gqsfn.
LIBPROJ4 entries:

#include <lib_proj.h>

void* pj_auth_ini(double es, double *r)
double pj_gsfn(double phi, void*i en)
double pj_auth_lat(double phi, void* en)
double pj_auth_inv(double beta, void* en)

3.5 Axis Translation—pj_translate.c

This set of procedures performs axis translations for the spherical coordinate sys-
tem. The elliptical system can only be translated about the polar axis— a process
performed by the A\g or central meridian factor. One way for elliptical projections
to perform general translation is transformation of the elliptical coordinates to the
sphere and subsequent use of this procedure.

Mathematically, the forward translation is performed by:

sin(¢’) = sinasin¢g — cosacos ¢ cos A (3.24)
cos ¢sin A

tan(\ — = 3.25
an( f) sin v cos ¢ cos A + cos a sin ¢ ( )

and the inverse translation performed by:

sin(¢) = sinasing’ + cosacos @’ cos(N — ) (3.26)
cos ¢’ sin(\ — 3)

tan A = 3.27
a sin a cos ¢’ cos(N — [ + cos asin ¢/ (3.27)

The latitude « is the position of the North Pole of the original coordinates system on
the new system at a longitude (3 east of the central meridian of the new coordinates
(N =0). In most applications 5 = 0.

The library translation functions are:

#include <proj_lib.h>

LP pj_translate(LP base, void *en);
LP pj_inv_translate(LP shift, void *en);
void *pj_translate_ini(double alpha, double beta);

Execution of the initializing function pj_translate_ini will return a pointer to a
structure containing constants for the forward and inverse operations. A NULL value
will be returned if the procedure failed to successfully obtain memory.

Function pj_translate returns the translated original coordinates and con-
versely, pj-translate returns the translated coordinates back to the original values.
Users must execute free(en) upon end of usage.
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3.6 Transcendental Functions—pj trans.c

In order to avoid domain errors in calling several of the standard C library functions
several alternate entries are used:

#include <lib_proj.h>

double pj_asin(double)
double pj_acos(double)
double pj_sqrt(double)
double pj_atan2(double, double)

The pj-asin and pj_acos check that arguments whose absolute value exceeds unity
by a small amount are successfully resolved. Similarly a sufficiently small negative
argument to pj_sqrt will cause a return of zero. If both the arguments to pj_atan2
are sufficiently small it will return a zero value.

3.7 Miscellaneous Functions

These are short functions that date from origins in the GCTP system and perform
evaluations for various projections. Part of the purpose of developing GCTP was to
minimize repetitive program code.

3.7.1 Isometric Latitude kernel.

The function ¢

. . e/2
t =tan(r/4+ ¢/2) (m)

is the kernel of In(t) (Isometric latitude) that performs conformal mapping of a
spheroid to the plane. The kernel is kept separate because it is also frequently used
in the inverse form where ¢ is evaluated.

(3.28)

#include <lib_proj.h>

double pj_tsfn(double phi, double sinphi, e);

3.7.2 Inverse of Isometric Latitude.

This function determines the geodetic latitude from the isometric latitude 7 = In(¢).
The procedure is to iteratively solve for ¢ until a sufficiently small difference
between evaluations occurs.

1 —esing o/2
¢4 = m/2—2arctan t<1+esin¢> 1 (3.29)
where
t = exp(—-7)

and using an initial value of:
¢ = m/2—2arctan(t)
Library function prototype:
#include <lib_proj.h>

double pj_phi2(double tau, double e);

It is unknown how the library function got its name.
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3.7.3 Parallel Radius.

The distance of a point at latitude ¢ from the polar axis. Also termed the radius
of a parallel of latitude (distance X in figure and equation .

m = Ncos¢ = __acosd (3.30)
1—e2sin® ¢

where N is the radius of curvature of the ellipse perpendicular to the plane of the
meridian. A unit major axis (a) is used. The LIBPROJ4 prototype is:

#include <lib_proj.h>

double pj_msfn(double sinphi, double cosphi, es);

3.8 Projection factors.

The meaning of factors here is the definition of how a projection performs in terms
of various distortions and scaling errors. In some cases analytic functions are readily
available that can be included within the individual projections files and available
through the PJconsts structure. However, it is felt that a numeric determination
of these factors is preferable because they are an independent evaluation that de-
termines the factors by execution of the projection code and thus perform a check
on these implementations and not upon the merely the evaluation of the factor
procedure.

3.8.1 Scale factors.

Two important factors about a projection are the scaling at a given geographic
coordinate which is defined by:

cE@T e e
G e
R - _al=¢) (3.33)

(1 — e2sin? ¢)3/2

where h and k are the scale factors along the respective meridian and parallel. R is
the ellipsoid radius in the plane of the meridian and m is the parallel radius .
These equations are for the ellipsoidal Earth but can be readily simplified for the
spherical case by setting e = 0. Respective scale error is computed from the A and
k factors by subtracting 1.

Additional factors to be computed are:

d = (h?+k*+2hksing’)'/? (3.34)
Vo= (h* 4 k? - 2hksing)Y/? (3.35)
where
dyor 0 dy
sin 0’ 0p 0N _0¢ 0X (3.36)

a®(1 — e?)hk cos ¢
(1 — e2sin® ¢)2
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From a’ and b’ the respective maximum and maximum scale factors are obtained
from

i /

o = 4EY (3.37)
2
a —b
b = .
5 (3.38)
and the area scale factor found from

S = hksind’ (3.39)

In the case of conformal projections the scale factors must be equal and thus
the angular distortion give by

w = arcsin <Z _T_ :) (3.40)

will be zero.

The remaining element of the projection factors is convergence or grid declination
which is the azimuth of grid north (2 or Northing axis) in relation to true north. It
is determined by:

v = arctan2 92 (3.41)

Normally only of interest in formal military or cadastral grid systems.
When the projection modules are not able to provide the values for the partial
derivatives then the following numeric method is used:

0fo,0

02 %(fl,l —foia+ fio1— f-1,-1)0(8%) (3.42)

The function f is the forward projection used in the procedure pj_-deriv which
calculates the Cartesian coordinates for the four § offsets from the central point
and computes the four partial derivatives. Note that this method may fail if the
central point is within ¢ of the limits of the projection.
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Chapter 4

Cylindrical Projections.

The mathematical characteristics of normal cylindical projections is of the form:

v o= O (4.1)
9(9) (4.2)

That is, both lines of constant parallels and meridians are straight lines. The term
normal cylindrical is used here to denote the usage where the axis of the cylinder
is coincident with the polar axis. In the transverse and oblique cylindricals the
parallels and meridians are complex curves.

Although the example figures of the cylindrical projections are of the entire Earth
the cylindrical projection is poorly suited for very small scale mapping because of
distortion of the polar regions. However, large scale usage of Mercator in all normal,
transverse and oblique forms is in common usage in regions bordering the cylinder’s
tangency or secant lines. The normal Mercator projection is also in common use in
navigation because of the property of a loxodrome being a straight line.

4.1 Normal Aspects.

4.1.1 Arden-Close.

+proj=ardn_cls (Fig. 4.1 Mean of Mercator and Cylindrical Equal-Area
projections.

y1 = Intan (Z + g) Yo = sin ¢ (4.3)

z=A y=(y1+y2)/2 (4.4)

4.1.2 Braun’s Second (Perspective).
+proj=braun2 Fig. 4.1] Ref. [I5] p. 111]

x=A y= zsin o/ <2 + cos gb) (4.5)
5 5
4.1.3 Cylindrical Equal-Area.

+proj=cea [+lat_O= | +lat_ts=] Fig.
Standard parallels (0° when omitted) may be specified that determine latitude of
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Table 4.1: Alternate names for the Cylindrical Equal-Area projection and their
associated control option.

Projection Name (Lat_ts=) ¢y
Lambert’s Cylindrical Equal-Area 0°

Berhrmann’s Projection (1910) 0°

Limiting case of Craster 37°4

Trystan Edwards 37°24

Gall’s Orthographic, Peter’s 45°

Peter’s Projection 44.138° (Voxland)

46°2’ (Maling)
M. Balthasart’s Projection 55° (Snyder)
50° (Maling)

true scale (k = h = 1). See Tablefor other names associated with this projection.

sin ¢
=\ = 4.
T COs ¢g Y p—— (4.6)

4.1.4 Central Cylindrical.

+proj=cc Fig. [4.1| Ref. ([I5 p. 107, ]
Cylindrical version of the Gnomonic Projection. Of little practical value.

x=A y =tan¢ (4.7

The transverse aspect by Wetch is given as:

. cos ¢ sin A _ arctan tan ¢ (4.8)
1 —cos? ¢sin® \)~1/2 v= cos A '

4.1.5 Cylindrical Equidistant.

+proj=eqc [+lat 0= | +lat_ts=] Fig. H
The simplist of all projections. Standard parallels (0° when omitted) may be speci-
fied that determine latitude of true scale (k = h = 1). See Table[4.2]for other names
associated with this projection and corresponding ¢, setting.

T = A COS Py y=0o (4.9)

4.1.6 Cylindrical Stereographic.

+proj=cyl_stere [+lat 0=] Fig.
Standard parallels (0° when omitted) may be specified that determine latitude of
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Figure 4.1: Cylinder projections I
A—Arden-Close, B—Cylindrical Equal-Area, C—Braun’s Second, D—Gall’s Ortho-
graph/Peter’s (¢g = 45°), E-Pavlov and F-Central Cylindrical.

true scale (k = h = 1). See Table[4.3|for other names associated with this projection.

T = Acos g y = (14 cosd¢p) tan% (4.10)

4.1.7 Kharchenko-Shabanova.
+proj=kh_sh Fig.

107
= \cos —— 4.11
T = Acos 180 (4.11)
y = $(0.99 + $2(0.0026263 + $20.10734)) (4.12)
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Table 4.2: Alternate names for the Equidistant Cylindrical projection and their
associated control option.

Projection Name (lat-ts=) ¢o
Plain/Plane Chart 0°
Simple Cylindrical 0°
Plate Carrée 0°
Ronald Miller—minimum overall scale oans
. . 37°30
distortion
E. Grafarend and A. N