libproj4: A Comprehensive Library of Cartographic Projection Functions (Preliminary Draft) Gerald I. Evenden March, 2005 # Contents | 1 | Usi | ng the libproj4 Library. | 9 | | | | | |---|------|---|----|--|--|--|--| | | 1.1 | Basic Usage | 9 | | | | | | | 1.2 | Projection factors | 11 | | | | | | | 1.3 | Error handling | 12 | | | | | | | 1.4 | Character/Radian Conversion | 12 | | | | | | | 1.5 | Limiting Selection of Projections | 13 | | | | | | 2 | Inte | ernal Controls | 15 | | | | | | | 2.1 | Initialization Procedures | 15 | | | | | | | | 2.1.1 Setting the Earth's figure | 16 | | | | | | | 2.2 | Determinations from the argument list | 17 | | | | | | | | 2.2.1 Creating the list | 17 | | | | | | | | 2.2.2 Using the parameter list | 17 | | | | | | | 2.3 | Computing projection values | 18 | | | | | | | 2.4 | Projection Procedure | 19 | | | | | | | 2.5 | Setting new error numbers | 21 | | | | | | 3 | Ana | analytic Support Functions 23 | | | | | | | | 3.1 | Ellipsoid definitions | 23 | | | | | | | 3.2 | Meridian Distance—pj_mdist.c | 24 | | | | | | | | 3.2.1 Rectifying Latitude | 25 | | | | | | | 3.3 | Conformal Sphere—pj_gauss.c | 25 | | | | | | | | 3.3.1 Simplified Form of Conformal Latitude | 26 | | | | | | | 3.4 | Authalic Sphere—pj_auth.c | 27 | | | | | | | 3.5 | Axis Translation—pj_translate.c | 28 | | | | | | | 3.6 | Transcendental Functions—pj_trans.c | 29 | | | | | | | 3.7 | Miscellaneous Functions | 29 | | | | | | | | 3.7.1 Isometric Latitude kernel | 29 | | | | | | | | 3.7.2 Inverse of Isometric Latitude | 29 | | | | | | | | 3.7.3 Parallel Radius | 30 | | | | | | | 3.8 | Projection factors | 30 | | | | | | | | 3.8.1 Scale factors | 30 | | | | | | 4 | Cyl | indrical Projections. | 33 | | | | | | | 4.1 | Normal Aspects | 33 | | | | | | | | 4.1.1 Arden-Close | 33 | | | | | | | | 4.1.2 Braun's Second (Perspective) | 33 | | | | | | | | 4.1.3 Cylindrical Equal-Area | 33 | | | | | | | | 4.1.4 Central Cylindrical | 34 | | | | | | | | 4.1.5 Cylindrical Equidistant | 34 | | | | | | | | 4.1.6 Cylindrical Stereographic | 34 | | | | | | | | 4.1.7 Kharchenko-Shabanova | 35 | | | | | | | | 4.1.8 Mercator | 37 | | | | | 4 CONTENTS | | | 4.1.9 | O.M. Miller | |---|----------------|--------|--| | | | 4.1.10 | O.M. Miller 2 | | | | | Miller's Perspective Compromise | | | | | Pavlov | | | | 4.1.13 | Tobler's Alternate #1 | | | | | Tobler's Alternate #2 | | | | | Tobler's World in a Square | | | | | Urmayev Cylindrical II | | | | | Urmayev Cylindrical III | | | 4.2 | | verse and Oblique Aspects | | | | 4.2.1 | Transverse Mercator | | | | 4.2.2 | Gauss-Boaga | | | | 4.2.3 | Oblique Mercator | | | | 4.2.4 | Cassini | | | | 4.2.5 | Swiss Oblique Mercator Projection | | | | 4.2.6 | Laborde | | | | | | | 5 | \mathbf{Pse} | udocyl | indrical Projections 51 | | | 5.1 | Comp | itations | | | 5.2 | Spheri | cal Forms | | | | 5.2.1 | Sinusoidal | | | | 5.2.2 | Winkel I | | | | 5.2.3 | Winkel II | | | | 5.2.4 | Urmayev Flat-Polar Sinusoidal Series | | | | 5.2.5 | Eckert I | | | | 5.2.6 | Eckert II | | | | 5.2.7 | Eckert III, Putniņš P_1 , Putniņš P_1' , Wagner VI and Kavraisky | | | | | VII | | | | 5.2.8 | Eckert IV | | | | 5.2.9 | Eckert V | | | | | Wagner II | | | | | Wagner III | | | | | Wagner V | | | | | Foucaut Sinusoidal | | | | 5.2.14 | Mollweide, Bromley, Wagner IV (Putninš P_2') and Werenski- | | | | F 0.15 | old III | | | | | Hölzel | | | | | Hatano | | | | | Craster (Putniņš P_4) 60 | | | | 5.2.18 | Putniņš P ₂ | | | | | Putninš P_3 and P_3' 60 | | | | | Putninš P'_4 and Werenskiold I 60 | | | | | Putninš P_5 and P_5' 60 | | | | | Putninš P_6 and P'_6 | | | | | Collignon | | | | | Sine-Tangent Series | | | | 5.2.25 | McBryde-Thomas Flat-Polar Parabolic | | | | 5.2.26 | McBryde-Thomas Flat-Polar Sine (No. 1) | | | | 5.2.27 | McBryde-Thomas Flat-Polar Quartic | | | | | Boggs Eumorphic | | | | | Nell | | | | | Nell-Hammer | | | | | Robinson | | | | 5.2.32 | Denoyer | CONTENTS 5 | | | 5.2.33 | Fahey | 66 | |---|-------|------------------|---|-----| | | | 5.2.34 | Ginsburg VIII | 67 | | | | 5.2.35 | Loximuthal | 67 | | | | 5.2.36 | Urmayev V Series | 67 | | | | 5.2.37 | Goode Homolosine, McBryde Q3 and McBride S2 | 68 | | | | 5.2.38 | Equidistant Mollweide | 68 | | | | 5.2.39 | McBryde S3 | 68 | | | | 5.2.40 | Semiconformal | 69 | | | | | Érdi-Krausz | 69 | | | | | Snyder Minimum Error | 70 | | | | | Maurer | 70 | | | | | Canters | 70 | | | | | Baranyi I–VII. | 71 | | | | | Oxford and Times Atlas | 75 | | | | | Baker Dinomic | 75 | | | | | Fourtier II | 75 | | | | | Mayr-Tobler | 75 | | | | | Tobler G1 | 76 | | | 5.3 | | ocylindrical Projections for the Ellipsoid | 76 | | | 0.0 | 5.3.1 | Sinusoidal Projection | 76 | | | | 0.0.1 | Sinusordar Frojection | | | 6 | Cor | nic Pro | jections | 77 | | | | 6.0.2 | Bonne | 80 | | | | 6.0.3 | Bipolar Oblique Conic Conformal | 80 | | | | 6.0.4 | (American) Polyconic | 83 | | | | 6.0.5 | Rectangular Polyconic | 85 | | | | 6.0.6 | Modified Polyconic | 86 | | | | 6.0.7 | Ginzburg Polyconics | 86 | | | | 6.0.8 | Křovák Oblique Confomal Conic Projection | 87 | | | | 6.0.9 | Lambert Conformal Conic Alternative Projection | 88 | | | | 6.0.10 | Hall Eucyclic | 90 | | 7 | A ==: | muthal | Drojections | 93 | | 1 | 7.1 | | $egin{aligned} \mathbf{Projections} \\ & \mathbf{cctive} \\ & \ldots \\ & \ldots \\ & \ldots \\ \\ & \ldots \\ & \ldots \\ \\ & \ldots \\ & \ldots \\ \\ & \ldots \\ \\ & \ldots \\ \\ $ | 93 | | | 1.1 | 7.1.1 | Perspective Azimuthal Projections | | | | | 7.1.1 | Stereographic Projection | | | | 7.2 | | ed | 98 | | | 1.4 | 7.2.1 | Hammer and Eckert-Greifendorff | 98 | | | | 7.2.1 $7.2.2$ | Aitoff, Winkel Tripel and with Bartholomew option | | | | | 7.2.3 | Wagner VII (Hammer-Wagner) and Wagner VIII | | | | | | Wagner IX (Aitoff-Wagner) | | | | | $7.2.4 \\ 7.2.5$ |
Gilbert Two World Perspective | | | | | 1.2.0 | Gilbert Two World Ferspective | 101 | | 8 | Mis | cellane | eous Projections | 103 | | | 8.1 | | cal Forms | | | | | 8.1.1 | Apian Globular II (Arago) | | | | | 8.1.2 | Apian Globular I, Bacon and Ortelius Oval | | | | | 8.1.3 | Armadillo | | | | | 8.1.4 | August Epicycloidal | | | | | 8.1.5 | Eisenlohr | | | | | 8.1.6 | Fournier Globular I | 107 | | | | 8.1.7 | Guyou and Adams Series | | | | | 8.1.8 | Lagrange | | | | | 8.1.9 | Nicolosi Globular. | | | 6 | CONTENTS | |---|----------| | | | | | 8.1.11
8.1.12
8.1.13 | Van der Grinten (I). Van der Grinten II. Van der Grinten III. Van der Grinten IV. | 112
113
113 | |---|----------------------------|--|-------------------| | 9 | Oblique P | Larrivée rojections Oblique Projection Parameters From Two Control Points | 117 | # List of Figures | 3.1 | The meridional ellipse | |------|---| | 4.1 | Cylinder projections I | | 4.2 | Cylinder projections II | | 4.3 | Cylinder projections III | | 5.1 | Interupted Projections | | 5.2 | General pseudocylindricals I | | 5.3 | Eckert pseudocylindrical series | | 5.4 | Wagner pseudocylindrical series | | 5.5 | General pseudocylindricals II | | 5.6 | PutniņšPseudocylindricals 61 | | 5.7 | General pseudocylindricals III | | 5.8 | General pseudocylindricals IV | | 5.9 | General pseudocylindricals V | | 5.10 | General pseudocylindricals VI | | 5.11 | Canters' pseudocylindrical series | | 5.12 | Baranyi pseudocylindrical series | | 6.1 | A-Hall Eucyclic and B-Maurer SNo. 73 (+proj=hall +K=0) 91 | | 7.1 | Geometry of perspective projections | | 7.2 | Modified Azimuthals | | 8.1 | Apian Comparison | | 8.2 | Globular Series | | 8.3 | General Miscellaneous | | 8.4 | Miscellaneous Square Series | | 8.5 | Lagrange Series | | 8.6 | Van der Grinten Series | ## Chapter 1 # Using the libproj4 Library. Although this cartographic projection library contains a large number of projections the programmatic usage is quite simple. The main burden of usage is the selection and correct usage of the parameters of the individual projections which is, in most cases, a burden placed upon the user, not the programmer. Usage is very similar to I/O programming where a file is opened and a structure is returned that is used by various I/O operation routines—a structure that contains all the details related to a particular file. Other similarities with file handling is that more than one projection can be processed concurrently and the structure is *closed* when finished. #### 1.1Basic Usage A cartographic projection is also a mathematical process like functions included in a compiler's mathematics library such as sin(x) to compute sin x and asin(x)to compute the inverse, $\arcsin x$ (also referred to as $\sin^{-1} x$). But unlike most mathematical library functions, the forward, P, and inverse, P^{-1} , cartographic projection functions have a multivariate argument and a bivariate return value: $$(x,y) \leftarrow P(\lambda,\phi,\cdots)$$ (1.1) $(\lambda,\phi) \leftarrow P^{-1}(x,y,\cdots)$ (1.2) $$(\lambda, \phi) \leftarrow P^{-1}(x, y, \cdots)$$ (1.2) where x and y are the planar, Cartesian coordinates, usually in meters, and λ and ϕ are the respective longitude and latitude geographic coordinates in radians. The biggest complication is the type and number of the additional functional arguments constituting the complete argument list. There is always either the Earth's radius or several techniques for defining the Earth's ellipsoid shape as well as specifications for false origins and units of Cartesian measure. Individual projections may have additional parameters that need to be specified. In all cases, it is necessary for the user to refer to the individual projection description for details about the individual projection parameters required. Because of the large number of selectable projections, each with their own special list of arguments, the following method was chosen to simplify the number of library entries needed by the programmer to the following prototypes defined in the header file projects.h: ``` #include <lib_proj.h> void *pj_init(int nargs, char *args[]); XY pj_fwd(LP lp, void *PJ); LP pj_inv(XY xy, void *PJ); void pj_free(void *PJ); ``` The complexity of this system is not in programmatic usage as described in the following text, but in understanding and properly using the cartographic control parameters. The procedure pj_init must be called first to select and initialize a projection. Parameters for the projection are passed in a manner identical with the normal C program entry point main: a count of the number of parameters and an array of pointers to the characters strings containing the parameters. In this case, the parameter strings are those cartographic parameters discussed in the sections describing the individual projections. By using character strings as arguments the selection of the projection and its arguments can be left to the user and thus avoid a great deal of programming time decoding and implementing a traditional argument list. Upon successful initialization pj_init returns a void pointer to a data structure that is used as the second argument with the forward, pj_fwd, and inverse, pj_inv, projection functions. Because the data structure returned by pj_init contains all the information for the computing the projection selected by the initialization call, any number of additional initialization calls can be made and used concurrently. If the initialization call failed then a null value is returned. See Section 1.3 for details on determining cause of failure. The first argument argument to the forward and inverse projection function and the function return is a type declared (in the header file projects.h) as: ``` typedef struct { double x, y; } XY; typedef struct { double lam, phi; } LP; ``` which are the respective x and y Cartesian coordinates respective longitude, λ , and latitude, ϕ , geographic coordinates in radians. If either the forward or inverse function fail to perform a conversion, both values in the returned structure are set to HUGE_VAL as defined in the math.h. Two additional notes should be made about the header file projects.h: it contains includes to the system header files stdlib.h and math.h, and several predefined constants such as multipliers DEG_TO_RAD and RAD_TO_DEG to respectively convert degrees to and from radians. To illustrate usage, the following is an example of a filter procedure designed to convert input pairs of latitude and longitude values in decimal degrees to corresponding Cartesian coordinates using the Polyconic projection with a central meridian of 90° W and the Clarke 1866 ellipsoid: ``` #include <stdio.h> #include <lib_proj.h> main(int argc, char **argv) { static char *parms[] = { "proj=poly", "ellps=clrk66", "lon_0=90W" }; PJ *ref; LP idata; XY odata; if (! (ref = pj_init(sizeof(parms)/sizeof(char *), parms))) { fprintf(stderr, "Projection initialization failed\n"); exit(1); } while (scanf("%lf %lf", &idata.phi, &idata.lam) == 2) { ``` ``` idata.phi *= DEG_TO_RAD; idata.lam *= DEG_TO_RAD; odata = pj_fwd(idata, ref); if (odata.x != HUGE_VAL) printf("%.3f\t%.3f\n", odata.x, odata.y); printf("data conversion error\n"); } exit(0); To test the program, the script ./a.out <<EOF 0 -90 33 -95 77 -86 EOF should give the results: 0.000 0.000 -467100.408 3663659.262 100412.759 8553464.807 ``` When executing pj_init the projection system allocates memory for the structure pointed to by the return value. This allocation is complex and consists of one or more additional memory allocations to assign substructures referenced within the base structure. In applications where multiple calls are to pj_init are made and where the previous initializations are no longer needed it is advisable to free up the memory associated with the no longer needed structures by calling pj_free. In some cases it is convenient to include: ``` #define PROJ_UV_TYPE ``` before the inclusion of the lib_proj.h header file. This changes the declaration of the forward and inverse entries to having a ``` typedef struct { double u, v; } UV; ``` type for both the first argument and functional return. The included program lproj is an example where this is used and facilitates the processing of the I/O that can be either forward or inverse projection which is performed by substituting the appropriate forward or inverse procedure interchangeably. ## 1.2 Projection factors. Various details about a projections behavior including scale factors at selected geographic coordinates can be determined with the function: ``` #include <lib_proj.h> int pj_factors(LP lp, PJ *P, double h, struct FACTORS *fac); ``` Argument 1p is the coordinate where the factors are to be determined, P points to the projection's control structure, h numerical derivative increment and fac is a structure defined in lib_proj.h as: ``` struct DERIVS { double x_1, x_p; /* derivatives of x for lambda-phi */ double y_l, y_p; /* derivatives of y for lambda-phi */ struct FACTORS { struct DERIVS der; double h, k; /* meridional, parallel scales */ double omega, thetap; /* angular distortion, theta prime */ double conv; /* convergence */ double s; /* areal scale factor */ double a, b; /* max-min scale error */ /* info as to analytics, see following */ int code; }; #define IS_ANAL_XL_YL 01 /* derivatives of lon analytic */ #define IS_ANAL_XP_YP 02 /* derivatives of lat analytic */ #define IS_ANAL_HK 04 /* h and k analytic */ #define IS_ANAL_CONV 010 /* convergence analytic */ ``` The variable code has bits set according to the defines where "analytic" refers to equations within the projections providing the values rather than their determination by numerical differentiation. The argument h may be 0. and a suitable default value will be
used. For a more complete, mathematical description of the elements in FACTORS see Section 3.8. ## 1.3 Error handling. Error detection is a combination of using the C library facilities relating to error and the global projlib variable pj_error. To simplify matters for the user, the application program only need to sense the pj_error for a non-zero value. If the value is greater than zero a C library procedure detected an error and if less than zero a libproj4 procedure detected an error. To get a string that describes the error use the following: ``` #include lib_proj.h char *emess; emess = pj_strerror(pj_errno); ``` A null pointer is returned if pj_errno==0. ## 1.4 Character/Radian Conversion. Two procedures in the LIBPROJ4 library are provided to perform conversion between human readable character representation of geodetic coordinates and internal floating point binary. These procedures are summarized by the following prototypes: ``` #include <lib_proj.h} double pj_dmstor(const char * str, char ** str) char *pj_rtodms(char *str, double rad, const char * signt) void pj_set_rtodms(int frac, int con_w)</pre> ``` The pj_dmstor function is patterned after the C language library strtod function where str is a character string to be read for a DMS value to be returned as the function value and the second character pointer returns a pointer to the next character in the string after the successfully decoded string. If a proper DMS value is not found then a 0 is returned and a HUGE_VAL is returned for bizarre conversion errors. In the latter case pj_errno may be set with a -16 value. Function rtodms performs output formatting and creates a DSM string from the input rad. The argument signt is a two character string where the first character is to be taken as the positive sign suffix and the second as the negative sign suffix. Normally, signt will either be "NS" or "EW". If signt is 0 then normal numeric minus sign prefixes the numeric output. Normal output of pj_rtodms formats to 3 decimal digits of seconds but this precision can be adjusted with the pj_set_rtodms function by specifying the number of significant digits to use with frac. If the argument con_w argument is not 0 then constant width values are output (often useful in map labeling or tabular values). ## 1.5 Limiting Selection of Projections Many applications will only need a small subset of the projections contained in the library libproj.a, but unless some action is taken, all of the projections will be linked into the final process. This is not a problem unless the memory requirements of the application are to be kept small or access to projections is to be restricted. If there is a need to limit the number of projections, a simple two-step process needs to followed. First create a header file, my_list.h for example, that contains a list of macro calls PROJ_HEAD(id, text', one for each projection to be part of the application program. Argument id is the acronym of the projection and argument text is the ASCII string describing the program (what appears after the colon in proj's -1 execution. The header file, nad_list, for program nad2nad is a an example: ``` /* projection list for program my_prog */ PROJ_HEAD(lcc, "Lambert Conformal Conic") PROJ_HEAD(omerc, "Oblique Mercator") PROJ_HEAD(poly, "Polyconic (American)") PROJ_HEAD(tmerc, "Transverse Mercator") PROJ_HEAD(utm, "Universal Transverse Mercator (UTM)") ``` An easy way to create this list is to copy and edit the file pj_list.h in the source distribution, which contains the entire listing of available projections, and edit out of the copy all lines of unwanted projections. Next, in one of the program code modules that includes the header file projects.h, precede the include statement with: ``` #define PJ_LIST_H "my_list.h" ``` Be careful to only put this include in only one of the code modules because this define action causes the initialization of the global pj_list and multiple initializations will cause havor with the linker. ## Chapter 2 ## **Internal Controls** To discuss the internal control of this system the description will be based upon following the flow of the process from projection initialization to coordinate conversion. Although extracts of the code and data structures will be presented here it may be helpful for the reader to follow the description with frequent references to the source code. ### 2.1 Initialization Procedures. To initiate the cartographic transformation system it is necessary to execute a procedure that will decode the user's control input into internally recognized parameters and to establish a myriad of computational constants and process controls and return to the calling procedure a reference to employ when performing transformations. In this system the entry is the procedure pj_init is passed a argument count and character array in a manner similar to a C program's main. The first operation pj_init performs is to put the list of arguments into a linked list described in the next section. The reason for this copy operation is that it allows the system to add arguments to the list and not violate const attributes of the input list and it also allows marking each argument element that is used by the system. This latter feature is useful in giving an audit trail for debugging usage of system. The first extraction from the input list is to determine the identifier of the projection to be used (+proj=<id>) and locating the entry id in the list: ``` struct PJ_LIST { char *id; /* projection keyword */ PJ *(*proj)(PJ *); /* projection entry point */ char * const *descr; /* description text */ }: ``` The following extract from the lib_proj.h header file shows how the projection list is declared and initialized: ``` /* Generate pj_list external or make list from include file */ #ifndef PJ_LIST_H extern struct PJ_LIST pj_list[]; #else #define PROJ_HEAD(id, name) \ extern PJ *pj_##id(PJ *); extern char * const pj_s_##id; #define DO_PJ_LIST_ID #include PJ_LIST_H ``` ``` #undef DO_PJ_LIST_ID #undef PROJ_HEAD #define PROJ_HEAD(id, name) {#id, pj_##id, &pj_s_##id}, struct PJ_LIST pj_list[] = { #include PJ_LIST_H {0, 0, 0}, }; #undef PROJ_HEAD #endif ``` In all but one situation of the usage of lib_proj.h the identifier PJ_LIST_H is undefined and thus only the external declaration of the projection list pj_list is made. In the case of the file pj_list.c the only code in the file is: ``` #define PJ_LIST_H "pj_list.h" #include "lib_proj.h" ``` which result in the following actions: - the PROJ_HEAD macro is defined as a declaration of the external projection function and an external description character string, - the header file pj_list.h containing a list of PROJ_HEAD statement is read, - PROJ_HEAD is redefined so as to create a structure array and initializes that array by re-reading the header file pj_list.h The reason for this seemingly convoluted operation is to simplify the installation of new projections by merely creating the the PROJ_HEAD macro once in the file containing the projection code and then simply copying this line into the list-defining header file. Once the projection initialization entry is determined from the list the next operation is to call the projection entry defined in the list structure with a zero (null) argument. The projection procedure will return a pointer to the PJconsts structure whose top portion is defined in lib_proj.h. This structure pointer is what is eventually returned by pj_init to the calling program after its contents are fully initialized. The reason for having the projection return the structure pointer is that the complete definition and size is defined by the selected projection. At this stage all of the elements after the first five of the structure PJconsts are filled in by following operations of pj_init. These components are found to be commonly used and projection independent and thus more efficiently determined by a common process. The final step is to re-call the projection entry point previously used but now with the pointer to the PJconsts stucture as the argument and allow the projection to complete the initialization of the structure based upon the already initialize elements and other options in the argument link list that are unique to the projection. Note that the base address of the base address of the argument list is now stored in the structure. If all goes well, the pointer to the structure PJconsts is returned to the user as the functional return of pj_init. ### 2.1.1 Setting the Earth's figure. In initializing the PJconsts stucture the elliptical parameters are the first parameters determined by a call to the function pj_ell_set. Its first operation is to search the parameter link-list for the definition of +R=<radius> and if found, the remainder of the initialization is for a spherical earth regardless of any ellipsoid parameters on the list. If the radius is not on the list, then a search the argument +ellps=<id> and a search of the table ``` struct PJ_ELLPS { char *id; /* ellipse keyword name */ char *major; /* a= value */ char *ell; /* elliptical parameter */ char *name; /* comments */ }; ``` is made and if found, the ellipsoid parameters from the second and third character fields are pushed onto the parameter linked list. The remainder of the PJconsts fields related to the ellipsoid or sphere are now determined. If neither a radius nor ellipsoid constants are found, an error condition exists. ## 2.2 Determinations from the argument list. Control options are the list of projection parameters typically obtained from run lines of programs or data bases. They consist of the option name optionally followed by an equal sign and an option value that may be a integer, floating, degree-minute-second (MDs or character string value. Control options may be prefixed with a + sign that is ignored by following functions. ## 2.2.1 Creating the list. One of the first functions of initialization of projection procedures
in LIBPROJ4 is to convert the string array argv into a linked list with the structure: ``` struct ARG_list { struct ARG_list *next; char used; char param[1]; }; ``` When each control parameter is stored in the list, the flag used is set to zero. If the parameter is somehow tested or the argument used the flag is set to one. This serves as an audit trail on projection usage if the verbose diagnostic call is employed. The argument string is placed into the list with execution of the function: ``` #include <lib_proj.h> paralist *pj_mkparam(char *str); ``` where paralist is a typedef of list structure. If pj_mkparam is unable to allocate memory for the new argument then a NULL value is returned. The calling program must use the returned pointer to either establish the starting point of a list or add to the "next" value at the end of an existing list. #### 2.2.2 Using the parameter list The function pj_param provides for searching for parameters and returning their value from paralist. ``` #include <lib_proj.h> PVALUE pj_param(paralist *pl, const char *opt) where typedef union { double f; int i; const char *s; } PVALUE; \begin{center} ``` Upon calling pj_param the argument opt character string contains the name of the option desired with a prefix character of how the the option argument is to be treated. The following is a list of the prefix characters and the nature of the return value of pj_param. - t test for the presence of the string in the list. Return integer 1 is present else 0. - i treat the option argument as integer and return the binary value. - d treat the option argument as a real number and return double as the result. - r argument is degree-minute-second input and return type double value in radians. - s argument is a character string and return pointer to string. - argument is boolean; return integer 0 if value "F", "f", "0" or integer 1 if the value is "T", "t" or "1" In all cases where there is no argument value a 0 or NULL value is returned. In practice, the b type is rarely used and it is understood that the presences or absence of the option serves as a boolean flag with the t test. ## 2.3 Computing projection values A review of the operations that are performed by the entry points pj_fwd and pj_inv is necessary in order to understand what is performed by the system before calling the individual projection procedures. The following operations are deemed to be common to all forward projections even though they maybe seldom used in some cases: - The range of the latitude and longitude arguments is check. The absolute value of latitude must be less than or equal to 90° ($\pi/2$ radians) and the absolute value of longitude must be less than or equal to 10 radians (573°). - Clear error flags. - If geocentric latitude option is selected the latitude is changed to geodetic latitude. - Central meridian is subtracted from the longitude. - If over-ranging is not selected the longitude is reduced to be between $\pm 180^{\circ}$. - The projection procedure is called. - It errors, then set x-y to HUGE_VAL and return, else x-y values are multiplied by the Earth's radius or major elliptical axis, false Northing and Easting are added and each are scaled to the selected units. The main thing to note is that the projection functions only deal with longitude reduced to the central meridian (no $\lambda - \lambda_0$ terms) and an unit radius/major-axis Earth. In the case of the inverse projection, fewer checks of the input data can be done by the inverse projection entry: - Clear error flags. - Adjust the Cartesian coordinates by rescaling, subtracting the false Easting and Northing and dividing out the Earth's radius or major-axis. - Call the inverse projection. - If errors, set λ - ϕ to HUGE_VAL and return. - Add central meridian to returned longitude. - If over-ranging not selected reduce longitude range to between - If geocentric latitude specified, change geodetic latitude to geocentric. ## 2.4 Projection Procedure. Because the library was intended to have a large number of projection procedures care was given to facilitating the coding of the procedures and to make them have a similar structure. By following this guideline it is easy to develop new projections (at least as far as the controlling code). The following is the skeletal outline of a projection procedure: ``` <boiler plate---copyright/disclaimers, etc.> #define PROJ_PARMS__ \ <local extensions to PJconsts structure> #define PJ_LIB__ #include h> PROJ_HEAD(<entry_id>, "<expanded descriptive name>") "\n\t<type>, ..."; <local defines, static variablesi, functions, ...> FORWARD(<forward_id>); <declarations and code for forward> xy.x = xy.y = return (xy); } INVERSE(<inverse_id>); <declarations and code for inverse> lp.phi = lp.lam = return (lp); } FREEUP; if (P) free(P); ``` ``` } ENTRYO(<entry_id>) <initialization code> P->inv = <inverse_id>; P->fwd = <forward_id>; ENDENTRY(P) ``` where the material enclosed in angle braces is a form of comment for this demonstration. The first thing to note is the defining of PJ_LIB__ which enables sections of the header file that contain definitions and other material unique to the projection procedures. The next item is the definition of PROJ_PARMS__ that defines extensions to the structure that are unique to the current projection. Looking at the definition in the header file lib_proj.h ``` typedef struct PJconsts { XY (*fwd)(LP, struct PJconsts *); LP (*inv)(XY, struct PJconsts *); void (*spc)(LP, struct PJconsts *, struct FACTORS *); void (*pfree)(struct PJconsts *); const char *descr; paralist *params; /* parameter list */ int over; /* over-range flag */ int geoc; /* geocentric latitude flag */ double a, /* major axis or radius if es==0 */ e, /* eccentricity */ es, /* e ^ 2 */ ra, /* 1/A */ one_es, /* 1 - e^2 */ rone_es, /* 1/one_es */ lam0, phi0, /* central longitude, latitude */ x0, y0, /* easting and northing */ /* general scaling factor */ to_meter, fr_meter; /* cartesian scaling */ #ifdef PROJ_PARMS__ PROJ_PARMS__ #endif /* end of optional extensions */ } PJ; ``` shows how the projection unique values are treated. In cases of very simple projections, the definition may be omitted. Finally the inclusion of the lib_proj.h header file. The PROJ_HEAD macro is used to define the entry point to the projection, an expanded description string and a string containing expanded information. The first argument <entry_id> must match the name used in the ENTRYO macro. This identifier argument is prefixed with PJ_ and is used as the external reference for the projection and is the point where the projection is called for initialization. There may be more than one entry point and thus more than one PROJ_HEAD and ENTRYO combinations. A good example of this is the Transverse Mercator projection which has two entries: tmerc and UTM. The Universal Transverse Mercator is a usage of the Transverse Mercator with added constraints and controls of parameters but remaining computations are identical. Additional variants of ENTRYO(<id> are ENTRYn,<id>,<args> where n is 1 or 2 and which have a corresponding number of identifier args in the macro. The identifiers must be contained in the PJ_consts structure as pointers that are to be set to 0 (NULL) at the beginning of initialization. In all entry cases, the ENTRY macros checks the non-null status of the input argument pointing to the structure and if null allocates memory for the structure PJ_consts and clears or sets the first five members of the structure and returns with with the structure address. For a non-null input argument control is passed to the following code which should conclude with the macro ENDENTRY(<arg>). In most cases arg is the pointer to the structure PJconsts but it can be a call to an static, local function that also returns the pointer. The FORWARD and INVERSE macros define the local, static entry points for the respective forward and inverse projection calculations and their addresses are stored in the PJconsts structure. In many cases there are two forward and inverse entries for the cases of elliptical and spherical earth and the initializing entry will select the ones to be stored on the basis of non-zero e previously set in PJconsts. Occasionally there is only a forward projection for the spherical case and thus only a FORWARD section. These two macros also declare the arguments and return structures xy and lp. In all cases, including initialization, the identifier pointing to PJ_consts is P. Error conditions are best handled by four macros: - F_ERROR for use in forward projection code and sets the global pj_errno to -20 and returns, - I_ERROR is the same as above but for inverse projection code, - E_ERROR_O for use in initialization code and it free allocated PJ_consts memory and returns a null pointer. It is assumed that some procedure call by the initializing code has already set pj_errno. - E_ERROR(<no>) same as above but also sets the external pj_errno to the negative argument value. The complexity of the entry to free the memory allocated to the structure PJ_consts is dependent upon how many additional sub allocations have been made. For projections of the spherical Earth there are usually no sub-allocations and the prototype listed earlier is complete. Additional memory sub-allocations to be released is the same as the number of arguments in the initialization entry macros. ## 2.5 Setting new error numbers. When developing new procedures or projections for the libproj library where error detection is part of the code do the following steps. Check the program file pj_strerrno.c which contains a listing of all the libproj4 error numbers. If a current error condition applies to the new error condition, then use that negative number as the value to be assigned to pj_errno. Otherwise, install a new descriptive string at the next to last line of the list pj_err_list with a new, negative error number. ## Chapter 3 # **Analytic
Support Functions** The material in this chapter expands upon equations and procedures employed by the projection functions and how they are implemented in the C programming environment. In most cases a description of the originating mathematical function is presented rather than just the series or other simplification used for evaluation. The reason for this is that the reader may have insights into how to improve the evaluation and further enhance the performance of the system. In many cases function naming goes back to early FORTRAN versions of GCTP where an effort was made to collect common computing operations into globally available subroutines. As with projection descriptions, all procedures that deal with ellipsoidal or spherical operations are performed for the unit ellipsoid (a = 1) or unit sphere (R = 1). ## 3.1 Ellipsoid definitions Figure 3.1: The meridional ellipse. From Fig. 3.1 the components and symbols used in this document for defining the ellipsoid are summarized as follows: semimajor axis $$a$$ semiminor axis b $$\text{excenticity} \quad e^2 = \frac{a^2 - b^2}{a^2}$$ $$= \frac{e'^2}{1 + e'^2}$$ $$= 2f - f^2$$ second excentricity $e'^2 = \frac{a^2 - b^2}{b^2}$ $$= \frac{e^2}{1 - e^2}$$ flattening $f = \frac{a - b}{a}$ The angle ϕ is geographic or geodetic latitude and λ is geodetic longitude (the angle of rotation of the meridianal plane about the N-S axis). Geocentric latitude, γ , is infrequently used in projection applications. The distances PQ' and PQ are the respective radii of the ellipsoid surface in the plane of the meridianal ellipse and normal to the plane of the meridianal ellipse. $$PQ' = R = \frac{a(1 - e^2)}{(1 - e^2 \sin^2 \phi)^{3/2}}$$ (3.1) $$PQ = N = \frac{a}{(1 - e^2 \sin^2 \phi)^{1/2}}$$ (3.2) ## 3.2 Meridian Distance—pj_mdist.c A common function among cartographic projections for the ellipsoidal earth is to determine the distance along a meridian from the equator to latitude ϕ . The definition of this distance is the integral of the radius of the spheroid in the plane of the meridian (equation 3.1) $$M(\phi) = a(1 - e^2) \int_0^{\phi} \frac{d\phi}{(1 - e^2 \sin^2 \phi)^{3/2}}$$ (3.3) which can be computed as $$M(\phi) = a \left(E(\phi, e) - \frac{e^2 \sin \phi \cos \phi}{\sqrt{1 - e^2 \sin^2 \phi}} \right)$$ (3.4) where $E(\phi, e)$ is the elliptic integral of the second kind. When e is small (as in the case of the Earth's eccentricity) a means of evaluating the elliptic integral is as follows: $$E(\phi, e) = E\phi + \sin\phi\cos\phi(b_0 + \frac{2}{3}b_1\sin^2\phi + \frac{2\cdot 4}{3\cdot 5}b_2\sin^4\phi + \cdots)$$ $$b_0 = 1 - E$$ $$b_n = b_{n-1} - \left[\frac{(2n-1)!!}{2^n n!}\right]^2 \frac{e^{2n}}{2n-1}$$ $$E = 1 - \frac{1}{2^2}e^2 - \frac{1^2\cdot 3}{2^2\cdot 4^2}e^4 - \cdots - \left[\frac{(2n-1)!!}{2^n n!}\right]^2 \frac{e^{2n}}{2n-1}$$ In the LIBPROJ4 library three functional entries are used in the meridional distance calculations: ``` void *pj_mdist_ini(double es) double pj_mdist(double phi, double sphi, double cphi, const void *en); double pj_inv_mdist(double dist, const void *en) ``` Function pj_mdist_ini determines E and the series coefficients b_n for the specified eccentricity argument (e^2) and returns a pointer to a structure of these values, en, for use by the forward and inverse functions. In the case of an unreasonably large value of e^2 , function pj_mdist_ini could fail and thus return a null pointer. The degree required by the series is automatically determined by the procedure so as to ensure precision commensurate with the type double on the host hardware. Function pj_mdist returns the distance from the equator to the latitude phi. In the interests of avoiding repeated evaluation of sine (sphi) and cosine (cphi) of latitude (almost always computed for other reasons in the calling procedures) these values are included in the argument list. Function pj_inv_mdist returns the latitude for a distance dist from the equator. In both the forward and inverse case the sign of the latitude and distance is carried though the evaluation so that a negative latitude gives a negative meridian distance and conversely. #### 3.2.1Rectifying Latitude The rectifying latitude, μ (or ω) is a latitude on a sphere determined by the ratio of the distance from the equator for a point on the ellipsoid at latitude ϕ divided by the distance over the ellipsoid from the equator to the pole: $$\mu = \frac{\pi}{2} \cdot \frac{M(\phi)}{M(\pi/2)} \tag{3.5}$$ where the function M is the meridian distance from (3.4). #### Conformal Sphere—pj_gauss.c 3.3 Determinations of oblique projections on an ellipsoid can be difficult to solve and result in long, complex computations. Because conformal transformations can be made multiple time without loss of the conformal property a method of determining oblique projections involves conformal transformation of the elliptical coordinates to coordinates on a conformal sphere. The transformed coordinates can now be translated/rotated on the sphere and then converted to planar coordinates with a conformal spherical projection. Pearson [10] gives a development of the conformal transformation but assumes a zero constant of integration. The conformal transformation of ellipsoid coordinates (ϕ, λ) to conformal sphere coordinates (χ, λ_c) is $$\chi = 2 \arctan \left[K \tan^C(\pi/4 + \phi/2) \left(\frac{1 - e \sin \phi}{1 + e \sin \phi} \right)^{Ce/2} \right] - \pi/2 \qquad (3.6)$$ $$\lambda_c = C\lambda \tag{3.7}$$ $$\lambda_c = C\lambda \tag{3.7}$$ $$R_c = \frac{\sqrt{1 - e^2}}{1 - e^2 \sin^2 \phi_0} \tag{3.8}$$ where λ is relative to the longitude of projection origin, R_c is radius of the conformal sphere and $$C = \sqrt{1 + \frac{e^2 \cos^4 \phi_0}{1 - e^2}} \tag{3.9}$$ $$\chi_0 = \arcsin\left(\frac{\sin\phi_0}{C}\right) \tag{3.10}$$ $$K = \tan(\chi_0/2 + \pi/4) / \left[\tan^C(\phi_0/2 + \pi/4) \left(\frac{1 - e \sin \phi_0}{1 + e \sin \phi_0} \right)^{Ce/2} \right]$$ (3.11) where χ_0 is the latitude on the conformal sphere at the central geographic latitude of the projection. To determine the inverse solution, geographic coordinates from Gaussian sphere coordinates, execute: $$\lambda = \lambda_c/C \tag{3.12}$$ $$\phi = 2 \arctan \left[\frac{\tan^{1/C} (\chi/2 + \pi/4)}{K^{1/C} \left(\frac{1 - e \sin \phi_{i-1}}{1 + e \sin \phi_{i-1}} \right)^{e/2}} \right] - \pi/2$$ (3.13) with the initial value of $\phi_{i-1} = \chi$ and ϕ_{i-1} iteratively replaced by ϕ until $|\phi - \phi_{i-1}|$ is less than an acceptable error value. Procedures to compute the transformation are: #include <lib_proj.h> The initialization procedure pj_gauss_ini returns a pointer to a control array for forward and inverse conversion at the latitude of origin phi0 (ϕ_0). It also returns the radius of the Gaussian sphere (rc). Procedures pj_gauss_inv are respective forward and inverse conversion of the latitude and longitude to and from the Gaussian sphere. The storage pointed to by en should be release back to the system upon completion of conversion usage. #### 3.3.1 Simplified Form of Conformal Latitude. A common determination of the conformal latitude is made by setting K=1 (based upon zero constant of integration which causes $\chi \to 0$ as $\phi \to 0$) and set C=1 which seems to be equivalent to similar to having $\chi \to \pi/2$ as $\phi_0 \to \pi/2$. Equation 3.6 now becomes: $$\chi = 2 \arctan \left[\tan(\pi/4 + \phi/2) \left(\frac{1 - e \sin \phi}{1 + e \sin \phi} \right)^{e/2} \right] - \pi/2$$ (3.14) $$\lambda_c = \lambda \tag{3.15}$$ Determining ϕ from χ is the same as discussed for equation 3.13. The radius of the conformal sphere is determined by: $$R_c = \frac{\cos \phi_0}{\cos \chi_0} (1 - e^2 \sin^2 \phi_0)^{-1/2}$$ (3.16) This new sphere radius is not how it is phrased by Snyder [14, page 160] or Thomas [18, page 134] but it serves as a useful equivalence when making a replacement funtion for pj_gauss_ini. The derivation of this factor was based upon the requirement of unity scale factor at the Stereographic projection origin. For the moment, this is the only projection that employs this procedure so beware in applying it in other cases. Although the precedure to perform the simplified Gauss latitude need not be as complex, the operations are made compatible with the general use for compatibility. #include <lib_proj.h> ## 3.4 Authalic Sphere—pj_auth.c Authalic operations relate to the sphere having the same surface area of an elliptical earth. From the integral definition: $$\int R^2 \cos \beta \, d\beta = a^2 (1 - e^2) \int \frac{\cos \phi}{(1 - e^2 \sin^2 \phi)^2} d\phi$$ (3.17) which is readily solved by binomial expansion of the denominator and term-by-term integration: $$R^{2} \sin \beta = a^{2} (1 - e^{2}) \sin \phi \left(1 + \frac{2}{3} e^{2} \sin^{2} \phi + \frac{3}{5} e^{4} \sin^{4} \phi + \frac{4}{7} e^{6} \sin^{6} \cdots \right)$$ $$= a^{2} (1 - e^{2}) \sin \phi \sum_{n=0}^{\infty} \frac{1 + n}{1 + 2n} e^{2n} \sin^{2n} \phi$$ (3.18) The constants of integration are eliminated to main equality when $\phi = \beta = 0$ and R (radius of the authalic sphere) is determined by ensuring $\phi = \beta = \pi/2$ and thus is obtained from: $$R^{2} = a^{2}(1 - e^{2}) \sum_{n=0}^{\infty} \frac{1+n}{1+2n} e^{2n}$$ (3.19) Finally, the authalic latitude is: $$\beta = \arcsin \left(\frac{\sin \phi \sum_{n=0}^{\infty} \frac{1+n}{1+2n} e^{2n} \sin^{2n} \phi}{\sum_{n=0}^{\infty} \frac{1+n}{1+2n} e^{2n}} \right)$$ (3.20) $$= \arcsin\left(\sin\phi \sum_{n=0}^{n-0} c_{2n}\sin^{2n}\phi\right)$$ (3.21) where c_{2n} are the collapsed constants determined by the initializing process specifying e. To obtain the geodetic latitude from the authalic latitude the Newton-Raphson process can be used where the initial value of $\phi = \beta$: $$\phi_{+} = \phi + \frac{\sin \beta - \sin \phi \sum_{n=0}^{\infty} c_{2n} \sin^{2n} \phi}{\cos \phi
\sum_{n=0}^{\infty} \frac{c_{2n}}{2n+1} \sin^{2n} \phi}$$ (3.22) Another authalic factor (currently lacking a name) is the q function typically defined as: $$q = (1 - e^{2}) \left[\frac{\sin \phi}{1 - e^{2} \sin^{2} \phi} - \frac{1}{2e} \ln \left(\frac{1 - e \sin \phi}{1 + e \sin \phi} \right) \right]$$ $$= 2(1 - e^{2}) \sin \phi \sum_{n=0}^{\infty} \frac{1 + n}{1 + 2n} e^{2n} \sin^{2n} \phi$$ $$= \frac{R^{2}}{2a^{2}} \sin \beta$$ (3.23) The series form of the function is used in the library function qsfn. LIBPROJ4 entries: ``` void* pj_auth_ini(double es, double *r) double pj_qsfn(double phi, void*i en) double pj_auth_lat(double phi, void* en) double pj_auth_inv(double beta, void* en) ``` #include <lib_proj.h> #### Axis Translation—pj_translate.c 3.5 This set of procedures performs axis translations for the spherical coordinate system. The elliptical system can only be translated about the polar axis— a process performed by the λ_0 or central meridian factor. One way for elliptical projections to perform general translation is transformation of the elliptical coordinates to the sphere and subsequent use of this procedure. Mathematically, the forward translation is performed by: $$\sin(\phi') = \sin \alpha \sin \phi - \cos \alpha \cos \phi \cos \lambda \tag{3.24}$$ $$\tan(\lambda' - \beta) = \frac{\cos\phi\sin\lambda}{\sin\alpha\cos\phi\cos\lambda + \cos\alpha\sin\phi}$$ (3.25) and the inverse translation performed by: $$\sin(\phi) = \sin \alpha \sin \phi' + \cos \alpha \cos \phi' \cos(\lambda' - \beta) \tag{3.26}$$ $$\sin(\phi) = \sin \alpha \sin \phi' + \cos \alpha \cos \phi' \cos(\lambda' - \beta)$$ $$\tan \lambda = \frac{\cos \phi' \sin(\lambda' - \beta)}{\sin \alpha \cos \phi' \cos(\lambda' - \beta + \cos \alpha \sin \phi'}$$ (3.26) The latitude α is the position of the North Pole of the original coordinates system on the new system at a longitude β east of the central meridian of the new coordinates $(\lambda' = 0)$. In most applications $\beta = 0$. The library translation functions are: #include <proj_lib.h> ``` LP pj_translate(LP base, void *en); LP pj_inv_translate(LP shift, void *en); void *pj_translate_ini(double alpha, double beta); ``` Execution of the initializing function pj_translate_ini will return a pointer to a structure containing constants for the forward and inverse operations. A NULL value will be returned if the procedure failed to successfully obtain memory. Function pj_translate returns the translated original coordinates and conversely, pj_translate returns the translated coordinates back to the original values. Users must execute free(en) upon end of usage. ## 3.6 Transcendental Functions—pj_trans.c In order to avoid domain errors in calling several of the standard C library functions several alternate entries are used: ``` #include <lib_proj.h> double pj_asin(double) double pj_acos(double) double pj_sqrt(double) double pj_atan2(double, double) ``` The pj_asin and pj_acos check that arguments whose absolute value exceeds unity by a small amount are successfully resolved. Similarly a sufficiently small negative argument to pj_sqrt will cause a return of zero. If both the arguments to pj_atan2 are sufficiently small it will return a zero value. #### 3.7 Miscellaneous Functions These are short functions that date from origins in the GCTP system and perform evaluations for various projections. Part of the purpose of developing GCTP was to minimize repetitive program code. #### 3.7.1 Isometric Latitude kernel. The function t $$t = \tan(\pi/4 + \phi/2) \left(\frac{1 - e\sin\phi}{1 + e\sin\phi}\right)^{e/2}$$ (3.28) is the kernel of $\ln(t)$ (Isometric latitude) that performs conformal mapping of a spheroid to the plane. The kernel is kept separate because it is also frequently used in the inverse form where t^e is evaluated. ``` #include <lib_proj.h> double pj_tsfn(double phi, double sinphi, e); ``` #### 3.7.2 Inverse of Isometric Latitude. This function determines the geodetic latitude from the isometric latitude $\tau = \ln(t)$. The procedure is to iteratively solve for ϕ_+ until a sufficiently small difference between evaluations occurs. $$\phi_{+} = \pi/2 - 2 \arctan \left[t \left(\frac{1 - e \sin \phi}{1 + e \sin \phi} \right)^{e/2} \right]$$ (3.29) where $$t = \exp(-\tau)$$ and using an initial value of: $$\phi = \pi/2 - 2\arctan(t)$$ Library function prototype: It is unknown how the library function got its name. #### 3.7.3 Parallel Radius. The distance of a point at latitude ϕ from the polar axis. Also termed the radius of a parallel of latitude (distance X in figure 3.1 and equation 3.2). $$m = N\cos\phi = \frac{a\cos\phi}{\sqrt{1 - e^2\sin^2\phi}} \tag{3.30}$$ where N is the radius of curvature of the ellipse perpendicular to the plane of the meridian. A unit major axis (a) is used. The LIBPROJ4 prototype is: #include <lib_proj.h> double pj_msfn(double sinphi, double cosphi, es); ## 3.8 Projection factors. The meaning of factors here is the definition of how a projection performs in terms of various distortions and scaling errors. In some cases analytic functions are readily available that can be included within the individual projections files and available through the PJconsts structure. However, it is felt that a numeric determination of these factors is preferable because they are an independent evaluation that determines the factors by execution of the projection code and thus perform a check on these implementations and not upon the merely the evaluation of the factor procedure. #### 3.8.1 Scale factors. Two important factors about a projection are the scaling at a given geographic coordinate which is defined by: $$h = \left[\left(\frac{\partial x}{\partial \phi} \right)^2 + \left(\frac{\partial y}{\partial \phi} \right)^2 \right]^{1/2} / R \tag{3.31}$$ $$k = \left[\left(\frac{\partial x}{\partial \lambda} \right)^2 + \left(\frac{\partial y}{\partial \lambda} \right)^2 \right]^{1/2} / m \tag{3.32}$$ $$R = \frac{a(1-e^2)}{(1-e^2\sin^2\phi)^{3/2}}$$ (3.33) where h and k are the scale factors along the respective meridian and parallel. R is the ellipsoid radius in the plane of the meridian and m is the parallel radius [3.30]. These equations are for the ellipsoidal Earth but can be readily simplified for the spherical case by setting e=0. Respective scale error is computed from the h and k factors by subtracting 1. Additional factors to be computed are: $$a' = (h^2 + k^2 + 2hk\sin\theta')^{1/2}$$ (3.34) $$b' = (h^2 + k^2 - 2hk\sin\theta')^{1/2}$$ (3.35) where $$\sin \theta' = \frac{\frac{\partial y}{\partial \phi} \frac{\partial x}{\partial \lambda} - \frac{\partial x}{\partial \phi} \frac{\partial y}{\partial \lambda}}{\frac{a^2 (1 - e^2) h k \cos \phi}{(1 - e^2 \sin^2 \phi)^2}}$$ (3.36) From a' and b' the respective maximum and maximum scale factors are obtained from $$a = \frac{a' + b'}{2}$$ (3.37) $b = \frac{a' - b'}{2}$ (3.38) $$b = \frac{a' - b'}{2} \tag{3.38}$$ and the area scale factor found from $$S = hk\sin\theta' \tag{3.39}$$ In the case of conformal projections the scale factors must be equal and thus the angular distortion give by $$\omega = \arcsin\left(\frac{|h-k|}{h+k}\right) \tag{3.40}$$ will be zero. The remaining element of the projection factors is convergence or grid declination which is the azimuth of grid north (x or Northing axis) in relation to true north. It is determined by: $$\gamma = \arctan 2 \left(\frac{\partial y}{\partial \lambda} \over \frac{\partial x}{\partial \lambda} \right) \tag{3.41}$$ Normally only of interest in formal military or cadastral grid systems. When the projection modules are not able to provide the values for the partial derivatives then the following numeric method is used: $$\frac{\partial f_{0,0}}{\partial z} = \frac{1}{4\delta} (f_{1,1} - f_{-1,1} + f_{1,-1} - f_{-1,-1}) O(\delta^2)$$ (3.42) The function f is the forward projection used in the procedure pj_deriv which calculates the Cartesian coordinates for the four δ offsets from the central point and computes the four partial derivatives. Note that this method may fail if the central point is within δ of the limits of the projection. ## Chapter 4 # Cylindrical Projections. The mathematical characteristics of normal cylindical projections is of the form: $$x = f(\lambda) \tag{4.1}$$ $$y = g(\phi) \tag{4.2}$$ That is, both lines of constant parallels and meridians are straight lines. The term *normal cylindrical* is used here to denote the usage where the axis of the cylinder is coincident with the polar axis. In the transverse and oblique cylindricals the parallels and meridians are complex curves. Although the example figures of the cylindrical projections are of the entire Earth the cylindrical projection is poorly suited for very small scale mapping because of distortion of the polar regions. However, large scale usage of Mercator in all normal, transverse and oblique forms is in common usage in regions bordering the cylinder's tangency or secant lines. The normal Mercator projection is also in common use in navigation because of the property of a loxodrome being a straight line. ## 4.1 Normal Aspects. #### 4.1.1 Arden-Close. +proj=ardn_cls (Fig. 4.1 Mean of Mercator and Cylindrical Equal-Area projections. $$y_1 = \ln \tan \left(\frac{\pi}{4} + \frac{\phi}{2}\right) \qquad \qquad y_2 = \sin \phi \tag{4.3}$$ $$x = \lambda y = (y_1 + y_2)/2 (4.4)$$ #### 4.1.2 Braun's Second (Perspective). +proj=braun2 Fig. 4.1 Ref. [15, p. 111] $$x = \lambda \qquad \qquad y = \frac{7}{5}\sin\phi/\left(\frac{2}{5} + \cos\phi\right) \tag{4.5}$$ ### 4.1.3 Cylindrical Equal-Area. +proj=cea [+lat_0= | +lat_ts=] Fig. 4.1 Standard parallels (0° when omitted) may be specified that determine latitude of | Projection Name | $(\texttt{lat_ts=}) \; \phi_0$ | |----------------------------------|---------------------------------| | Lambert's Cylindrical Equal-Area | 0° | | Berhrmann's Projection (1910) | 0° | | Limiting case of
Craster | $37^{\circ}4'$ | | Trystan Edwards | $37^{\circ}24'$ | | Gall's Orthographic, Peter's | 45° | | Peter's Projection | 44.138° (Voxland) | | | $46^{\circ}2'$ (Maling) | | M. Balthasart's Projection | 55° (Snyder) | | | 50° (Maling) | Table 4.1: Alternate names for the Cylindrical Equal-Area projection and their associated control option. true scale (k = h = 1). See Table 4.2 for other names associated with this projection. $$x = \lambda \cos \phi_0 \qquad \qquad y = \frac{\sin \phi}{\cos \phi_0} \tag{4.6}$$ ## 4.1.4 Central Cylindrical. +proj=cc Fig. 4.1 Ref. ([15, p. 107,] Cylindrical version of the Gnomonic Projection. Of little practical value. $$x = \lambda y = \tan \phi (4.7)$$ The transverse aspect by Wetch is given as: $$x = \frac{\cos\phi\sin\lambda}{1 - \cos^2\phi\sin^2\lambda)^{-1/2}} \qquad y = \arctan\left(\frac{\tan\phi}{\cos\lambda}\right) \tag{4.8}$$ ## 4.1.5 Cylindrical Equidistant. +proj=eqc [+lat_0= | +lat_ts=] Fig. 4.3 The simplist of all projections. Standard parallels (0° when omitted) may be specified that determine latitude of true scale (k = h = 1). See Table 4.2 for other names associated with this projection and corresponding ϕ_{ts} setting. $$x = \lambda \cos \phi_{ts} \qquad \qquad y = \phi \tag{4.9}$$ ### 4.1.6 Cylindrical Stereographic. +proj=cyl_stere [+lat_0=] Fig. 4.2 Standard parallels (0° when omitted) may be specified that determine latitude of Figure 4.1: Cylinder projections I **A**–Arden-Close, **B**–Cylindrical Equal-Area, **C**–Braun's Second, **D**–Gall's Orthograph/Peter's ($\phi_0=45^\circ$), **E**–Pavlov and **F**–Central Cylindrical. true scale (k = h = 1). See Table 4.3 for other names associated with this projection. $$x = \lambda \cos \phi_0 \qquad \qquad y = (1 + \cos \phi_0) \tan \frac{\phi}{2}$$ (4.10) ### 4.1.7 Kharchenko-Shabanova. +proj=kh_sh Fig. 4.2 $$x = \lambda \cos \frac{10\pi}{180} \tag{4.11}$$ $$y = \phi(0.99 + \phi^2(0.0026263 + \phi^2(0.10734))$$ (4.12) Table 4.2: Alternate names for the Equidistant Cylindrical projection and their associated control option. | Projection Name | $(\texttt{lat_ts=}) \; \phi_0$ | |--|---------------------------------| | Plain/Plane Chart | 0° | | Simple Cylindrical | 0° | | Plate Carrée | 0° | | Ronald Miller—minimum overall scale distortion | 37°30′ | | E. Grafarend and A. Niermann | 42° | | Ronald Miller—minimum continental scale distortion | 43°30′ | | Gall Isographic | 45° | | Ronald Miller Equirectagular | $50^{\circ}30'$ | | E. Gradarend and A. Niermann minimum linear distortion | 61.7° | Table 4.3: Alternate names for the Cylindrical Stereographic projection and their associated control option. | Projection Name | (lat_0=) ϕ_0 | |--------------------------------|--| | Braun's Cylindrical | 0° | | BSAM or Kamenetskiy's Second | 30° | | Gall's Stereographic | 45° | | Kamenetskiy's First Projection | 55° | | O.M. Miller's Modified Gall | $\frac{2}{\sqrt{3}} = 66.159467^{\circ}$ | ### 4.1.8 Mercator. +proj=merc [lat_ts=] Fig. 4.2 Ref. [14, p. 41, 44] Scaling may be specified by either the latitude of true scale (ϕ_{ts}) or setting k_0 with +k= or +k_0=. ### Spherical form. Forward projection: $$x = k_0 \lambda \qquad \qquad y = k_0 \begin{cases} \ln \tan \left(\frac{\pi}{4} + \frac{\phi}{2}\right) \\ \frac{1}{2} \ln \left(\frac{1 + \sin \phi}{1 - \sin \phi}\right) \end{cases} \tag{4.13}$$ $$k_0 = \cos \phi_{ts} \tag{4.14}$$ Inverse projection: $$\lambda = x/k_0 \qquad \qquad \phi = \begin{cases} \arctan[\sinh(y/k_0)] \\ \pi - 2\arctan[\exp(-y/k_0)] \end{cases}$$ (4.15) ### Elliptical form. Forward projection: $$x = k_0 \lambda \qquad \qquad y = k_0 \ln t(\phi) \tag{4.16}$$ $$k_0 = m(\phi_{ts}) \tag{4.17}$$ where t() is the Isometric Latitude kernel function (see 3.7.1 and $m(\phi)$ is the parallel radius at latitude ϕ (see 3.7.3). Inverse projection: $$\lambda = x/k_0$$ $\phi = t^{-1}(\exp(-y/k_0))$ (4.18) ### 4.1.9 O.M. Miller. +proj=mill Fig. 4.3 Ref. [14, p. 88] $$x = \lambda$$ $$y = \begin{cases} \frac{5}{4} \ln \tan \left(\frac{\pi}{4} + \frac{2}{5}\phi\right) \\ \frac{5}{4} \operatorname{arcsinh}[\tan(\frac{4}{5}\phi)] \\ \frac{5}{8} \ln \left(\frac{1 + \sin\frac{4}{5}\phi}{1 - \sin\frac{4}{5}\phi}\right) \end{cases}$$ $$(4.19)$$ For the inverse $$\lambda = x \qquad \qquad \phi = \begin{cases} \frac{5}{2} \arctan[\exp(\frac{4}{5}y)] - \frac{5}{8}\pi\\ \frac{5}{4} \arctan[\sinh(\frac{4}{5}y)] \end{cases} \tag{4.20}$$ ### 4.1.10 O.M. Miller 2. +proj=mill_2 Fig. 4.3 $$x = \lambda y = \frac{3}{2} \ln \tan \left(\frac{\pi}{4} + \frac{\phi}{3} \right) (4.21)$$ Figure 4.2: Cylinder projections II **A**–Cylindrical Stereographic (Braun's), **B**–Gall's Stereographic ($\phi_0 = 45^{\circ}$), **C**–Kharchenko-Shabanova, **D**–Mercator, **E**–Tobler alternate #2 and **F**–Tobler alternate #1. # 4.1.11 Miller's Perspective Compromise. +proj=mill_per Fig. 4.3 $$x = \lambda y = \left(\sin\frac{\phi}{2} + \tan\frac{\phi}{2}\right) (4.22)$$ ### 4.1.12 Pavlov. +proj=pav_cyl Fig. 4.1 $$x = \lambda y = \left(\phi - \frac{0.1531}{3}\phi^3 - \frac{0.0267}{5}\phi^5\right) (4.23)$$ Figure 4.3: Cylinder projections III $\begin{array}{llll} \textbf{A}\text{--Cylindrical Equidistant,} & \textbf{B}\text{--Miller,} & \textbf{C}\text{--Gall' Isographic,} & \textbf{D}\text{--Miller } 2, & \textbf{E}\text{--Tobler World in a Square,} & \textbf{F}\text{--Miller Perspective,} & \textbf{G}\text{--Urmayev II,} & \textbf{H}\text{--Urmayev III.} \end{array}$ #### Tobler's Alternate #1 4.1.13 +proj=tobler_1 Fig. ?? This is alternate to to O.M. Miller's projection. $$x = \lambda y = \left(\phi + \frac{1}{6}\phi^3\right) (4.24)$$ #### 4.1.14Tobler's Alternate #2 +proj=tobler_2 Fig. ?? This is alternate to to O.M. Miller's projection. $$x = \lambda$$ $y = \left(\phi + \frac{1}{6}\phi^3 + \frac{1}{24}\phi^6\right)$ (4.25) #### 4.1.15Tobler's World in a Square. +proj=tob_sqr Fig. 4.3 $$x = \lambda/\sqrt{\pi} \qquad \qquad y = \sqrt{\pi}\sin\phi \qquad (4.26)$$ # Urmayev Cylindrical II. +proj=urm_2 Fig. 4.3 $$\Phi = \left(\frac{\phi^{\circ}}{10}\right)^{2} \tag{4.27}$$ $$x = \lambda \tag{4.28}$$ $$x = \lambda \tag{4.28}$$ $$y = \phi \left(1 + \frac{188}{48384} \Phi + \frac{1}{80640} \Phi^2 \right)$$ (4.29) (4.30)The y-axis may be also expressed by: $$c_3 = 0.1275561329783 \tag{4.31}$$ $$c_5 = 0.0133641090422587 \tag{4.32}$$ $$y = (\phi + c_3\phi^3 + c_5\phi^5) \tag{4.33}$$ #### 4.1.17Urmayev Cylindrical III. +proj=urm_3C Fig. 4.3 $$a_0 = 0.92813433$$ $a_2 = 1.11426959$ (4.34) $$x = R\lambda y = R\left(a_0\phi + \frac{a_2}{3}\phi^3\right) (4.35)$$ #### Transverse and Oblique Aspects. 4.2 #### 4.2.1 Transverse Mercator +proj=tmerc +proj=utm ### **Spherical** Forward projections: $$B = \cos\phi\sin\lambda\tag{4.36}$$ $$x = \begin{cases} \frac{Rk_0}{2} \ln\left(\frac{1+B}{1-B}\right) & y \\ Rk_0 \tanh^{-1} B & y \end{cases} = Rk_0 \left[\arctan\left(\frac{\tan\phi}{\cos\lambda}\right) - \phi_0\right]$$ (4.37) Inverse projection: $$D = \frac{y}{Rk_0} + \phi_0 (4.38)$$ $$\phi = \arcsin\left(\frac{\sin D}{\cosh x'}\right) \tag{4.39}$$ $$\lambda = \arctan\left(\frac{\sinh x'}{\cos D}\right) \tag{4.40}$$ $$x' = \frac{x}{Rk_0} \tag{4.41}$$ ### Transverse Mercator - Gauss-Krüger Forward projection: $$\frac{x}{N} = \lambda \cos \phi + \frac{\lambda^3 \cos^3 \phi}{3!} (1 - t^2 + \eta^2) + \frac{\lambda^5 \cos^5 \phi}{5!} (5 - 18t^2 + t^4 + 14\eta^2 - 58t^2\eta^2) + \frac{\lambda^7 \cos^7 \phi}{7!} (61 - 479t^2 + 179t^4 - t^6)$$ (4.42) $$\begin{split} \frac{y}{N} &= \frac{M(\phi)}{N} + \frac{\lambda^2 \sin \phi \cos \phi}{2!} \\ &+ \frac{\lambda^4 \sin \phi \cos^3 \phi}{4!} (5 - t^2 + 9\eta^2 + 4\eta^4) \\ &+ \frac{\lambda^6 \sin \phi \cos^5 \phi}{6!} (61 - 58t^2 + t^4 + 270\eta^2 - 330t^2\eta^2) \\ &+ \frac{\lambda^8 \sin \phi \cos^7 \phi}{8!} (1,385 - 3,111t^2 + 543t^4 - t^6) \end{split} \tag{4.43}$$ where $$N = \frac{a}{(1 - e^2 \sin^2 \phi)^{1/2}} \tag{4.44}$$ $$R = \frac{a(1 - e^2)}{(1 - e^2 \sin^2 \phi)^{3/2}} \tag{4.45}$$ $$t = \tan \phi \tag{4.46}$$ $$\eta^2 = \frac{e^2}{1 - e^2} \cos^2 \phi \tag{4.47}$$ and where $M(\phi)$ is the meridianal distance. Inverse projection: Given the "foot-print" latitude $\phi_1 = M^{-1}(y)$: $$\begin{split} \phi &= \phi_1 - \frac{t_1 x^2}{2! R_1 N_1} + \frac{t_1 x^4}{4! R_1 N_1^3} (5 + 3t_1^2 + \eta_1^2 - 4\eta_1^4 - 9\eta_1^2 t_1^2) \\ &- \frac{t_1 x^6}{6! R_1 N_1^5} \begin{pmatrix} 61 + 90t_1^2 + 46\eta_1^2 + 45t_1^4 - 252t_1^2 \eta_1^2 \\ -3\eta_1^4 + 100\eta_1^6 - 66t_1^2 \eta_1^4 - 90t_1^4 \eta_1^2 i \\ +88\eta_1^8 + 225t_1^4 \eta_1^4 + 84t_1^2 \eta_1^6 - 192t_1^2 \eta_1^8 \end{pmatrix} \\ &+ \frac{t_1 x^8}{8! R_1 N_1^7} (1, 385 + 3, 633t_1^2 + 4, 095t_1^4 + 1, 575t_1^6) \\ \lambda &= \frac{x}{\cos \phi N_1} - \frac{x^3}{3! \cos \phi N_1^3} (1 + 2t_1^2 + \eta_1^2) \\ &+ \frac{x^5}{5! \cos \phi N_1^5} \begin{pmatrix} 5 + 6\eta_1^2 + 28t_1^2 - 3\eta_1^4 + 8t_1^2 \eta_1^2 \\ +24t_1^4 - 4\eta_1^6 + 4t_1^2 \eta_1^4 + 24t_1^2 \eta_1^6 \end{pmatrix} \\ &- \frac{x^7}{7! \cos \phi N_1^7} (61 + 662t_1^2 + 1, 320t_1^4 + 720t_1^6) \end{split} \tag{4.49}$$ ### 4.2.2 Gauss-Boaga Forward projection: $$\frac{x}{N} = \lambda \cos \phi + \frac{\lambda^3 \cos^3 \phi}{3!} (1 - t^2 + \eta^2) + \frac{\lambda^5 \cos^5 \phi}{5!} (5 - 18t^2 + t^4 + 14\eta^2 - 58t^2\eta^2) \frac{y}{N} = \frac{M(\phi)}{N} + \frac{\lambda^2 \sin \phi \cos \phi}{2!} + \frac{\lambda^4 \sin \phi \cos^3 \phi}{4!} (5 - t^2 + 9\eta^2 + 4\eta^4) + \frac{\lambda^6 \sin \phi \cos^5 \phi}{6!} (61 - 58t^2 + t^4 + 270\eta^2 - 330t^2\eta^2)$$ (4.50) Inverse projection: $$\phi = \phi_1 - \frac{x^2 t_1}{2! N_1^2} (1 + \eta_1^2)$$ $$+ \frac{x^4 t_1}{4! N_1^4} (5 + 3t_1^2 + 6\eta_1^2 - 6t_1^2 \eta_1^2 - 3\eta_1^4 - 9t_1^2 \eta_1^4$$ $$- \frac{x^6 t_1}{6! N_1^6} (61 + 90t_1^2 + 45t_1^4 + 107\eta_1^2 - 162t_1^2 \eta_1^2 - 45t_1^4 \eta_1^2)$$ (4.51) $$\lambda = \frac{x}{\cos \phi_1 N_1} - \frac{x^3}{3! \cos \phi_1 N_1^3} (1 +
2t_1^2 + \eta_1^2) + \frac{x^5}{5! \cos \phi_1 N_1^5} (5 + 28t_1^2 + 24t_1^4 + 6\eta_1^2 + 8t_1^2 \eta_1^2)$$ $$(4.52)$$ ### 4.2.3 Oblique Mercator +proj=omerc (see below for full list of options) The oblique Mercator projection is designed for elongated regions aligned along a geodesic¹ arc (Great Circle) where the cylinder of the projection is tangent to the ¹ The centerline is a true geodesic only for the spherical case and approximates a geodesic in the ellipsoidal case. sphere or ellipsoid ($k_0 = 1$). Ellipsoid equations presented here are based upon Snyder's [14, p. 66–75] development of Hotine's [7] "rectified skewed orthomorphic" projection and a development found in material by EPSGr [2]. In none of these sources were the developments sufficiently complete to perform projections of several common grid systems and it was necessary to merge operations to create a more general procedure. Two methods are used to specify the projection parameters: by specifying two points that lay on the centerline of the projection or by specifying the geographic coordinates of the central point on the centerline and specifying an azimuth of the centerline. The latter method is most commonly used for grid systems. ### Two point method Parameters of the two-point methods are as follows: lat_1= (ϕ_1, λ_1) latitude and longitude of the lon_1= first point on the centerline lat_2= (ϕ_2, λ_2) latitude and longitude of the lon_2= second point on the centerline lat_0= ϕ_0 latitude of the center of the map k_0= k_0 scale factor along the centerline no_rot if present, do not rotate axis Note that the central meridian (lon_0) common to most projections is not determined by the user. Restrictions on parameter specification is such that a centerline may not coincide with a meridian (Transverse Mercator case) nor coincide with the equator (simple Mercator case). Also, $\phi_1 \neq \phi_2$. First, compute factors common to both control specification method. For $\phi_0 \neq 0$ then $$B = \left(1 + \frac{e^2}{1 - e^2} \cos^4 \phi_0\right)^{\frac{1}{2}} \tag{4.53}$$ $$A = Bk_0 \frac{(1 - e^2)^{\frac{1}{2}}}{1 - e^2 \sin^2 \phi_0}$$ (4.54) $$t_0 = \Psi(\phi_0) \tag{4.55}$$ $$D = \frac{B(1 - e^2)^{\frac{1}{2}}}{\cos \phi_0 (1 - e^2 \sin^2 \phi_0)^{\frac{1}{2}}}$$ (4.56) $$F = D \pm \sqrt{D^2 - 1} \quad \text{taking sign of } \phi_0 \tag{4.57}$$ $$E = t_0^B F (4.58)$$ where $\Psi()$ is the Isometric Latitude kernel function (pj_tsfn). Set D=1 if $D^2<1$. other wise $$B = (1 - e^2)^{-\frac{1}{2}}$$ $A = k_0$ $E = D = F = 1$ (4.59) Now continue with initialization unique to the two point method: $$t_1 = \Psi(\phi_1) \tag{4.60}$$ $$t_2 = \Psi(\phi_2) \tag{4.61}$$ $$H = t_1^B \tag{4.62}$$ $$L = t_2^B \tag{4.63}$$ $$F = \frac{E}{H} \tag{4.64}$$ $$G = (F - 1/F)/2 (4.65)$$ $$J = \frac{E^2 - LH}{E^2 + LH} \tag{4.66}$$ $$P = \frac{L - H}{L + H} \tag{4.67}$$ $$\lambda_0 = \frac{\lambda_1 + \lambda_2}{2} - \frac{1}{B} \arctan\left(\frac{J}{P} \tan\left[\frac{B}{2}(\lambda_1 - \lambda_2)\right]\right)$$ (4.68) $$\gamma_0 = \arctan\left(\frac{\sin(B(\lambda_1 - \lambda_0))}{G}\right) \tag{4.69}$$ $$\alpha_c = \arcsin(D\sin\gamma_0) \tag{4.70}$$ Unless no_rot is specified the axis rotation γ is set from α_c and rotation is about the ϕ_0 position. ### Central point and azimuth method The parameters for this case are: lat_0= (ϕ_0, λ_c) latitude and longitude of the central point of lonc= the line. alpha= α_c azimuth of centerline clockwise from north at the center point of the line. If gamma is not given then α_c determines the value of γ . γ azimuth of centerline clockwise from north of the recgamma= tified bearing of centre line. If alpha is not given, then gamma is assign to γ_0 from which α_c is derived (see equa- tion 4.71). $k_0=$ k_0 scale factor along the centerline ro_rot if present, do not rotate axis if present, do not offset origin to center of projection no_off $(u_0 = 0).$. To determine initialization parameters for this specification form of the projection first determine B, A, t_0, D, F and E from equations 4.53 through 4.58 and then proceed as follows: $$\sin \alpha_c = D \sin \gamma_0 \tag{4.71}$$ $$G = \frac{F - 1/F}{2} \tag{4.72}$$ $$\lambda_0 = \lambda_c - \frac{\arcsin(G\tan\gamma_0)}{B} \tag{4.73}$$ ### Common Initialization If no_off is specified then $$u_c = 0$$ otherwise the u axis is corrected by: $$u_c = \pm \frac{A}{B} \operatorname{atan2}(\sqrt{D^2 - 1}, \cos \alpha_c)$$ (4.74) taking the sign of ϕ_0 . ### Forward elliptical projection The first phase is to convert the geographic coordinates (ϕ, λ) to the intermediate Cartesian system (u, v) where the u axis is coincident with the centerline of the projection and the projection (u, v) system origin is at the aposphere equator and longitude λ_0 . First compute $$V = \sin[B(\lambda - \lambda_0)] \tag{4.75}$$ If $|\phi| \neq \pi/2$ then: $$Q = \frac{E}{\Psi(\phi)^B} \tag{4.76}$$ $$S = \frac{Q - 1/Q}{2} \tag{4.77}$$ $$T = \frac{Q+1/Q}{2} \tag{4.78}$$ $$U = \frac{-V\cos\gamma_0 + S\sin\gamma_0}{T} \tag{4.79}$$ $$v = \begin{cases} \frac{A}{2B} \ln \left(\frac{1 - U}{1 + U} \right) & |U| \neq 1\\ \infty & |U| = 1 \end{cases}$$ $$(4.80)$$ $$M = \cos[B(\lambda - \lambda_0)] \tag{4.81}$$ $$u = \begin{cases} \frac{A}{B} \operatorname{atan2}(S \cos \gamma_0 + V \sin \gamma_0, M) & M \neq 0\\ AB(\lambda - \lambda_0) & M = 0 \end{cases}$$ $$(4.82)$$ otherwise: $$v = \frac{A}{B} \ln \tan \left(\frac{\pi}{4} \mp \frac{\gamma_0}{2} \right) \qquad u = \phi \frac{A}{B}$$ (4.83) If rotation is suppressed by the no_rot option then $$x = u y = v (4.84)$$ else $$u = -u_c$$ $x = v\cos\gamma + u\sin\gamma$ $y = u\cos\gamma - v\sin\gamma$ (4.85) ### Inverse elliptical projection First rotate (x, y) system into (u, v) system: $$v = x\cos\gamma - y\sin\gamma \qquad \qquad u = y\cos\gamma + x\sin\gamma + u_c \qquad (4.86)$$ $$Q' = \exp\left(-\frac{Bv}{A}\right) \tag{4.87}$$ $$S' = \frac{Q' - 1/Q'}{2} \tag{4.88}$$ $$T' = \frac{Q' + 1/Q'}{2} \tag{4.89}$$ $$V' = \sin\left(\frac{Bu}{A}\right) \tag{4.90}$$ $$U' = \frac{V'\cos\gamma_0 + S'\sin\gamma_0}{T'} \tag{4.91}$$ If |U'| = 1, then $\phi = \pm \pi/2$ taking sign of U' and $\lambda = \lambda_0$. Otherwise $$t = \left[E\left(\frac{1 - U'}{1 + U'}\right) \frac{1}{2} \right]^{\frac{1}{B}} \tag{4.92}$$ $$\phi = \frac{\pi}{2} - 2 \arctan \left[t \left(\frac{1 - e \sin \phi}{1 + e \sin \phi} \right)^{\frac{e}{2}} \right]$$ (4.93) $$\lambda = \frac{1}{B} \operatorname{atan2} \left[S' \cos \gamma_0 - V' \sin \gamma_0, \cos \left(\frac{Bu}{A} \right) \right]$$ (4.94) where equation 4.93 is solved by iteration in function pj_phi2. ### Examples. The first example of this projection is the Timbalai 1948/R.S.O. Borneo grid system from EPSG [2][p. 35–36] defined by: proj=omerc a=6377298.556 rf=300.8017 lat_0=4 lonc=115 alpha=53d18'56.9537 gamma=53d7'48.3685 k_0=0.99984 x_0=590476.87 y_0=442857.65 | Lon/lat | Easting/Northing | |------------------|------------------| | 115d48'19.8196"E | 679245.73 | | 5d23'14.1129"N | 596562.78 | Zone 1 of the Alaska State Plane Coordinate System uses the Oblique Mercator projection as in this NAD27 example: proj=omerc a=6378206.4 es=.006768657997291094 k=.9999 lonc=-133d40 lat_0=57 alpha=-36d52'11.6315 x_0=818585.5672270928 y_0=575219.2451072642 units=us-ft | Lon/lat | Easting/Northing | |-----------------|------------------| | -134d00'00.000" | 2615716.535 | | 55d00'00.000" | 1156768.938 | The values agree with those computed by GCTP [21, 20]. ### 4.2.4 Cassini. +proj=cass Ref. [14, p. 94-95] ### Spherical form. Forward projection: $$x = \arcsin(\cos\phi\sin\lambda) \qquad \qquad y = \tan 2(\tan\phi,\cos\lambda) - \phi_0 \tag{4.95}$$ Inverse projection: $$\phi = \arcsin\left[\sin(y + \phi_0)\cos x\right] \qquad \lambda = \tan 2\left(\tan x, \cos(y + \phi_0)\right) \tag{4.96}$$ ### Elliptical form. Forward projection: $$N = (1 - e^2 \sin^2 \phi)^{-1/2} \tag{4.97}$$ $$T = \tan^2 \phi \tag{4.98}$$ $$A = \lambda \cos \phi \tag{4.99}$$ $$C = \frac{e^2}{1 - e^2} \cos^2 \phi \tag{4.100}$$ $$x = N\left(A - T\frac{A^3}{6} - (8 - T + 8C)T\frac{A^5}{120}\right) \tag{4.101}$$ $$y = M(\phi) - M(\phi_0) + N \tan \phi \left(\frac{A^2}{2} + (5 - T + 6C) \frac{A^4}{24} \right)$$ (4.102) where M() us the meridianal distance function (3.2). Inverse projection: $$\phi' = M^{-1}(M(\phi_0) + y) \tag{4.103}$$ If $\phi' = \pi/2$ then $\phi = \phi'$ and $\lambda = 0$ otherwise evaluate T and N above using ϕ' and $$R = (1 - e^2)(1 - e^2\sin^2\phi')^{-3/2} \tag{4.104}$$ $$D = x/N (4.105)$$ $$\phi = \phi' - \tan \phi' \frac{N}{R} \left(\frac{D^2}{2} - (1 + 3T) \frac{D^4}{24} \right)$$ (4.106) $$\lambda = \left(D - T\frac{D^3}{3} + (1+3T)T\frac{D^5}{15}\right) / \cos\phi' \tag{4.107}$$ ### 4.2.5 Swiss Oblique Mercator Projection +proj=somerc [1 The Swiss Oblique Mercator Projection (a tentative name based upon the Swiss usage in their CH1903 grid system) is based upon a three step process: - 1. conformal transformation of ellipsoid coordinates to a sphere, - 2. rotational translation of the spherical system so that the specified projection origin will lie on the equator, and - 3. Mercator projection of geographic coordinates to the Cartesian system. The projection cylinder is tangent at the projection origin (λ_0, ϕ_0) with zero scale error at the projection origin $(k_0 = 1)$ with minimum error extending east-west near the central meridian. In this projection, axis rotation only occurs about an axis normal to the plane of the central meridian (Wray's "simple oblique aspect" [8, pages 135–138]). For the forward projection the input geographic coordinates are processed in following manner: $$(\lambda, \phi) \rightarrow \mathtt{pj_gauss} \rightarrow \mathtt{pj_translate} \rightarrow (\lambda', \phi')$$ where pj_gauss (3.3) and pj_translate (3.5) are the respective conversion to Gaussian sphere and axis
translation-rotation procedures. Then standard, spherical Mercator projection (4.2) is applied in-line for conversion to (x, y). Final scaling is performed by multiplying the radius of the conformal sphere, returned by the Gauss initialization, and with k_0 . Inverse projection follows the reverse sequence of the above steps by using the inverse Mercator projection, inverse of spherical coordinate transformation and inverse from the Gaussian sphere to the ellipsoid coordinates. The following example demonstrates the example from [1, p. 9] where the control parameters are ``` +proj=somerc +ellps=bessel +lon_0=7d26'22.50 +lat_0=46d57'08.66 +x_0=2600000 +y_0=1200000 ``` and geographic and Swiss projection coordinates are: $$\lambda = 8^{\circ}9'11.11127154''E \leftrightarrow 2679520.05 \text{ Easting}$$ (4.108) $\phi = 47^{\circ}03'28.95659233''N \leftrightarrow 1212273.44 \text{ Northing}$ (4.109) This projection has general application for grid system that have proportionally longer extensions along the Easting. ### 4.2.6 Laborde. ``` +proj=labrd +azi= ``` The Laborde projection was developed and exclusively used for the Madagascar Grid System with these parameters: ``` +proj=labrd +azi=18d54' +lat_0=18d54'S +lon_0=46d26'13.95"E +k_0=0.9995 +x_0=400000 +y_0=800000 +ellps=intnl ``` This projection should not be confused with the Hotine Oblique Mercator nor should the later be used as a substitute. [15, p. 162]. The following are initialization steps: $$R = (1 - e^2)(1 - e^2\sin^2\phi)^{-3/2} \tag{4.110}$$ $$N = (1 - e^2 \sin^2 \phi)^{-1/2} \tag{4.111}$$ $$R_q = (NR)^{1/2}$$ geometric mean for radius of Gauss sphere (4.112) $$\phi_{0s} = \arctan((R_0/N_0)^{1/2} \tan \phi_0) \tag{4.113}$$ $$A = \sin \phi_0 / \sin \phi_{0s} \tag{4.114}$$ $$C = \frac{eA}{2} \ln \frac{1 + e \sin \phi_0}{1 - e \sin \phi_0} - A \ln \tan(\pi/4 + \phi_0/2) + \ln \tan(\pi/4 + \phi_{0s}/2)$$ (4.115) $$C_a = \frac{1 - \cos 2A_z}{12R_q^2 k_0^2} \tag{4.116}$$ $$C_b = \frac{\sin 2A_z}{12R_o^2 k_0^2} \tag{4.117}$$ $$C_c = 3(C_a^2 - C_b^2) (4.118)$$ $$C_d = 6C_a C_b \tag{4.119}$$ Forward computations: $$V_1 = A \ln \tan(\pi/4 + \phi/2) \tag{4.120}$$ $$V_2 = \frac{eA}{2} \ln \frac{1 + e \sin \phi}{1 - e \sin \phi}$$ (4.121) $$\phi_s = 2(\tan^{-1} \exp(V_1 - V_2 + C) - \pi/4) \tag{4.122}$$ $$I_1 = \phi_s - \phi_{0s} \tag{4.123}$$ $$I_2 = A^2 \sin \phi_s \cos \phi_s / 2 \tag{4.124}$$ $$I_3 = A^4 \sin \phi_s \cos^3 \phi_s (5 - \tan^2 \phi_s) / 24 \tag{4.125}$$ $$= A^{4} \sin \phi_{s} \cos \phi_{s} (5 \cos^{2} \phi_{s} - \sin^{2} \phi_{s}) / 24 \tag{4.126}$$ $$I_4 = A\cos\phi_s \tag{4.127}$$ $$I_5 = A^3 \cos^3 \phi_s (1 - \tan^2 \phi_s)/6 \tag{4.128}$$ $$= A^{3} \cos \phi_{s} (\cos^{2} \phi_{s} - \sin^{2} \phi_{s})/6 \tag{4.129}$$ $$f_6 = A^5 \cos^5 \phi_s (5 - 18 \tan^2 \phi_s + \tan^4 \phi_s) / 120$$ $$= A^5 \cos \phi_s (5 \cos^4 \phi_s - 18 \cos^2 \phi_s \sin^2 \phi_s + \sin^4 \phi_s) / 120$$ $$(4.131)$$ $I_6 = A^5 \cos^5 \phi_s (5 - 18 \tan^2 \phi_s + \tan^4 \phi_s)/120$ $$= A^{5} \cos \phi_{s} (5 \cos^{4} \phi_{s} - 18 \cos^{2} \phi_{s} \sin^{2} \phi_{s} + \sin^{4} \phi_{s}) / 120$$ (4.131) $$x_g = k_0 R_g \lambda (I_4 + \lambda^2 (I_5 + \lambda^2 I_6))$$ (4.132) $$y_q = k_0 R_q (I_1 + \lambda^2 (I_2 + \lambda^2 I_3)) \tag{4.133}$$ $$V_1 = 3x_q y_q^2 - x_q^3 (4.134)$$ $$V_2 = y_g^3 - 3x_g^2 y_g (4.135)$$ $$x = x_a + C_a V_1 + C_b V_2 (4.136)$$ $$y = y_q - C_b V_1 + C_a V_2 (4.137)$$ Inverse formulas: $$V_1 = 3xy^2 - x^3 (4.138)$$ $$V_2 = y^3 - 3x^2y (4.139)$$ $$V_3 = x^5 - 10x^3y^2 + 5xy^4 (4.140)$$ $$V_4 = 5x^4y - 10x^2y^3 + y^5 (4.141)$$ $$x_a = x - C_a V_1 - C_b V_2 + C_c V_3 + C_d V_4 \tag{4.142}$$ $$y_g = y + C_b V_1 - C_a V_2 - C_d V_3 + C_c V_4 (4.143)$$ $$\phi_s = \phi_{0s} + y_q / (R_q k_0) \tag{4.144}$$ $$\phi_e = \phi_s + \phi_0 - \phi_{0s} \tag{4.145}$$ Iterate $$V_1 = A \ln \tan(\pi/4 + \phi_e/2) \tag{4.147}$$ $$V_2 = \frac{eA}{2} \ln \frac{1 + e \sin \phi_e}{1 - e \sin \phi_e} \tag{4.148}$$ $$t = \phi_s - 2(\tan^{-1}\exp(V_1 - V_2 + C) - \pi/4)$$ (4.149) $$\phi_e = \phi_e + t \tag{4.150}$$ until $|t| < \epsilon$ $$R_e = a(1 - e^2)(1 - e^2\sin^2\phi_e)^{-3/2}$$ (4.152) $$I_7 = \tan \phi_s / (2R_e R_g k_0^2) \tag{4.153}$$ $$I_8 = \tan\phi_s (5 + 3\tan^2\phi_s) / (24R_e R_g^3 k_0^4)$$ (4.154) $$I_9 = 1/(\cos \phi_s R_q k_0 A) \tag{4.155}$$ $$I_{10} = (1 + 2\tan^2\phi_s)/(6\cos\phi_s R_a^3 k_0^3 A)$$ (4.156) $$I_{11} = (5 + 28\tan^2\phi_s + 24\tan^4\phi_s)/(120\cos\phi_s R_g^5 k_0^5 A)$$ (4.157) $$\phi = \phi_e - I_7 x_q^2 + I_8 x_q^4 \tag{4.158}$$ $$\lambda = I_9 x_q - I_{10} x_q^3 + I_{11} x_q^5 \tag{4.159}$$ # Chapter 5 # Pseudocylindrical Projections Pseudocylindrical projections have the mathematical characteristics of $$\begin{array}{rcl} x & = & f(\lambda, \phi) \\ y & = & g(\phi) \end{array}$$ where the parallels of latitude are straight lines, like cylindrical projections, but the meridians are curved toward the center as they depart from the equator. This is an effort to minimize the distortion of the polar regions inherent in the cylindrical projections. Pseudocylindrical projections are almost exclusively used for small scale global displays and, except for the Sinusoidal projection, only derived for a spherical Earth. Because of the basic definition none of the pseudocylindrical projections are conformal but many are equal area. To further reduce distortion, pseudocylindrical are often presented in interrupted form that are made by joining several regions with appropriate central meridians and false easting and clipping boundaries. Figure 5.1 shows typical constructions that are suited for showing respective global land and oceanic regions. To reduce the lateral size of the map, some uses remove an irregular, North-South strip of the mid-Atlantic region so that the western tip of Africa is plotted north of the eastern tip of South America. # 5.1 Computations. A complicating factor in computing the forward projection for pseudocylindricals is that some of the projection formulas use a parametric variable, typically θ , which is a function of ϕ . In some cases, the parametric equation is not directly solvable for θ and requires use of Newton-Raphson's method of iterative finding the root of $P(\theta)$. The defining equations for these cases are thus given in the form of $P(\theta)$ and its derivative, $P'(\theta)$, and an estimating initial value for $\theta_0 = f(\phi)$. Refinement of θ is made by $\theta \leftarrow \theta - P(\theta)/P'(\theta)$ until $|P(\theta)/P'(\theta)|$ is less than predefined tolerance. When known, formula constant factors are given in rational form (e.g. $\sqrt{2}/2$) rather than a decimal value (0.7071) so that the precision used in the resultant program code constants is determined by the programmer. However, source material may only provide decimal values, typically to 5 or 6 decimal digits. This is adequate in most cases, but has caused problems with the convergence of a Newton-Raphson determination and degrades the determination of numerical derivatives. Because several of the pseudocylindrical projections have a common computational base, they are grouped into a single module with multiple initializing entry Figure 5.1: Interupted Projections. Interupted Goode Homolosine: A–continental regions, B–oceanic regions. points. This may lead to a minor loss of efficiency, such as adding a zero term in the simple Sinusoidal case of the the Generalized Sinusoidal. # 5.2 Spherical Forms. ### 5.2.1 Sinusoidal. ${\bf Eckert\ VI}$ | Equal-area for an cases. | | c | D. C | | | |---
--|----------------|-------------|--------|-------| | Name | +proj= | figure | Ref. | | | | General Sinusoidal
Sinusoidal | gn_sinu +m= +n= | | | | | | Sanson-Flamsteed | sinu | 5.2 | [14, p. 243 | 3-248] | | | Eckert VI | eck4 | 5.3 | [17, p. 220 |)] | | | McBryde-Thomas
Flat-Polar Sinusoidal | mbtfps | 5.7 | [17, p. 220 |)] | | | | $x = C\lambda(m + \cos$ | $(\theta)/(m+$ | 1) | | (5.1) | | | $y = C\theta$ | | | | (5.2) | | | $C = \sqrt{(m+1)/r}$ | \overline{n} | | | (5.3) | | | $P(\theta) = m\theta + \sin\theta - \frac{1}{2}(\theta) + +$ | $-n\sin\phi$ | | | (5.4) | | | $P'(\theta) = m + \cos\theta$ | | | | (5.5) | | | $\theta_0 = \phi$ | | | | (5.6) | | | | m | n | C | | | Sinusoidal (Sanson- | Flamsteed) | 0 | 1 | 1 | | McBryde-Thomas Flat-Polar Sinusoidal 1/2 $1+\pi/4$ $1 + \pi/2$ $2/\sqrt{2 + \pi}$ Figure 5.2: General pseudocylindricals I $A{\rm -Werenskiold~I,~B{\rm -Werenskiold~II,~C{\rm -Werenskiold~III,~D{\rm -Winkel~I,~E{\rm -Winkel~II}}}$ (+lat_1=50d28'), F-Sinusoidal, G-Mollweide, H-Foucaut Sinusoidal (+n=0.5), I-Kavraisky V and J-Kavraisky VII . ### 5.2.2 Winkel I. +proj=wink1 +lat_ts= Fig. 5.2 Ref. [17, p. 220] Option lat_ts= ϕ_{ts} establishes latitude of true scale on central meridian (default = 0° and thus the same as Eckert V). Not equal-area but if $\cos \phi_{ts} = 2/\pi$ (lat_ts=50d28) the total area of the global map is correct. $$x = \lambda(\cos\phi_{ts} + \cos\phi)/2 \qquad \qquad y = \phi \tag{5.7}$$ #### 5.2.3Winkel II. +proj=wink2 +lat_1= Fig. 5.2 Ref. [13, p. 77] Arithmetic mean of Equirectangular and Mollweide and is not equal-area. Parameter lat_1= ϕ_1 controls standard parallel and width of flat polar extent. $$x = \lambda(\cos\theta + \cos\phi_1)/2 \qquad \qquad y = \pi(\sin\theta + 2\phi/\pi)/4 \qquad (5.8)$$ $$x = \lambda(\cos\theta + \cos\phi_1)/2 \qquad y = \pi(\sin\theta + 2\phi/\pi)/4 \qquad (5.8)$$ $$P(\theta) = 2\theta + \sin 2\theta - \pi \sin \phi \qquad P'(\theta) = 2 + 2\cos 2\theta \qquad (5.9)$$ $$\theta_0 = 0.9\phi \tag{5.10}$$ As with Mollweide, P converges slowly as $\phi \to \pi/2$ and $\theta \to \pi/2$. ### Urmayev Flat-Polar Sinusoidal Series. Urmaev and Wagner are equal area but Werenskiold has true scale at the equator. | Name | +proj= | Fig. | Ref. | |-------------------------|---|--|----------------------| | Urmayev FPS | urmfps +n= | = 5.8 | [13][p. 62] | | Wagner I (Kavraisky VI) | wag1 | 5.4 | [22] | | Werenskiold II | weren2 | 5.2 | [13][p. 62] | | | C_x | C_y | C_n | | Urmayev FPS | $\frac{2\sqrt[4]{3}}{3}$ | $\frac{1}{nC_x}$ | $0 \le n \le 1$ | | Wagner I (Kavraisky VI) | $\frac{2\sqrt[4]{3}}{3}$ | $\sqrt[4]{3}$ | $\frac{\sqrt{3}}{2}$ | | Werenskiold II | $\frac{3^{0.75}}{2} \cdot \frac{2\sqrt[4]{3}}{3}$ | $\frac{3^{0.75}}{2} \cdot \sqrt[4]{3}$ | $\frac{\sqrt{3}}{2}$ | $$x = C_x \lambda \cos \psi \qquad \qquad y = C_y \psi \tag{5.11}$$ $$\sin \psi = C_n \sin \phi \tag{5.12}$$ For Urmayev the latitudes of true scale are determined by the relation: $$\phi_{ts} = \arcsin\sqrt{\frac{9 - 4\sqrt{3}}{9 - 4n^2\sqrt{3}}} \tag{5.13}$$ and the ratio of the length of the poles to the equator is determined by $\sqrt{1-n^2}$. #### 5.2.5Eckert I. $$x = 2\sqrt{2/3\pi}\lambda(1 - |\phi|/\pi)$$ $y = 2\sqrt{2/3\pi}\phi$ (5.14) #### 5.2.6Eckert II. +proj=eck2 Fig. 5.3 Ref. [17, p. 223] $$x = (2/\sqrt{6\pi})\lambda\sqrt{4 - 3\sin|\phi|}$$ $y = \pm\left(\sqrt{2\pi/3}(2 - \sqrt{4 - 3\sin|\phi|})\right)$ (5.15) where y assumes sign of ϕ . $\label{eq:Figure 5.3: Eckert pseudocylindrical series} \textbf{A}\text{-Eckert I, }\textbf{B}\text{-II, }\textbf{C}\text{-III, }\textbf{D}\text{-IV, }\textbf{E}\text{-V and }\textbf{F}\text{-VI.}$ # 5.2.7 Eckert III, Putniņš P_1 , Putniņš P_1' , Wagner VI and Kavraisky VII. None of these projections are equal-area and are flat-polar when coefficient $A \neq 0$. | Name | +proj= | figure | Ref. | |----------------|--------|--------|-------------| | Eckert III | eck3 | 5.3 | | | Putniņš P_1 | putp1 | 5.6 | | | Putniņš P'_1 | putp1p | 5.6 | | | Wagner VI | wag6 | 5.4 | | | Kavraisky VII | kav7 | 5.2 | [13][p. 67] | | | | | | $$x = C_x \lambda (A + \sqrt{1 - B(\phi/\pi)^2}) \qquad \qquad y = C_y \phi \qquad (5.16)$$ | | C_x | C_y | A | B | |------------------------|-------------------------------|-------------------------------|------|---| | Putniņš P ₁ | 1.89490 | 0.94745 | -1/2 | 3 | | Putninš P'_1 | $\frac{1.89490}{2}$ | 0.94745 | 0 | 3 | | Wagner VI | $ ilde{1}$ | 1 | 0 | 3 | | Eckert III | $\frac{2}{\sqrt{\pi(4+\pi)}}$ | $\frac{4}{\sqrt{\pi(4+\pi)}}$ | 1 | 4 | | Kavraisky VII | $\sqrt{3}/2$ | 1 | 0 | 3 | #### 5.2.8Eckert IV. +proj=eck4 Fig. 5.3 Ref. [17, p. 221] $$x = 2\lambda(1 + \cos\theta)/\sqrt{\pi(4+\pi)} \tag{5.17}$$ $$y = 2\sqrt{\pi/(4+\pi)}\sin\theta\tag{5.18}$$ $$P(\theta) = \theta + \sin 2\theta + 2\sin \theta - \frac{(4+\pi)}{2}\sin \phi \tag{5.19}$$ $$= \theta + \sin \theta (\cos \theta + 2) - \frac{(4+\pi)}{2} \sin \phi$$ $$P'(\theta) = 2 + 4\cos 2\theta + 4\cos \theta \tag{5.20}$$ $$= 1. + \cos\theta(\cos\theta + 2) - \sin^2\theta$$ $$\theta_0 = 0.895168\phi + 0.0218849\phi^3 + 0.00826809\phi^5 \tag{5.21}$$ #### Eckert V. 5.2.9 +proj=eck5 Fig. 5.3 Ref. [17, p. 220] $$x = \lambda(1 + \cos\phi)/\sqrt{2 + \pi} \qquad \qquad y = 2\phi/\sqrt{2 + \pi} \tag{5.22}$$ #### 5.2.10Wagner II. +proj=wag2 Fig. 5.4 Ref. [22, p. 184-187], [13, p. 64] $$x = \frac{n}{\sqrt{nm_1m_2}}\lambda\cos\psi \qquad \qquad y = \frac{1}{\sqrt{nm_1m_2}}\psi \qquad (5.23)$$ $$\sin \psi = m_1 \sin(m_2 \phi) \qquad \qquad n = \frac{2}{3} \tag{5.24}$$ $$x = \frac{n}{\sqrt{nm_1m_2}}\lambda\cos\psi \qquad y = \frac{1}{\sqrt{nm_1m_2}}\psi \qquad (5.23)$$ $$\sin\psi = m_1\sin(m_2\phi) \qquad n = \frac{2}{3} \qquad (5.24)$$ $$m_2 = \frac{\arccos(1.2\cos 60^\circ)}{60^\circ} \qquad m_1 = \frac{\sqrt{3}}{2\sin(m_2\frac{\pi}{2})} \qquad (5.25)$$ #### Wagner III. 5.2.11 +proj=wag3 Fig. 5.4 Ref: [22, p. 189-190] $$x = \frac{\cos \phi_{ts}}{\cos(2\phi_{ts}/3)} \lambda \cos(2\phi/3) \qquad y = \phi \qquad (5.26)$$ Figure 5.4: Wagner pseudocylindrical series A-Wagner I, B-II, C-III, D-IV, E-V and F-VII #### Wagner V. 5.2.12 +proj=wag5 Fig. 5.4 Ref. [22, p. 194-196] $$x = \frac{n2\sqrt{2}}{\pi\sqrt{nm_1n_1}}\lambda\cos\psi\tag{5.27}$$ $$y = \sqrt{\frac{2}{nm_1m_2}}\sin\psi\tag{5.28}$$ $$P(\psi) = 2\psi + \sin 2\psi - \pi m_1 \sin(m_2 \phi)$$ (5.29) $$P'(\psi) = 2 + 2\cos 2\psi \tag{5.30}$$ $$\psi_0 = \frac{2\phi}{3}
\tag{5.31}$$ $$n = \frac{\sqrt{3}}{2} \tag{5.32}$$ $$m_2 = \frac{\arccos(1.2\cos 60^\circ)}{60^\circ} \tag{5.33}$$ $$\psi_{0} = \frac{2\phi}{3}$$ (5.31) $$n = \frac{\sqrt{3}}{2}$$ (5.32) $$m_{2} = \frac{\arccos(1.2\cos 60^{\circ})}{60^{\circ}}$$ (5.33) $$m_{1} = \frac{\frac{2\pi}{3} + \sin\frac{2\pi}{3}}{\pi\sin\left(\frac{m_{2}\pi}{2}\right)}$$ (5.34) #### Foucaut Sinusoidal. 5.2.13 +proj=fouc_s +n= Fig. 5.2 Ref. [15][p. 113], [19] An equal-area projection where the y-axis is a weighted arithmetic mean of the Cylindrical Equal-Area and the Sinusoidal projections. Parameter n=n is the weighting factor where $0 \le n \le 1$. $$x = \lambda \cos \phi / (n + (1 - n) \cos \phi) \qquad \qquad y = n\phi + (1 - n) \sin \phi \qquad (5.35)$$ # 5.2.14 Mollweide, Bromley, Wagner IV (Putniņš P_2') and Werenskiold III. Mollweide and Wagner IV are equal area. | Name | +proj= | figure | Ref. | |-----------------------------|---------|--------|--------------| | Mollweide | moll | 5.2 | [17, p. 220] | | Bromley | bromley | | [15, p. 163] | | Wagner IV (Putniņš P'_2) | wag4 | 5.4 | [22] | | Werenskiold III | weren3 | 5.2 | [13, p. 66] | | | | | | $$x = C_x \lambda \cos(\theta) \tag{5.36}$$ $$y = C_y \sin(\theta) \tag{5.37}$$ $$P(\theta) = 2\theta + \sin 2\theta - C_p \sin \phi \tag{5.38}$$ $$P'(\theta) = 2 + 2\cos 2\theta \tag{5.39}$$ $$\theta_0 = \phi \tag{5.40}$$ For the Werenskiold III is the same Wagner IV but with the C_x and C_y values are increased by 1.15862. ### 5.2.15 Hölzel. +proj=holzel Fig. 5.5 $$x = \lambda \begin{cases} .322673 + .369722 \left[1 - \left(\frac{|\phi| - .40928}{1.161517} \right)^2 \right]^{\frac{1}{2}} & \text{if } |\phi| > 1.39634 \\ .441013 * (1 + \cos \phi) & \text{otherwise} \end{cases}$$ $$y = \phi \tag{5.42}$$ ### 5.2.16 Hatano. +proj=hatano [+sym] Fig. 5.5 Ref. [17, p. 64 and 221] If the option +syn is selected, the symmetric form of this projection is used, otherwise the asymmetric form. $$x = 0.85\lambda\cos\theta\tag{5.43}$$ $$y = C_y \sin \theta \tag{5.44}$$ $$P(\theta) = 2\theta + \sin 2\theta - C_p \sin \phi \tag{5.45}$$ $$P'(\theta) = 2(1 + \cos 2\theta) \tag{5.46}$$ $$\theta_0 = 2\phi \tag{5.47}$$ | | C_y | C_p | |----------------------------|---------|---------| | if +sym or $\phi > 0$ | 1.75859 | 2.67595 | | if not +sym and $\phi < 0$ | 1.93052 | 2.43763 | For $\phi = 0$, $y \leftarrow 0$ and $x \leftarrow 0.85\lambda$. # 5.2.17 Craster (Putninš P_4). +proj=crast Fig. 5.5 Ref. [?, p. 221] A pointed pole, equal-area projection with standard parallels at 36°46′. $$x = \sqrt{3/\pi}\lambda[2\cos(2\phi/3) - 1]$$ $y = \sqrt{3\pi}\sin(\phi/3)$ (5.48) ### 5.2.18 Putninš P_2 . +proj=put2 Fig. 5.6 Ref. [13, p.66] $$x = 1.89490\lambda(\cos\theta - 1/2)$$ (5.49) $$y = 1.71848\sin\theta$$ (5.50) $$P(\theta) = 2\theta + \sin 2\theta - 2\sin\theta - [(4\pi - 3\sqrt{3})/6]\sin\phi$$ (5.51) $$= \theta + \sin\theta(\cos\theta - 1) - [(4\pi - 3\sqrt{3})/12]\sin\phi$$ (5.52) $$= 1 + \cos\theta(\cos\theta - 1) - \sin^2\theta$$ $$\theta_0 = 0.615709\phi + 0.00909953\phi^3 + 0.0046292\phi^5 \tag{5.53}$$ # 5.2.19 Putninš P_3 and P'_3 . | Name | +proj= | figure | Ref. | | | |---------------------------------|------------------|--------------------------|----------------------------|------------------------|--------| | Putniņš P_3
Putniņš P'_3 | 1 1 | | [13, p. 69]
[13, p. 69] | | | | | $x = \sqrt{2/7}$ | $\bar{\tau}\lambda(1-A)$ | ϕ^2/π^2) | $y = \sqrt{2/\pi}\phi$ | (5.54) | where A is 4 and 2 for respective P_3 and P'_3 . # 5.2.20 Putniņš P'_4 and Werenskiold I. This is the flat pole version of Putnins's P₄ or Craster's Parabolic. | Name | +proj= | figure | Ref. | | | |---------------|-------------------|--------------------------|-------------|--|--| | Putniņš P_4 | putp4 | 5.6 | [13, p. 68] | | | | Werenskiold I | weren | 5.2 | [13, p. 68] | | | | x | $=C_x\lambda\cos$ | $y = C_y \sin(\theta/3)$ | (5.55) | | | | $\sin \theta$ | $= (5\sqrt{2}/8)$ | | (5.56) | | | where $$\begin{array}{c|cc} & P_4' & \text{Weren. I} \\ \hline C_x & 2\sqrt{0.6/\pi} & 1.0 \\ C_y & 2\sqrt{1.2\pi} & \pi\sqrt{2} \\ \end{array}$$ # 5.2.21 Putninš P_5 and P'_5 . Putninš P₅ and P'₅ projections have equally spaced parallels and respectively pointed | | Name | +proj= | figure | Ref. | | | |-----------------|--------------------|---------------------|-----------|-------------|----------|--------| | and flat poles. | Putniņš P_5 | putp5 | 5.6 | [13, p. 69] | | | | | Putniņš P_5' | putp5p | 5.6 | [13, p. 69] | | | | x = 1.0 | $01346\lambda(A-B$ | $\sqrt{1+12\phi^2}$ | (π^2) | y = 1.013 | 46ϕ | (5.57) | Figure 5.6: Putniņš Pseudocylindricals. **A**–Putniņš P₁, **B**–Putniņš P'₁, **C**–Putniņš P₂, **D**–Putniņš P₃, **E**–Putniņš P'₃, **F**–Putniņš P'₄, **G**–Putniņš P₅, **H**–Putniņš P'₅, **I**–Putniņš P₆ and **J**–Putniņš P'₆. where | | P_5 | P_5' | |---|-------|--------| | A | 2.0 | 1.5 | | B | 1.0 | 0.5 | # Putninš P_6 and P'_6 . Putniņš P_6 and P_6' projections are equal-area with respective pointed and flat poles. | Name | +proj= | figure | Ref. | |----------------|--------|--------|-------------| | Putniņš P_6 | putp6 | 5.6 | [13, p. 69] | | Putniņš P'_6 | putp6p | 5.6 | [13, p. 69] | $$x = C_x \lambda (D - (1 + p^2)^{1/2}) \tag{5.58}$$ $$y = C_y p (5.59)$$ $$y = C_y p$$ $$P(p) = (A - (1 + p^2)^{1/2})p - \ln(p + (1 + p^2)^{1/2}) - B\sin\phi$$ (5.59) $$P'(p) = A - 2\sqrt{1 + p^2} \tag{5.61}$$ $$p_0 = \phi \tag{5.62}$$ where $$\begin{array}{c|cccc} & P_6 & P_6' \\ \hline C_x & 1.01346 & 0.44329 \\ D & 2 & 3 \\ C_y & 0.91910 & 0.80404 \\ A & 4.00000 & 6.00000 \\ B & 2.14714 & 5.61125 \\ \hline \end{array}$$ ### 5.2.23 Collignon. +proj=collg Fig. 5.5 [17, p. 223] $$x = (2/\sqrt{\pi})\lambda\sqrt{1-\sin\phi} \qquad \qquad y = \sqrt{\pi}(1-\sqrt{1-\sin\phi}) \tag{5.63}$$ # 5.2.24 Sine-Tangent Series. | Name | +proj= | figure | Ref. | |-------------------|------------------|--------|-------------| | Foucaut | fouc | 5.5 | [13, p. 70] | | Adams Quartic Au- | qua_aut | 5.9 | [13, p. 70] | | thalic | | | | | McBryde-Thomas | mbt_s | 5.7 | [13, p. 72] | | Sine (No. 1) | | | | | Kavraisky V | kav5 | 5.2 | [13, p. 72] | | General Sine/Tan. | gen_ts [+t +s] | | | | | +q= +p= | | | Baar [?] listed several variations with values of p = q = 10/9, 4/3 and 3/2 for the sine series and 1, 4/3, 3/2 and 3 for the tangent series. Sine seriesi equations: $$x = (q/p)\lambda\cos\phi/\cos(\phi/q) \qquad \qquad y = p\sin(\phi/q) \qquad (5.64)$$ Tangent Seriesi equations: $$x = (q/p)\lambda\cos\phi\cos^2(\phi/q) \qquad \qquad y = p\tan(\phi/q) \qquad (5.65)$$ | q | p | Sine | Tangent | |--------------------------|--------------|------------------|---------| | 2 | $\sqrt{\pi}$ | | Foucaut | | 2 | 2 | Quartic Authalic | | | 1.36509 | 1.48875 | McBryde-Thomas | | | $35^{\circ}\arccos(0.9)$ | q/0.9 | Kavraisky V | | Figure 5.7: General pseudocylindricals III ### 5.2.25 McBryde-Thomas Flat-Polar Parabolic. +proj=mbtfpp Fig. 5.7 $$x = \sqrt{6/7}/3\lambda[1 + 2\cos\theta/\cos(\theta/3)]$$ (5.66) $$y = 3\sqrt{6/7}\sin(\theta/3)\tag{5.67}$$ $$P(\theta) = 1.125\sin(\theta/3) - \sin^3(\theta/3) - 0.4375\sin\phi \tag{5.68}$$ $$P'(\theta) = [0.375 - \sin^2(\theta/3)]\cos(\theta/3) \tag{5.69}$$ $$\theta_0 = \phi \tag{5.70}$$ ### 5.2.26 McBryde-Thomas Flat-Polar Sine (No. 1). +proj=mbtfps Fig. 5.7 $$x = 0.22248\lambda[1 + 3\cos\theta/\cos(\theta/1.36509)] \tag{5.71}$$ $$y = 1.44492\sin(\theta/1.36509) \tag{5.72}$$ $$P(\theta) = 0.45503\sin(\theta/1.36509) + \sin\theta - 1.41546\sin\phi \tag{5.73}$$ $$P'(\theta) = \frac{0.45503}{1.36509} \cos(\theta/1.36509) + \cos\theta \tag{5.74}$$ $$\theta = \phi \tag{5.75}$$ At the moment, there is a discrepancy between formulary and claim that 80° parallel length is half the length of the equator. # 5.2.27 McBryde-Thomas Flat-Polar Quartic. +proj=mbtfpq Fig. 5.7 $$x = \lambda (1 + 2\cos\theta/\cos(\theta/2))[3\sqrt{2} + 6]^{-1/2}$$ (5.76) $$y = (2\sqrt{3}\sin(\theta/2)[2+\sqrt{2}]^{-1/2}$$ (5.77) $$P(\theta) = \sin(\theta/2) + \sin\theta - (1 + \sqrt{2}/2)\sin\phi$$ (5.78) $$P'(\theta) = (1/2)\cos(\theta/2) + \cos\theta \tag{5.79}$$ $$\theta = \phi \tag{5.80}$$ ### 5.2.28 Boggs Eumorphic. +proj=boggs Fig. 5.5 $$x = 2.00276\lambda(\sec\phi + 1.11072\sec\theta)$$ $y = 0.49931(\phi + \sqrt{2}\sin\theta)$ (5.81) $$P(\theta) = 2\theta + \sin 2\theta - \pi \sin \phi \qquad P'(\theta) = 2 + 2\cos 2\theta \qquad (5.82)$$ $$\theta = \phi \tag{5.83}$$ ### 5.2.29 Nell. +proj=nell Fig. 5.8 Ref. [15][p. 115] $$x = \lambda (1 + \cos \theta)/2 \qquad \qquad y = \theta \tag{5.84}$$ $$P(\theta) = \theta + \sin \theta - 2\sin \phi \qquad P'(\theta) = 1 + \cos \theta \qquad (5.85)$$ $$\theta_1 = 1.00371\phi - 0.0935382\phi^3 - 0.011412\phi^5 \tag{5.86}$$ Figure 5.8: General pseudocylindricals IV $\begin{tabular}{l} A-Snyder Minimum Error. B-Loximuthal (+lat_1=40), C-Urmayev V, D-Urmayev Flat-Polar Sinusoidal (+n=0.7), E-Érdi-Krausz, F-Fourtier II, G-Nell-Hammer, H-Nell, I-Maurer and J-Mayr-Tobler. \end{tabular}$ # 5.2.30 Nell-Hammer. +proj=nell_h [+n=] Fig. 5.8 Ref. [13, p. 74] The equal-area Nell-Hammer is a specialized case of the more generalized arithmetic mean of tha y-axis or parallels of the Cylindical Equal-Area and the Sinusoidal projection [19]: $$x = (a + b\cos\phi)\lambda\tag{5.87}$$ $$y = \begin{cases} 2\left(\phi - \tan\frac{\phi}{2}\right) & \text{for } a = b = 1/2\\ \frac{\phi}{b} - \frac{a}{b} \begin{cases} \frac{2}{\sqrt{a^2 - b^2}} \arctan\frac{\sqrt{a^2 - b^2} \tan\frac{\phi}{2}}{a + b} & \text{if } a^2 > b^2\\ \frac{2}{\sqrt{b^2 - a^2}} \arctan\frac{(b - a)\tan\frac{\phi}{2}}{\sqrt{b^2 - a^2}} & \text{if } b^2 > a^2 \end{cases}$$ (5.88) where a and b are the respective weights of the cylindrical equal-area and sinuisoidal projections and where a + b = 1. The optional **n** parameter corresponds to a and 0 < n < 1. When **n** is not specified then $n \leftarrow 0.5$ (true Nell-Hammer). ### 5.2.31 Robinson. +proj=robin Fig. 5.7
Ref. [11] Common for global thematic maps in recent atlases. $$x = 0.8487\lambda X(|\phi|) \qquad y = 1.3523Y(|\phi|) \quad y \text{ assumes sign of } \phi \tag{5.89}$$ where the coefficients of X and Y are determined from the following table: | ϕ° | Y | X | ϕ° | Y | X | |----------------|--------|--------|----------------|--------|--------| | 0 | 0.0000 | 1.0000 | 50 | 0.6176 | 0.8679 | | 5 | 0.0620 | 0.9986 | 55 | 0.6769 | 0.8350 | | 10 | 0.1240 | 0.9954 | 60 | 0.7346 | 0.7986 | | 15 | 0.1860 | 0.9900 | 65 | 0.7903 | 0.7597 | | 20 | 0.2480 | 0.9822 | 70 | 0.8435 | 0.7186 | | 25 | 0.3100 | 0.9730 | 75 | 0.8936 | 0.6732 | | 30 | 0.3720 | 0.9600 | 80 | 0.9394 | 0.6213 | | 35 | 0.4340 | 0.9427 | 85 | 0.9761 | 0.5722 | | 40 | 0.4968 | 0.9216 | 90 | 1.0000 | 0.5322 | | 45 | 0.5571 | 0.8962 | | | | Robinson did not define how intermediate values were to be interpolated between the 5° intervals. The **proj** system uses a set of bicubic splines determined for each X-Y set with zero second derivatives at the poles. GCTP uses Stirling's interpolation with second differences. ### 5.2.32 Denoyer. +proj=denoy Fig. 5.5 $$x = \lambda \cos[(0.95 - \lambda/12 + \lambda^3/600)\phi] \qquad y = \phi \qquad (5.90)$$ ### 5.2.33 Fahey. +proj=fahey Fig. 5.5 $$x = \lambda \cos 35^{\circ} \sqrt{1 - \tan^2(\phi/2)}$$ $y = (1 + \cos 35^{\circ}) \tan(\phi/2)$ (5.91) ### 5.2.34 Ginsburg VIII. +proj=gins8 Fig. 5.10 [13][p. 78] $$x = \lambda(1 - 0.162388\phi^2)(0.87 - 0.000952426\lambda^4) \qquad y = \phi(1 + \phi^3/12) \tag{5.92}$$ ### 5.2.35 Loximuthal. +proj=loxim +lat_1= $\operatorname{Fig.} 5.8$ All straight lines radiating from the point where $lat_1=\phi_1$ intersects the central meridian are loxodromes (rhumb lines) and scale along the loxodomes is true. $$x = \begin{cases} \lambda(\phi - \phi_1) / [\ln \tan(\pi/4 + \phi/2) - \ln \tan(\pi/4 + \phi_1/2)] & \phi \neq \phi_1 \\ \lambda \cos \phi_1 & \phi = \phi_1 \end{cases} y = \phi - \phi_1$$ (5.93) ### 5.2.36 Urmayev V Series. +proj=urm5 Fig. 5.8 Ref. [13, p. 77] [15][213] $$x = m\lambda \cos \theta \tag{5.94}$$ $$y = \theta(1 + q\theta^2/3)/(mn) \tag{5.95}$$ $$\sin \theta = n \sin \phi \tag{5.96}$$ where $m = 2\sqrt[4]{3}/3$, n = 0.8 and q = 0.414524 are default values that have been employed in some atlases. | 5.2.37 Goode Homolosine, McBryde Q3 and McBride S | 5.2.37 | Goode Homolosine | , McBryde Q3 | and McBride S2 | |---|--------|------------------|--------------|----------------| |---|--------|------------------|--------------|----------------| | Name | +proj= | figure | Ref. | |------------------|-------------|--------|------| | Goode Homolosine | goode | 5.5 | | | McBryde P3 | psfig:mb_P3 | 5.7 | | | McBryde Q3 | psfig:mb_Q3 | 5.7 | | | McBryde S2 | psfig:mb_S2 | 5.7 | | Pseudocylindrical can be composited where different projections are used in different latitude zones. In the cases presented here there are only two regions: one covering the central or equitorial latitudes and another covering the polar regions. At the latitude where they join together, the horizontal scale must match and a shift value is normally subtracted from the computed y-value of the polar projection. | Name | Equitorial | Polar | ϕ join | y offset | |---------------|-------------|----------------|-----------------------|----------| | Goode Homolo- | Sinusoidal | Mollweide | 40°44′ | 0.05280 | | sine | Sec. 5.2.1 | Sec 5.2.14 | | | | McBryde P3 | Craster | McBryde-Thomas | $49^{\circ}20'21.8''$ | 0.035509 | | * | Parabolic | Flat-Polar | | | | | Sec. 5.2.17 | Parabolic | | | | | | Sec. 5.2.25 | | | | McBryde Q3 | Quartic | McBryde-Thomas | $52^{\circ}9'$ | 0.042686 | | | Authalic | Flat-Polar | | | | | Sec. 5.2.24 | Quartic | | | | | | Sec. 5.2.27 | | | | McBryde S2 | Sinusoidal | Eckert VI | $49^{\circ}16'$ | 0.084398 | | | | Sec. 5.2.8 | | | ### 5.2.38 Equidistant Mollweide +proj=eq_moll Fig. 5.5 $$x = \frac{\lambda}{\pi} \sqrt{|\pi^2 - 4\phi^2|} \qquad \qquad y = \phi \tag{5.97}$$ ### 5.2.39 McBryde S3. +proj=mb_S3 Fig. 5.7 Ref. If $|\phi| < 55^{\circ}51'$ then $$x = \lambda \cos \phi \qquad \qquad y = \phi \tag{5.98}$$ else $$x = \frac{C\lambda}{1.5}(0.5 + \cos\theta) \tag{5.99}$$ $$y = C\theta \mp 0.069065 \tag{5.100}$$ $$P(\theta) = \frac{\theta}{2} + \sin \theta - (1 - \frac{\pi}{4}) \sin \phi \tag{5.101}$$ $$P'(\theta) = \frac{1}{2} + \cos \theta \tag{5.102}$$ $$\theta_0 = \phi \tag{5.103}$$ $$C = \left(\frac{6}{4+\pi}\right)^{\frac{1}{2}} \tag{5.104}$$ (5.105) where the last constant takes the opposite sign of ϕ . $\label{eq:Figure 5.10: General pseudocylindricals VI} \textbf{A}-Oxford, \textbf{B}-Ginsburg VIII and \textbf{C}-Semiconformal.}$ ### 5.2.40 Semiconformal. +proj=near_con (Fig. 5.10 $$p = \begin{cases} \text{sign of } \phi \text{ 0.99989} & \text{if } |\phi| > 1.5564\\ \sin \phi & \text{otherwise} \end{cases}$$ (5.106) $$\theta = \frac{1}{2\pi} \ln \left(\frac{1+p}{1-p} \right) \tag{5.107}$$ $$x = \lambda \cos \theta \tag{5.108}$$ $$y = \pi \sin \theta \tag{5.109}$$ # 5.2.41 Érdi-Krausz. $$x = 0.96042\lambda\cos\theta'$$ $y = 1.30152\theta'$ (5.110) $$\sin \theta' = 0.8 \sin \phi \tag{5.111}$$ otherwise $$x = 1.07023\lambda\cos\theta$$ $y = 1.68111\sin\theta \mp 0.28549$ (5.112) where sign is opposite that of θ $$P(\theta) = 2\theta + \sin 2\theta - \pi \sin \phi \qquad P'(\theta) = 2 + 2\cos 2\theta \tag{5.113}$$ $$\theta_0 = \phi \tag{5.114}$$ #### 5.2.42Snyder Minimum Error. +proj=s_min_err Fig. 5.8 $$a_1 = 1.27326 (5.115)$$ $$a_3 = -.04222 (5.116)$$ $$a_5 = -.0293 (5.117)$$ $$a_3' = -0.12666 (5.118)$$ $$a_5' = -.1465$$ (5.119) $$x = \frac{\lambda \cos \phi}{a_1 + \phi^2 (a_3' + a_5' \phi^2)}$$ (5.120) $$y = \phi(a_1 + \phi^2(a_3 + a_5\phi^2)) \tag{5.121}$$ #### 5.2.43Maurer. +proj=maurer Fig. 5.8 [13, p. 69] $$x = \lambda \left(\frac{\pi - 2\phi}{\pi}\right) \qquad \qquad y = \phi \tag{5.122}$$ #### 5.2.44 Canters. Canters' four low-error pseudocylindrical projections. | Name | +proj= | figure | Ref | |--|--------|--------------|-----| | General optimization | fc_gen | 5.11 for all | [6] | | Pole length half the length of the equator | fc_pe | | | | Correct axis ratio | fc_ar | | | | Pointed pole, correct axis ratio | fc_pp | | | with the general form: $$x = \lambda(c_0 + c_2\phi^2 + c_4\phi^4) \begin{cases} \text{flat polar} \\ \times \cos\phi \text{ pointed pole} \end{cases}$$ $$y = c_1'\phi + c_3'\phi^3 + c_5'\phi^5$$ $$(5.124)$$ $$y = c_1' \phi + c_3' \phi^3 + c_5' \phi^5 \tag{5.124}$$ where the coefficients are: Figure 5.11: Canters' pseudocylindrical series f A-Canters' General optimization, f B-Pole length half the length of the equator. f C-Pole length half the length of the equator and f D-Pointed pole, correct axis ratio. | general optimization | | |-----------------------------|------------------| | $c_0 = 0.7920$ | $c_1' = 1.0304$ | | $c_2 = -0.0978$ | $c_3' = 0.0127$ | | $c_4 = 0.0059$ | $c_5' = -0.0250$ | | pole length half the length | of the equator | | $c_0 = 0.7879$ | $c_1' = 1.0370$ | | $c_2 = -0.0238$ | $c_3' = -0.0059$ | | $c_4 = -0.0551$ | $c_5' = -0.0147$ | | correct axis ratio and | | | $c_0 = 0.8378$ | $c_1' = 1.0150$ | | $c_2 = -0.1053$ | $c_3' = 0.0207$ | | $c_4 = -0.0011$ | $c_5' = -0.0375$ | | pointed pole, correct axis | ratio | | $c_0 = 0.8333$ | $c_1' = 1.0114$ | | $c_2 = 0.3385$ | $c_3' = 0.0243$ | | $c_4 = 0.0942$ | $c_5' = -0.0391$ | # 5.2.45 Baranyi I–VII. | Name | proj= | figure | |---------------------|-------------------------------|--------------------| | Baranyi IV (Snyder) | baranyi4 | | | Baranyi I | brny_1 +vopt | all on fig. 5.12 | | Baranyi II | brny_2 +vopt | | | Baranyi III | brny_3 | | | Baranyi IV | $\mathtt{brny}_{\mathtt{-}}4$ | | | Baranyi V | brny_5 | | | Baranyi VI | brny_6 | | | Baranyi VII | brny_7 | | Figure 5.12: Baranyi pseudocylindrical series A-Baranyi I,~B-II,~C-III,~D-IV~E-V~I and G-VII. ### Baranyi IV. The following is a version of projection IV of the Baranyi set of seven projections [5] that is derived from unpublished BASIC procedure written by Snyder and forwarded by Anderson [4]: $$y = \phi(1. + \phi^{2}(.112579 + |\phi|(-.107505 + |\phi|.0273759)))$$ $$f = \pm \frac{\log(1. + 0.11679 * |\lambda|)}{0.31255}$$ where f takes the sign of λ $$x = f \times \begin{cases} (1.22172 + \sqrt{2.115292 - y^{2}}) & \text{when } |\phi| \le 1.36258 \\ \sqrt{|38.4304449 - (4.5848 + |y|)^{2}|} & \text{otherwise} \end{cases}$$ (5.126) ### Baranyi projections. The following version of Baranyi's seven projections attempt to stay close to Baranyi's original description [5] with some interpretations from a FORTRAN procedure by Voxland [9]. The projections follow three basic steps: - convert both latitude and longitude to intermediate units (x_p, y_p) by means of tabular description of the converted coordinates at 10° intervals, - determine the length of the parallel (x_l) for the intermediate latitude at the limiting longitude (180°) and - scale the intermediate longitude by the ratio of the meridian length at the intermediate latitude and equatorial length. Conversion if longitude and latitude to intermediate units is performed by first changing radians to degrees and then interpolating intermediate values from the from tables 5.1 and 5.2 of intermediates values at each 10^circ of geographic coordinate. Because projections I and II have regular spacing or increments of tabular values, Voxland used a second degree determination for intermediate latitude: $$y_p = a_1 |\phi_d| + a_2 \phi_d^2 \tag{5.127}$$ $$a_1 = \begin{cases} 0.975 & \text{Baranyi I} \\ 0.95 & \text{Baranyi II} \end{cases}$$ $a_2 = \begin{cases} 0.0025 & \text{Baranyi I} \\ 0.005 & \text{Baranyi II} \end{cases}$ (5.128) The results from the above equations for y_p will differ from the linear interpolation and may be selected by using the +vopt
option. Although this solution is elegant it does not match the general nature of Baranyi's definition of the projection. The previously determined intermediate longitude represent the value at the equator and must be scaled by the ratio of the length of the parallel at the intermediate latitude and length of the equator. Length of the parallels are determined by two or three segments that are either circular arcs or straight lines. Each segment joins in a smooth manner by the curves intersecting at points of tangency. $$x_p = \frac{x_p}{x_p[180]} \begin{cases} X + \sqrt{R^2 - (y_p + Y)^2} & \text{circular arc} \\ (y_p - A)/B & \text{straight line segment} \end{cases}$$ (5.129) where the coefficients are determined from table 5.3. Applicable arc-line segment is determined by $y_p \leq y_p$ -intersect column value. The empty last entry in this column is assumed to be infinite and thus selected if previous tests fail. Factor $x_p[180]$ is the length of the equator from the last column of table 5.2. The intermediate coordinates are finally scaled to $x_p(10^\circ)$ and $y_p(10^\circ)$: $$x = \pm x_p \frac{\pi}{180} \qquad \qquad y = \pm y_p \frac{\pi}{180} \tag{5.131}$$ where the sign of x and y are taken from λ and ϕ respectively. | | 0° | 10° | 20° | 30° | 40° | 50° | 60° | 70° | 80° | 90° | |-----|-----|------|------|------|------|------|------|------|-------|-------| | I | 0.0 | 10.0 | 20.5 | 31.5 | 43.0 | 55.0 | 67.5 | 80.5 | 94.0 | 108.0 | | II | 0.0 | 10.0 | 21.0 | 33.0 | 46.0 | 60.0 | 75.0 | 91.0 | 108.0 | 126.0 | | III | 0.0 | 12.0 | 24.0 | 36.0 | 49.0 | 62.0 | 75.0 | 86.0 | 97.0 | 108.0 | | IV | 0.0 | 12.0 | 24.0 | 36.0 | 49.0 | 62.0 | 75.0 | 87.0 | 99.0 | 111.0 | | V | 0.0 | 10.0 | 20.5 | 31.5 | 44.0 | 58.0 | 70.5 | 81.5 | 92.0 | 102.0 | | VI | 0.0 | 10.0 | 20.5 | 31.5 | 43.5 | 56.5 | 70.5 | 85.0 | 100.0 | 115.5 | | VII | 0.0 | 12.0 | 24.0 | 35.5 | 47.0 | 58.5 | 69.5 | 80.5 | 90.5 | 99.5 | Table 5.1: Intermediate parameter y_p value for each 10 degrees of latitude. | | 0° | 10° | 20° | 30° | 40° | 50° | 60° | 70° | 80° | 90° | |-----|-------|-----------------|-----------------|-----------------|-----------------|-----------------|-----------------|-----------------|-----------------|-------| | | 100° | $ 110^{\circ} $ | $ 120^{\circ} $ | $ 130^{\circ} $ | $ 140^{\circ} $ | $ 150^{\circ} $ | $ 160^{\circ} $ | $ 170^{\circ} $ | $ 180^{\circ} $ | | | I | 0.0 | 10.0 | 20.0 | 30.0 | 40.0 | 50.0 | 60.0 | 70.0 | 80.0 | 90.0 | | | 100.0 | 110.0 | 120.0 | 130.0 | 140.0 | 150.0 | 160.0 | 170.0 | 180.0 | | | II | 0.0 | 10.0 | 20.0 | 30.0 | 40.0 | 50.0 | 60.0 | 70.0 | 80.0 | 90.0 | | | 100.0 | 110.0 | 120.0 | 130.0 | 140.0 | 150.0 | 160.0 | 170.0 | 180.0 | | | III | 0.0 | 12.0 | 24.0 | 35.0 | 46.0 | 57.0 | 68.0 | 78.0 | 88.0 | 98.0 | | | 108.0 | 118.0 | 128.0 | 138.0 | 148.0 | 157.0 | 166.0 | 175.0 | 184.0 | | | IV | 0.0 | 12.0 | 24.0 | 35.0 | 46.0 | 57.0 | 68.0 | 78.0 | 88.0 | 98.0 | | | 108.0 | 118.0 | 128.0 | 138.0 | 148.0 | 157.0 | 166.0 | 175.0 | 184.0 | | | V | 0.0 | 10.5 | 21.0 | 31.5 | 42.0 | 52.5 | 62.5 | 72.5 | 82.5 | 92.5 | | | 102.5 | 112.5 | 122.5 | 132.5 | 142.5 | 151.0 | 159.5 | 168.0 | 176.5 | | | VI | 0.0 | 10.5 | 21.0 | 31.5 | 42.0 | 52.5 | 62.5 | 72.5 | 82.5 | 92.5 | | | 102.5 | 112.5 | 122.5 | 132.5 | 142.5 | 151.5 | 160.5 | 169.5 | 178.5 | | | VII | 0.0 | 12.0 | 24.0 | 35.5 | 47.0 | 58.0 | 69.0 | 79.5 | 90.0 | 100.0 | | | 110.0 | 120.0 | 130.0 | 140.0 | 150.0 | 159.0 | 168.0 | 176.0 | 184.0 | | Table 5.2: Intermediate parameter \boldsymbol{x}_p value for each 10 degrees of longitude. | | | Circular Arc | Arc-Line | | |-----|------|-----------------|----------------|-----------------| | No. | X | Y[A] | R[B] | y_p Intersect | | I | 80.0 | 0.0 | 100.0 | 81.241411756 | | | 0.0 | 111.465034594 | 237.202237362 | | | II | 75.0 | 0.0 | 105.0 | 89.732937686 | | | 0.0 | 123.428571429 | 249.428571429 | | | III | 94.0 | 0.0 | 90.0 | 78.300539425 | | | 0.0 | 165.869652378 | 280.653459397 | | | IV | 84.0 | 0.0 | 100.0 | 94.323113828 | | | 0.0 | 315.227272727 | 426.227272727 | | | V | 86.5 | 0.0 | 90.0 | 89.129742863 | | | | [102.995921508] | [-0.140082858] | 101.013708578 | | | 0.0 | 0.0 | 102.0 | | | VI | 83.5 | 0.0 | 95.0 | 92.807743792 | | | | [115.5] | [-0.218634245] | | | VII | 94.0 | 0.0 | 90.0 | 87.968257449 | | | 0.0 | 460.302631579 | 559.802631579 | | Table 5.3: Table of limiting curve constants and y_p range limit. ### 5.2.46 Oxford and Times Atlas. | Name | +proj= | figure | Ref. | |---------------|--------|--------|------| | Oxford Atlas | | | | | Modified Gall | oxford | 5.10 | | | Times Atlas | times | 5.9 | | $$t = \tan\left(\frac{\phi}{2}\right) \tag{5.132}$$ $$y = \left(1 + \frac{\sqrt{2}}{2}\right)t\tag{5.133}$$ $$x = \lambda \begin{cases} \frac{1 - 0.04\phi^4}{\sqrt{2}} & \text{Oxford Atlas} \\ 0.74\sqrt{1 - 0.5t^2} & \text{Times Atlas} \end{cases}$$ (5.134) ### 5.2.47 Baker Dinomic. +proj=baker Fig. 5.9 Ref. [15][p. 271] When $|\phi| < \pi/4$ then projection is basic Mercator $$x = \lambda$$ $$y = \begin{cases} \ln \tan \left(\frac{\pi}{4} + \frac{\phi}{2}\right) & \text{or} \\ \frac{1}{2} \ln \left(\frac{1 + \sin \phi}{1 - \sin \phi}\right) \end{cases}$$ (5.135) otherwise $$x = \lambda \cos \phi \left(2\sqrt{2} - \csc \phi\right) \qquad y = \pm \left[-\ln \tan \frac{|\phi|}{2} + 2\sqrt{2}\left(|\phi| - \frac{\pi}{2}\right)\right]$$ (5.136) where the above y value takes the sign of ϕ . ### 5.2.48 Fourtier II. +proj=four2 Fig. 5.8 A very early pseudocylindrical. $$x = \frac{1}{\sqrt{\pi}}\cos\phi \qquad \qquad y = \frac{\sqrt{\pi}}{2}\sin\phi \qquad (5.137)$$ ### 5.2.49 Mayr-Tobler. +proj=mayr [+n=] Fig. 5.8 Ref: [19], [15, p. 220] An equal-area projection first described by Mayr and later by Tobler. The projection is based upon a weighted geometric mean of the x-axis or meridians of the Cylindical Equal-Area and Sinusoidal projections: $$x = \lambda \cos^{1-n} b\phi \qquad \qquad y = \int_0^\phi \cos^n \phi \, d\phi \qquad (5.138)$$ where 0 < n < 1 and is the weight factor of the cylindrical projection. The Mayr projection is the special case (default) where $n \leftarrow 0.5$ when not specified. ### 5.2.50 Tobler G1 +proj=tob_g1 [+n=] Fig. 5.9 Ref. [19] For this equal-area projection the y-axis is a weighted geometric mean of the Cylindrical Equal-Area and the Sinusoidal projections. $$x = \lambda \cos \phi \frac{\phi^b \sin^a \phi}{a \sin \phi + b\phi \cos \phi}$$ (5.139) $$y = \phi^a \sin^b \phi \tag{5.140}$$ $$a + b = 1 (5.141)$$ Option **n** is equivalent to a and 0 < n < 1 and is the weight for the cylindrical projection. If the **n** option is not specified, then $a \leftarrow 0.5$. ### 5.3 Pseudocylindrical Projections for the Ellipsoid. ### 5.3.1 Sinusoidal Projection The elliptical version of the Sinusoidal projection is one of the simlplest elliptical computations. Spacing of the parallels is based upon the meridianal distance $M(\phi)$ as defined in section 3.2. The parallel lengths are determined by their radii defined in section 3.7.3. Thus the forward equations are simply: $$x = a\lambda m(\phi) y = M(\phi) (5.142)$$ The inverse projection values are determined by: $$\phi = M^{-1}(y) \qquad \qquad \lambda = \frac{x}{m(\phi)} \tag{5.143}$$ ## Chapter 6 # Conic Projections #### Forward Conic Formulae. The basic forward formulae for all simple conics are expressed by: $$x = \rho \sin \theta \tag{6.1}$$ $$y = \rho_0 - \rho \cos \theta \tag{6.2}$$ where $\theta = n\lambda$. Factor ρ is the distance of the projected point from the apex of the cone and n is the cone constant. The factor ρ_0 is determined by evaluating ρ at ϕ_0 (+lat_0=) and establishes the y-axis origin. The x-axis origin is at λ_0 (+lon_0=). Both ρ and n are functions that determine the characteristics of each conic projection, as shown in Table 6.1, and both usually controlled by two user specified parallels: ϕ_1 and ϕ_2 (+lat_1= and +lat_2=). In some cases, one parallel may be specified, ϕ_1 , specified (in Lambert Equal Area and $\phi_1 = \phi_2$ cases) and in the case of the Lambert Conformal Conic, a scale factor, k_0 (+k_0=) may be specified. All cases where σ , σ or n would evaluate to 0 or n evaluates to 1 are not allowed. In addition to the formulae for the spherical earth in Table 6.1 several conics are available for the ellipsoidal earth as follows. ### Albers Equal Area: $$\rho = \sqrt{C - nq}/n$$ $$n = \begin{cases} (m_1^2 - m_2^2)/(q_2 - q_1) & \phi_1 \neq \phi_2 \\ \sin \phi_1 & \phi_1 = \phi_2 \end{cases}$$ $$C = m_1^2 + nq_1$$ $$m = \cos \phi/(1 - e^2 \sin^2 \phi)^{1/2}$$ $$q = (1 - e^2) \left[\frac{\sin \phi}{1 - e^2 \sin^2 \phi} - \frac{1}{2e} + \ln \left(\frac{1 - e \sin \phi}{1 + e \sin \phi} \right) \right]$$ $$k = 1/h = \sqrt{C - nq}/m = n\rho/m$$ For the case of Lambert Equal Area, substitute $\pi/2$ for ϕ_2 in the preceding formulae. Table 6.1: Spherical equations for conic projections. | Name | ho = | n = | |--------------------|--|---| | Equidistant | $\frac{\phi_2\cos\phi_1 - \phi_1\cos\phi_2}{\cos\phi_1 - \cos\phi_2} - \phi$ | $\frac{\cos\phi_1 - \cos\phi_2}{\phi_2 - \phi_1}$ | | $\phi_1 = \phi_2$ | $\cot \phi_1 + \phi_1 - \phi$ | $\sin \phi_1$ | | Murdoch I | $(\cot \sigma \sin \delta)/\delta + \sigma - \phi$ | $\sin\sigma$ | | Murdoch II | $\cot \sigma \sqrt{\cos \delta} + \tan(\sigma - \phi)$ | $\sin \sigma \sqrt{\cos \delta}$ | | Murdock III | $\delta \cot \delta \cot \sigma + \sigma - \phi$ | $(\sin\sigma\sin\delta\tan\delta)/\delta^2$ | | Euler | $\delta/2\cot(\delta/2)\cot\sigma + \sigma - \phi$ | $(\sin\sigma\sin\delta)/\delta$ | | Lambert Conformal | $\cos \phi_1 \frac{\tan^n(\pi/4 + \phi_1/2)}{n \tan^n(\pi/4 + \phi/2)}$ |
$\frac{\ln\left(\frac{\cos\phi_1}{\cos\phi_2}\right)}{\ln\left(\frac{\tan(\pi/4+\phi_2/2)}{\tan(\pi/4+\phi_1/2)}\right)}$ | | $\phi_1 = \phi_2$ | $k_0 \cos \phi_1 \frac{\tan^n(\pi/4 + \phi_1)/2}{n \tan^n(\pi/4 + \phi/2)}$ | $\sin\phi_1$ | | Albers Equal Area | $[\cos^2 \phi_1 + 2n(\sin \phi_1 - \sin \phi)]^{1/2}/n$ | $(\sin\phi_1 + \sin\phi_2)/2$ | | Lambert Equal Area | $[2(1-\sin\phi)/n]^{1/2}$ | $(1+\sin\phi_1)/2$ | | Perspective | $\cos\delta[\cot\sigma-\tan(\phi-\sigma)]$ | $\sin\sigma$ | | Tissot | $\left\{ \left[\frac{\sin \sigma}{\cos \delta} + \frac{\cos \delta}{\sin \sigma} - 2\sin \phi \right] / n \right\}^{1/2}$ | $\sin\sigma$ | | Vitkovsky I | same as Murdoch III | $(\tan\delta\sin\sigma)/\delta$ | where $\sigma = (\phi_2 + \phi_1)/2$ and $\delta = (\phi_2 - \phi_1)/2$. ### Lambert Conformal: $$\rho = k_0 F t^n$$ $$n = \begin{cases} \frac{\ln m_1 - \ln m_2}{\ln t_1 - \ln t_2} & \phi_1 \neq \phi_2 \\ \sin \phi_1 & \phi_1 = \phi_2 \end{cases}$$ $$m = \cos \phi / (1 - e^2 \sin^2 \phi)^{1/2}$$ $$t = \tan(\pi/4 - \phi/2) / \left[\frac{1 - e \sin \phi}{1 + e \sin \phi} \right]^{e/2}$$ $$= \left[\left(\frac{1 - \sin \phi}{1 + \sin \phi} \right) \left(\frac{1 + e \sin \phi}{1 - e \sin \phi} \right)^e \right]^{1/2}$$ $$F = m_1 / (nt_1^n)$$ $$h = k = k_0 n \rho / m$$ $$\gamma = n \lambda$$ ### **Equidistant:** $$\rho = G - M(\phi)$$ $$n = \begin{cases} (m_1 - m_2)/(M(\phi_2) - M(\phi_1)) & \phi_1 \neq \phi_2 \\ \sin \phi_1 & \phi_1 = \phi_2 \end{cases}$$ $$m = \cos \phi/(1 - e^2 \sin^2 \phi)^{1/2}$$ $$G = m_1/n + M(\phi_1)$$ $$h = 1$$ $$k = n\rho/m$$ ### Inverse Conic Formulae. When n < 0, reverse the sign of x, y, and ϕ_0 and then evaluate: First compute $y' = \rho_0 - y$ and then $$\rho = (x^2 + y'^2)^{1/2}$$. If n < 0, reverse sign of x, y' and ρ and compute $$\theta = \operatorname{atan2}(x, y')$$ Compute $\lambda = \theta/n$ and, in the spherical case, determine ϕ from the ρ equations in Table 6.1. Solutions for ϕ for the elliptical earth are as follows: ### Albers Equal Area: Compute $q = (C - \rho^2 n^2)/n$ and initial value of $\phi = \sin^{-1}(q/2)$ and iterate $\phi = \phi + \Delta \phi$ until $|\Delta \phi|$ less than acceptable tolerance and where: $$\Delta \phi = \frac{(1 - e^e \sin^2)^{1/2}}{2\cos\phi} \left[\frac{q}{1 - e^2} - \frac{\sin\phi}{1 - e^2 \sin^2\phi} + \frac{1}{2e} \ln\left(\frac{1 - e\sin\phi}{1 + e\sin\phi}\right) \right]$$ ### Lambert Conformal: Compute $t=(\rho/F)^{1/n}$ and $\phi=\pi/2-\tan^{-1}t$ and substitute ϕ into the right hand side of $$\phi = \pi/2 - 2\tan^{-1}\left[t\left(\frac{1 - e\sin\phi}{1 + e\sin\phi}\right)^{e/2}\right]$$ Repeat substition of ϕ into right side until absolute difference between last and current value of ϕ less than tolerance. ### **Equidistant:** $$\phi = \mathbf{M}^{-1}(G - \rho).$$ ### 6.0.2 Bonne. +proj=bonne [+lat_1=] ?? [14, p. 140] The Werner and Sylvano are special cases of the Bonne where Werner specified a value of $\phi_1 = 90^{\circ}$. Sylvano selected $\phi_1 = 47^{\circ}$ and limited the geographic range to within $\pm 160^{\circ}$ and $40^{\circ}S \ge \phi \le 80^{\circ}N$ for a world map centered at $60^{\circ}E$. For forward of the sphere: $$\rho = \cot \phi_1 + \phi_1 - \phi \tag{6.3}$$ $$E = \lambda \frac{\cos \phi}{\rho} \tag{6.4}$$ $$x = \rho \sin E \tag{6.5}$$ $$y = \cot \phi_1 - \rho \cos E \tag{6.6}$$ and for the ellipsoid: $$m = \cos \phi / (1 - e^2 \sin^2 \phi)^{1/2} \tag{6.7}$$ $$\rho = m_1 / \sin \phi_1 + M(\phi_1) - M(\phi)$$ (6.8) $$E = m\lambda/\rho \tag{6.9}$$ $$x = \rho \sin E \tag{6.10}$$ $$y = \frac{m_1}{\sin \phi_1} - \rho \cos E \tag{6.11}$$ For the inverse of the sphere: $$\rho = \pm \left[x^2 + (\cot \phi_1 - y^2)^2 \right]^{1/2} \tag{6.12}$$ $$\phi = \cot \phi_1 + \phi_1 - \rho \tag{6.13}$$ $$\lambda = \frac{\rho}{\cos \phi} \operatorname{atan2}[\pm x, \pm(\cot \phi_1 - y)] \tag{6.14}$$ and for the ellipsoid: $$\rho = \pm \left[x^2 + (m_1/\sin\phi_1 - y^2)^2 \right]^{1/2} \tag{6.15}$$ $$\phi = M^{-1}(m_1/\sin\phi_1 + M(\phi_1) - \rho)$$ (6.16) $$\lambda = \frac{\rho}{m} \operatorname{atan2}[\pm x, \pm (m_1/\sin\phi_1 - y)] \tag{6.17}$$ In all cases, \pm take sign of ϕ_1 . ### 6.0.3 Bipolar Oblique Conic Conformal. Developed as a low-error conformal map of both North and South America, it consists of two translated, spherical form Lambert Conformal Conic projections (A and B) with points to the left of a geodesic from B to A determined by projection A and those to the right by projection B. There is a small and varying discontinuity along this geodesic, but it is negligible within the range of interest and at the small scales normally used. Because the formulae for this projection are presented by [14], they are used here rather than using a combination of the general oblique procedures. Only the spherical form is used and both <code>+lon_0</code> and <code>+lat_0</code> are ignored. The following are defining constants for the location of the poles of each projection: $$\phi_A = 20^{\circ} \text{ S} = -0.349065850398866$$ $$\lambda_A = 110^{\circ} \text{ W} = -1.91986217719376$$ $$\phi_B = 45^{\circ} \text{ N} = 0.785398163397448$$ $$z_{AB} = 104^{\circ} = 1.81514242207410$$ and each projection has the equivalent standard parallels of $\phi_1 = 31^{\circ}$ and $\phi_2 = 73^{\circ}$. These factors determine the following constants: $$\lambda_{B} = \lambda_{A} + \arccos\left(\frac{\cos z_{AB} - \sin \phi_{A} \sin \phi_{B}}{\cos \phi_{A} \cos \phi_{B}}\right)$$ $$= -0.348949767262507(-19°59'36.0561)$$ $$n = \ln\left(\frac{\sin \phi_{1}}{\sin \phi_{2}}\right) \ln\left(\frac{\tan(\phi_{1}/2)}{\tan(\phi_{2}/2)}\right)$$ $$= 0.630558448812747$$ $$F_{0} = \sin \phi_{1}/[n \tan^{n}(\phi_{1}/2)]$$ $$= 1.83375966397205$$ $$k_{0} = 2/[1 + nF_{0} \tan^{n} 26^{\circ}/\sin 52^{\circ}]$$ $$= 1.03462163714794$$ $$F = k_{0}F_{0}$$ $$= 1.89724742567461$$ $$Az_{AB} = \arccos\{[\cos \phi_{A} \sin \phi_{B} - \sin \phi_{A} \cos \phi_{B} \cos(\lambda_{B} + \lambda_{A})]/\sin z_{AB}\}$$ $$= 0.816500436746864(46°46'55.30437'')$$ $$Az_{BA} = \arccos\{[\cos \phi_{B} \sin \phi_{A} - \sin \phi_{B} \cos \phi_{A} \cos(\lambda_{B} + \lambda_{A})]/\sin z_{AB}\}$$ $$= 1.82261843856186(104°25'42.03909'')$$ $$T = \tan^{n}(\phi_{1}/2) + \tan^{n}(\phi_{2}/2)$$ $$= 1.27246578267089$$ $$\rho_{c} = FT/2 = 1.20709121521569$$ $$z_{c} = 2 \tan^{-1}(T/2)^{1/n}$$ $$= 0.908249725391265(52°2'19.95363'')$$ ### Forward projection: First determine which conic to use by computing $$Az = \operatorname{atan2}[\sin(\lambda_B - \lambda),$$ $$\cos \phi_B \tan \phi - \sin \phi_B \cos(\lambda_B - \lambda)].$$ If $Az > Az_BA$, then conic A is to be used otherwise conic B. Next compute distance from point to conic pole from: $$z = \arccos[\sin \phi_A \sin \phi + \cos \phi_A \cos \phi \cos(\lambda + \lambda_A)]$$ or $$z = \arccos[\sin \phi_B \sin \phi + \sin \phi_B \cos \phi \cos(\lambda_B - \lambda)]$$ for respective A and B conics and in the case of the A conic recompute the azimuth from: $$Az = \operatorname{atan2}[(\sin(\lambda + \lambda_A), \\ \cos \phi_A \tan \phi - \sin \phi_A \cos(\lambda + \lambda_A)].$$ Next compute: $$\rho = F \tan^n(z/2)$$ $$k = \rho n / \sin z$$ $$\alpha = \arccos\{[\tan^n(z/2) + \tan^n(z_{AB} - z)]/T\}$$ Determine θ by subtract Az from A_{AB} or A_{BA} for respective A or B conic and then compute $$\rho = \rho/\cos[\alpha - \theta].$$ If $\rho > \alpha$, then $\rho = -\rho$. Now compute local cartesian system: $$x' = \rho \sin \theta$$ $$y' = \mp \rho \cos \theta \pm \rho_c.$$ using upper or lower sign for respective A or B conic. Finally, rotate into appropriate position: $$x = -x'\cos Az_c - y'\sin Az_c$$ $$y = -y'\cos Az_c + x'\sin Az_c$$ ### Inverse projection: First, rotate cartesian into local system: $$x' = -x\cos Az_c + y\sin Az_c$$ $$y' = -x\sin Az_c - y\cos Az_c$$ If x' < 0, the change sign of y'. Next compute: $$\rho = [x'^2 + (\rho_c + y')]^{1/2}$$ $$A'_z = atan2(x', \rho_c + y')$$ Set $\rho = \rho'$ and compute $$z = 2 \tan^{-1}(\rho/F)^{1/2}$$ $\alpha = \arccos\{[\tan^{n}(z/2) + \tan^{n}(z_{AB} - z)]\}$ If $Az < \alpha$, set $\rho = \rho'(\cos \alpha - Az)$ and repeat previous two equations until difference between previous and current ρ less than desired tolerance. If x' < 0, set $\phi_c = \phi_A$ and $A_c = Az_{AB}$, otherwise $\phi_c = \phi_B$ and $A_c = Az_{BA}$. Finally calculate: $$Az = A_c - Az/n$$ $$\phi = \arcsin(\sin\phi_c \cos z + \cos\phi_c \sin z \cos Az)$$ $$\lambda = \lambda_c - \tan 2(\sin Az, \cos\phi_c / \tan z - \sin\phi_c \cos z)$$ ### 6.0.4 (American) Polyconic. ### Forward: If $\phi = 0$, then $$x = \lambda$$ $$y = -m_0$$ otherwise $$E = n\lambda \sin \phi$$ $$x = \cot \phi \sin E$$ $$y = m - m_0 + n \cot \phi (1 - \cos E)$$ For the sphere, N=1 and $M=\phi$, and for the ellipsoid, $n=(1-e^2\sin^2\phi)^{-1/2}$ and $m=\mathrm{M}(\phi)$. ### <u>Inverse:</u> If $y = -m_0$, then $$\phi = 0$$ $$\lambda = x$$ otherwise a Newton-Raphson approximation must be used which will not converge when $|\lambda| > \pi/2$. Firsts compute: $$A = m_0 + y$$ $$B = x^2 + A^2$$ Set $\phi = A$ and iterate the following. For the sphere: $$\Delta \phi = \frac{A(\phi \tan \phi + 1) - \phi - [(\phi^2 + B) \tan \phi]/2}{(\phi - A)/tan\phi - 1}$$ or the ellipsoid: $$C = (1 - e^2 \sin^2 \phi)^{1/2} \tan \phi$$ $$m = M(\phi)$$ $$m' = (1 - e^2)(1 - e^2 \sin^2 \phi)^{-3/2}$$ $$\Delta \phi = [A(Cm + 1) - m - (M^2 + B)C/2]/$$ $$[e^2 \sin 2\phi (m^2 + B - 2Am)/4C + (A - m)(Cm' - 2/\sin 2\phi) - m']$$ For both: $\phi = \phi - \Delta \phi$ and recompute until $\Delta \phi$ less than tolerance. Lastly, compute $\lambda = \sin^{-1}(xC)/\sin \phi$. ### IMW Polyconic. A modified polyconic projection adopted in 1909 for the 1:1,000,000-scale International Map of the World where each panel spans 4° of latitude and with longitude extent determined by: | Latitude Zones | Longitude Range | λ_1 | |----------------------------------
-----------------|-------------| | 60° S to 60° N | 6° | 2° | | 60° to 76° | 12° | 4° | | 76° to 84° | 24° | 8° | The factor λ_1 is a *standard meridian* on either side of the map's central meridian that has unity meridianal scale factor (h). Parallel scale factor (k) is 1. along the map bounds. Longitude boundaries of standard IMW sheets are unknown to the author. Polar Stereographic was apparently used for the polar regions but confusing extent specifications make scale factor speculative. Circa 1962, the Lambert Conformal Conic replaced this projection. For this system, the conic standard parallels are $\frac{1}{5}$ and $\frac{4}{5}$ of the extent of the 4° latitude zones (standard parallels obtained by adding by $\pm 48'$ respectively to lower and upper bounds) and the zones extend from 80°S to 84°N. The polar Stereographic projection is used for the remaining regions with scale factor adjusted to match the abutting edge of either IMW polyconic or Lambert Conformal Conic zones. Usage of the IMW Polyconic requires specification of the map's limiting parallels, ϕ_1 and ϕ_2 , with lat_1 and lat_2. The projection may not symetrically span the equator ($\phi_1 = -\phi_2$). The standard merdians (from λ_1) are automatically determined from the mean of the standard parallels, but this my be overriden by specifying lon_1. Cartesian origin is at the central meridian, lon_0, and the most southerly bounding parallel. Initializing computations for both forward and inverse are as follows. For n=1, 2, compute $$\begin{array}{ccc} \phi_n \neq 0 & \phi_n = 0 \\ \hline x_n = & R_n \sin F_n & \lambda_1 \\ y_1 = & R_1 (1 - \cos F_1) & 0 \\ T_2 = & R_2 (1 - \cos F_2) & 0 \end{array}$$ where $$R_n = \cot \phi_n / (1 - e^2 \sin^2 \phi_n)^{1/2}$$ $$F_n = \lambda_1 \sin \phi_n$$ Then compute $$y_2 = \{ [M(\phi_2) - M(\phi_1)]^2 - (x_2 - x_1)^2 \}^{1/2} + y_1$$ $$C_2 = y_2 - T_2$$ $$D = M(\phi_2) - M(\phi_1)$$ $$P = [M(\phi_2)y_1 - M(\phi_1)y_2]/D$$ $$Q = (y_2 - y_1)/D$$ $$P' = [M(\phi_2)x_1 - M(\phi_1)x_2]/D$$ $$Q' = (x_2 - x_1)/D$$ ### Forward: Compute: this is incomplete!!! If $\phi = 0$, then $$x = \lambda$$ $$y = 0$$ Otherwise, compute $$x_a = P' + Q'M(\phi)$$ $y_a = P + QM(\phi)$ $R = \cot \phi/(1 - e^2 \sin^2 \phi)^{1/2}$ $C = y_a - R \pm (R^2 - x_a^2)^{1/2}$ where \pm takes the same sign as ϕ . Next, compute $$\begin{aligned} \phi_2 \neq 0 & \phi_2 = 0 \\ x_b = & R_2 \sin(\lambda \sin \phi_2) & \lambda \\ y_b = & C_2 + R_2 [1 - \cos(\lambda \sin \phi_2)] & C_2 \end{aligned}$$ and $$\begin{array}{ccc} & \phi_1 \neq 0 & \phi_1 = 0 \\ \hline x_c = & R_1 \sin(\lambda \sin \phi_1) & \lambda \\ y_c = & R_1 [1 - \cos(\lambda \sin \phi_1)] & 0 \end{array}$$ Finally, $$D = (x_b - x_c)/(y_b - y_c)$$ $$B = x_c + D(C + R - y_c)$$ $$x = \{B \mp D[R^2(1 + D^2) - B^2]^{1/2}\}/(1 + D^2)$$ $$y = C + R \mp (R^2 - x^2)^{1/2}$$ where \mp takes sign opposite of ϕ . ### Inverse: Using initial estimates of $$\phi = \phi_2$$ $$\lambda = x/\cos\phi$$ compute (x_t, y_t) obtained from (x, y) determined by the forward equations. Determine adjusted (ϕ, λ) from: $$\phi = \left[(\phi - \phi_1)(y - y_c)/(y_t - y_c) \right] + \phi_1$$ $$\lambda = \lambda x/x_t$$ Using new estimates, repeat process until change in each axis reaches tolerance. ### 6.0.5 Rectangular Polyconic. If $\phi_{ts} = 0$, then $$A = \lambda/2$$ otherwise $$A = \tan[(\lambda \sin \phi)/2] \sin \phi_{ts}$$. If $\phi = 0$, then $$x = 2A$$ $$y = -\phi_0.$$ otherwise $$\rho = \cot \phi$$ $$\theta = 2 \tan^{-1}(A \sin \phi)$$ $$x = \rho \sin \theta$$ $$y = \phi - \phi_0 + \rho(1 - \cos \theta).$$ ### 6.0.6 Modified Polyconic. For $\phi = 0$ $$x = 2S_n f(\lambda)$$ $$y = 0$$ otherwise $$x = \frac{2S_n f(\lambda) V^{S_m/S_n}}{1 + [f(\lambda)\sin\phi V^{S_m/S_n-1}]^2}$$ $$y = S_m M(\phi) + x f(\lambda)\sin\phi V^{S_m/S_n-1}$$ where $$V = \cos \phi / (1 - e^2 \sin^2 \phi)^{1/2}$$ When $\phi_0 = 0$, then $$f(\lambda) = m_0 \lambda / (2S_n)$$ otherwise $$f(\lambda) = \frac{\tan[(n_0 \sin \phi_0 \lambda)/(2S_n)]}{\sin \phi_0 V_0^{S_m/S_n - 1}}$$ In the case of $\phi_0 = 0$, typically $S_m = S_n = n_0$ where n_0 is the scale factor along the equator. Where $\phi_0 \neq 0$, K also needs to be specified. ### 6.0.7 Ginzburg Polyconics. These polyconics are based upon polynomials in ϕ defining the cartesian coordinates at the central meridian (x_m, y_m) and at the $\lambda = 180^{\circ}$ meridian (x_l, y_l) : $$x_{m} = 0$$ $$y_{m} = \sum_{n=1}^{\infty} c_{2n-1} \phi^{2n-1}$$ $$x_{l} = \sum_{n=0}^{\infty} a_{2n} \phi^{2n}$$ $$y_{l} = \sum_{n=1}^{\infty} b_{2n-1} \phi^{2n-1}$$ where the coefficents are: To determine the radius of the polyconic arc, the radius of a circle circumscribing the triangle formed by the $\lambda = \pm 180^{\circ}$ points and the central merdian: $$\rho = (x_l^2 + y_s^2)/(2x_l y_s)$$ where $y_s = |y_l - y_m|$ and where the sign of ρ is taken from ϕ . The cartesian coordinates are determined by: $$x = \rho \sin \theta \lambda$$ $$y = \rho \cos \theta \lambda + y_m$$ where $\theta = \tan^{-1}(x/(\rho - y))/\pi$. ### 6.0.8 Křovák Oblique Confomal Conic Projection Projection of geographic coordinates by the oblique conformal conic projection is three step process. First, conversion of the ellipsoid coordinates (ϕ, λ) to coordinates on a conformal sphere (ϕ_c, λ_c) which is followed by translation of the spherical coordinates (ϕ', λ') . Finally, these coordinates are projected to planar coordinates with the tangential form of the conformal conic projection. The following equations are presented in their most general form and include options that may be disregarded in the final application. ### Forward projection In the following conversion from ellipsoid to conformal sphere coordinates the values of the projection origin on the ellipsoid, ϕ_0 - λ_0 , must be provided. R_c is the radius of the sphere computed as the geometric mean of the meridinal and parallel ellipsoid radii. $$\phi_c = 2 \arctan \left[K \tan^C (\pi/4 + \phi/2) \left(\frac{1 - e \sin \phi}{1 + e \sin \phi} \right)^{Ce/2} \right] - \pi/2$$ (6.18) $$\lambda_c = C(\lambda - \lambda_0) \tag{6.19}$$ $$R_c = a \frac{\sqrt{1 - e^2}}{1 - e^2 \sin^2 \phi_0}$$ (6.19) $$C = \sqrt{1 + \frac{e^2 \cos^4 \phi_0}{1 - e^2}} \tag{6.21}$$ $$\chi = \arcsin\left(\frac{\sin\phi_0}{C}\right) \tag{6.22}$$ $$K = \tan(\chi/2 + \pi/4) / \left[\tan^{C}(\phi_{0}/2 + \pi/4) \left(\frac{1 - e \sin \phi_{0}}{1 + e \sin \phi_{0}} \right)^{Ce/2} \right]$$ (6.23) The following is general spherical translation but in this application only the shift of the latitude of the pole, α , is used. Angles β and λ_{c0} are ignored (set to 0). $$\phi' = \arcsin(\sin\alpha\sin\phi_c - \cos\alpha\cos\phi_c\cos(\lambda_c - \lambda_{c0})) \tag{6.24}$$ $$\lambda' = \arcsin(\cos\phi_c \sin(\lambda_c - \lambda_{c0})/\cos\phi') + \beta \tag{6.25}$$ $$\alpha = \pi/2 - \phi_t \tag{6.26}$$ where ϕ_t is the latitude of the new sphere on the old sphere. The translated spherical coordinates are now projected to the tangent cone by the general spherical conformal conic projection: $$n = \sin \phi_1 \tag{6.27}$$ $$F = \cos \phi_1 \tan^n(\pi/4 + \phi_1/2)/n \tag{6.28}$$ $$\rho = k_0 R_c F / \tan^n(\pi/4 + \phi'/2) \tag{6.29}$$ $$\rho_0 = k_0 R_c F / \tan^n(\pi/4 + \phi_1/2) \tag{6.30}$$ $$\theta = n(\lambda' - \lambda_0') \tag{6.31}$$ $$x = \rho \sin \theta \tag{6.32}$$ $$y = \rho_0 - \rho \cos \theta \tag{6.33}$$ ### Inverse projection For the inverse case, coordinates on the conformal sphere are first found from: $$\phi' = 2 \arctan \left(\frac{k_0 R_c F}{\rho}\right)^{1/n} - \pi/2 \tag{6.34}$$ $$\lambda' = \theta/n + \lambda_{c0} \tag{6.35}$$ $$\lambda' = \theta/n + \lambda_{c0}$$ $$\rho = \pm \sqrt{x^2 + (\rho_0 - y)^2}, \text{ taking sign of } n$$ (6.35) $$(6.36)$$ $$\theta = \arctan\left(\frac{x}{\rho_0 - y}\right) \tag{6.37}$$ To revert these coordinates to the unshifted spherical coordinates: $$\phi_c = \arcsin(\sin\alpha\sin\phi' + \cos\alpha\cos\phi'\cos(\lambda' - \beta)) \tag{6.38}$$ $$\lambda_c = \arcsin(\cos\phi'\sin(\lambda'-\beta)/\cos\phi_c) + \lambda_{c0}$$ (6.39) At this point the ellipsoid coordinates are obtained from $$\lambda = \lambda_c / C + \lambda_0 \tag{6.40}$$ $$\phi_i = 2 \arctan \left[\frac{\tan^{1/C} (\phi'/2 + \pi/4)}{K^{1/C} \left(\frac{1 - e \sin \phi_{i-1}}{1 + e \sin \phi_{i-1}} \right)^{e/2}} \right] - \pi/2$$ (6.41) with the initial value of $\phi_{i-1} = \phi_c$ and ϕ_{i-1} iteratively replaced by ϕ_i until $|\phi_i - \phi_{i-1}|$ is less than an acceptable error value. ### The Křovák Projection Grid The following script defines the execution of the program proj to compute coordinates for the S-JTSK grid system covering the states of the Czech Republic and Slovak Republic. The central (or origin) longitude is specified as being 42°30′ east of the a point off the isle of Ferro (Hierro) in the Canary Islands. The Ferro point is at $17^{\circ}39'59.7354''W$ but the value is often rounded to $17^{\circ}40'W$ for topographic work. The latitude of origin on the ellipsoid is 49°30′. The latitude of the translated pole on the original conformal sphere is 56°42′42.69689" and the latitude of the cone's point of tangency on the translated sphere is 78°30′. ``` #<S-JTSK> Krovak Coordinate System proj +proj=kocc +ellps=bessel +czech +lon_0=42d30 +lat_0=49d30 +lat_t=59d42'42.69689 +lat_1=78d30 +k_0=.9999 ``` The natural math conversion puts the coordinates of the area in the -x, -yquadrant. The S-JTSK projection, however, uses positive y to the left of the longitude of origin and positive x south of the cone's polar point near Helsinki. The option +czech converts to S-JTSK x, y output. #### Lambert Conformal Conic Alternative Projection 6.0.9 This tangential conic projection is a variant of the Lambert
Conformal Conic that was employed by the French and several north African and near eastern countries. The unique problem was that the projection was computed with a severely truncated series which compromised its conformality as well as creating confusion. ### Forward projection The following are the equations to determine the planar coordinates from geographic coordinates. $$x = r\sin\theta \tag{6.42}$$ $$y = r_0 - r\cos\theta \tag{6.43}$$ $$\theta = l\lambda \tag{6.44}$$ $$l = \sin \phi_0 \tag{6.45}$$ $$r = r_0 \mp \Delta r \tag{6.46}$$ $$\Delta r = F(S) = S + \frac{S^3}{6R_0N_0} \left\{ \pm \frac{S^4(5R_0 - 4N_0)\tan\phi_0}{24R_0^2N_0^2} + \right.$$ $$\frac{S^5(5+3\tan^2\phi_0)}{120R_0N_0^3} \pm \frac{S^6(7+4\tan^2\phi_0)\tan\phi_0}{240R_0N_0^4}$$ (6.47) $$S = M(\phi) - M(\phi_0) \tag{6.48}$$ $$r_0 = N_0 / \tan \phi_0 \tag{6.49}$$ $$N_0 = a/\sqrt{1 - e^2 \sin^2 \phi_0} (6.50)$$ $$R_0 = \frac{a(1-e^2)}{(1-e^2\sin^2\phi_0)^{3/2}} \tag{6.51}$$ where $M(\phi)$ is the meridinal arc distance from the equator to latitude ϕ . In the case of this "nearly conformal" projection, only the first two terms of (6.47) are evaluated. Even the remaining series coefficients (inside curly braces) are an approximation where the higher order terms were simplified by assuming $R_0 = N_0$. ### Inverse projection The geographic coordinates are obtained from the planar cartesian by: $$\theta = \arctan\left(\frac{x}{r_0 - y}\right) \tag{6.52}$$ $$\Delta r = y - x \tan\left(\frac{\theta}{2}\right) \tag{6.53}$$ $$\lambda = \theta / \sin \phi_0 \tag{6.54}$$ The value of S can be obtained by applying Newton-Raphson's method to (6.47): $$S_{i+1} = S_i - \frac{F(S_i) - \Delta r}{F'(S_i)} \tag{6.55}$$ where the initial value of $S_i = \Delta r$ and iteration is continued until specified tolerance is met. Finally, latitude is obtained from the inverse meridinal arc routine: $$\phi = M^{-1}(S + M(\phi_0)); \tag{6.56}$$ ### PROJ.4 usage Projection selection is +proj=lcca where only +lat_0= is used to specify point of cone tangency and mathematical origin (along with +lon_0). For a secant cone, use the scale factor option +k_0=. For an accurate, complete Lambert Conformal Conic use +proj=lcc. ### 6.0.10 Hall Eucyclic. +proj=hall [+K=] or [+beta=] Fig. 6.1 Ref. [16] Without specifying options K assumes the value of 1. For computing the Maurer SNo. 73 projection, set beta=45d. In all cases compute $$\sin \beta = \frac{1}{1+K} \tag{6.57}$$ $$A = 2\sqrt{\frac{\pi}{\pi + 4\beta(1+K)}}\tag{6.58}$$ $$\rho_0 = \frac{A}{2} \left(1 + K + \sqrt{K(2+K)} \right) \tag{6.59}$$ When $|\phi| \neq \pi/2$ use Newton-Raphson iteration to determine θ from $$P(\theta) = \theta - K^{2}\beta - (1+K)\sin\theta + (1+(1+K)^{2} - 2(1+K)\cos\theta)\left(\beta + \arctan\frac{\sin\theta}{1+K-\cos\theta}\right) - \frac{1}{2}(1-\sin\phi)[\pi + 4\beta(1+K)]$$ (6.60) $$P'(\theta) = 2(1+K)\sin\theta \left(\beta + \arctan\frac{\sin\theta}{1+K-\cos\theta}\right)$$ (6.61) and then $$\rho = A\sqrt{1 + (1+K)^2 - 2(1+K)\cos\theta} \tag{6.62}$$ $$\beta_1 = \arctan \frac{\sin \theta}{1 + K - \cos \theta} \tag{6.63}$$ Otherwise $\beta_1 = 0$ and $$\rho = \begin{cases} AK & \text{if } \phi = \pi/2\\ A(K+2) & \text{if } \phi = -\pi/2 \end{cases}$$ $$(6.64)$$ Finally $$\omega = \lambda \frac{(\beta_1 + \beta)}{\pi} \tag{6.65}$$ $$x = \rho \sin \omega \tag{6.66}$$ $$y = \rho_0 - \rho \cos \omega \tag{6.67}$$ where ρ_0 is determined from ϕ_0 . Figure 6.1: A–Hall Eucyclic and B–Maurer SNo. 73 (+proj=hall +K=0) ## Chapter 7 # **Azimuthal Projections** ### 7.1 Perspective ### 7.1.1 Perspective Azimuthal Projections. The term perspective is applied to several of the azimuthal projections as well as a few conic and cylindrical projections. Figure 7.1 shows the geometry of the perspective projection where a ray originating at the "perspective" point **P** passes though the object to be plotted at **L** to the plane of the map at **L**' at a distance ρ from the point of tangency of the plane with the sphere. From the known conditions, ψ and h the the distance ρ is determined by the general expression $$\rho = \frac{(1+h)\sin\psi}{h+\cos\psi} \tag{7.1}$$ From this equation three of the common perspective azimuthal projections are simplified special cases of h: $$\rho = \begin{cases} \tan \psi & h = 0 \text{ Gnomonic} \\ \frac{2 \sin \psi}{1 + \cos \psi} = 2 \tan(\psi/2) & h = 1 \text{ Stereographic} \\ \sin \psi & h = \infty \text{ Orthographic} \end{cases}$$ (7.2) The angle ψ' is the limit of ψ for the visible part of the projection and is defined by: $$\psi' = \begin{cases} \arccos(-1/h) & |h| > 1\\ \pi/2 + \arcsin h & |h| \le 1 \end{cases}$$ (7.3) For the case where $|h| \leq 1$ then $\rho = \infty$ when $\psi = \psi'$. For the case where \mathbf{TS} is the polar axis the angle ψ becomes the colatitude and equation $\ref{eq:polary}$ becomes $$\rho = \begin{cases} \cot \phi & \text{Gnomonic} \\ 2 \tan(\pi/4 - \phi/2) & \text{Sterographic} \\ \cos \phi & \text{Orthographic} \end{cases}$$ (7.4) The Cartesian coordinates polar aspect $$x = \rho \sin \lambda \qquad \qquad y = \mp \rho \cos \lambda \tag{7.5}$$ Figure 7.1: Geometry of perspective projections where $\lambda = 0$ follows the negative y axis for the North polar aspect and the positive y axis for the South polar aspect. For the oblique aspect ψ or the angular distance of **L** from the center of the projection $(\phi_0, \lambda = 0)$ to the projected point is the geodesic or "Great Circle" distance. Snyder in both [14] and [17] has used: $$\cos \psi = \sin \phi_0 \sin \phi + \cos \phi_0 \cos \phi \cos \lambda \tag{7.6}$$ However, for better precision near the origin ([14, p. 30]): $$\cos(\psi/2) = \left[\sin^2\left(\frac{\phi - \phi_0}{2}\right) + \cos\phi_0\cos\phi\sin^2\frac{\lambda}{2}\right]^{1/2} \tag{7.7}$$ The azimuth from the projection center to the point is: $$\sin \alpha = \sin \lambda \cos \phi / \sin \psi \text{ or} \tag{7.8}$$ $$\cos \alpha = (\cos \phi_1 \sin \phi - \sin \phi_1 \cos \phi \cos \lambda) / \sin \psi \tag{7.9}$$ The oblique coordinates x, y are $$x = K\cos\phi\sin\lambda\tag{7.10}$$ $$y = K(\cos\phi_1\sin\phi - \sin\phi_1\cos\phi\cos\lambda) \tag{7.11}$$ where $$K = \begin{cases} 1/(\sin\phi_1\sin\phi + \cos\phi_1\cos\phi\cos\lambda) & \text{Gnomonic} \\ 2/(1+\sin\phi_1\sin\phi + \cos\phi_1\cos\phi\cos\lambda) & \text{Stereographic} \\ 1 & \text{Orthographic} \end{cases}$$ (7.12) Further simplifications for the equitorial case are obvious. For the inverse projection the first operation is to determine $$\rho = \sqrt{x^2 + y_2} \tag{7.13}$$ If $\rho = 0$ then $\lambda = 0$ and $\phi = \phi_0$. Otherwise $$\psi = \begin{cases} \arctan \rho & \text{Gnomonic} \\ 2 \arctan \frac{\rho}{2k_0} & \text{Stereographic} \\ \arcsin \rho & \text{Orthographic} \end{cases}$$ (7.14) Geographic coordinates are now obtained from $$\phi = \arcsin\left[\cos\psi\sin\phi_0 + (y\sin\psi\cos\phi_0)/\rho\right] \tag{7.15}$$ $$\lambda = \operatorname{atan2}(x\sin\psi, \rho\cos\phi_0\cos\psi - y\sin\phi_0\sin\psi) \tag{7.16}$$ If $|\phi_0| = 90^\circ$ then $$\lambda = \operatorname{atan2}(x, \mp y) \tag{7.17}$$ where y takes the opposite sign of ϕ_0 . #### 7.1.2Stereographic Projection. +proj=stere +proj=sterea +proj=ups +proj=rouss The conformal Stereographic projection is useful for both mapping of continental size regions as well as grid systems with a near circular perimeter. Although spherical form, useful for small scale projections has only one set of equations, three different forms of the ellipsoid Oblique Stereographic projection are available. Two of them are based upon conformal coversion of the geographic coordinates on the ellipsoid to coodinates on the sphere while the third uses a polynomial approximation. For the polar aspect, only one ellipsoidal method is used in the +proj=stere version and the specialized use of the polar projection in the Universal Polar Stereographic system is available with +proj=ups. ### Spherical Stereographic The forward spherical oblique equations $(0 \le |\phi_0| \le \pi/2)$ are: $$x = 2k\cos\phi\sin\lambda \tag{7.18}$$ $$y = 2k(\cos\phi_0\sin\phi - \sin\phi_0\cos\phi\cos\lambda) \tag{7.19}$$ where $$k = k_0/(1 + \sin\phi_0\sin\phi + \cos\phi_0\cos\phi\cos\lambda) \tag{7.20}$$ For the equitorial aspect, $\phi_0 = 0$, $$y = k \sin \phi \qquad (7.21)$$ $$k = 2k_0/(1 + \cos \phi \cos \lambda) \qquad (7.22)$$ $$k = 2k_0/(1 + \cos\phi\cos\lambda) \tag{7.22}$$ and where x is obtained from equation 7.18. For the polar aspect, $\phi_0 \pm \pi/2$, the equations simplify to: $$t = \tan\left(\frac{\pi}{4} - f\frac{\phi}{2}\right) \tag{7.23}$$ $$x = 2k_0 t \sin \lambda \tag{7.24}$$ $$y = 2fk_0t\cos\lambda \tag{7.25}$$ where $f \mp 1$ is assigned the opposite sign of ϕ_0 . To determine the inverse spherical projection determine: $$\rho = (x^2 + y^2)^{1/2} (7.26)$$ $$c = 2\arctan\left(\frac{\rho}{2k_0}\right) \tag{7.27}$$ If $\rho = 0$ then $\phi = \phi_0$ and $\lambda = 0$ otherwise for the general oblique case: $$\phi = \arcsin\left(\cos c \sin \phi_0 + \frac{y \sin c \cos \phi_0}{\rho}\right) \tag{7.28}$$ $$\lambda = \arctan 2 \left(\frac{x \sin c}{\rho \cos \phi_0 \cos c - y \sin \phi_0 \sin c} \right)$$ (7.29) or for the polar case $$\lambda = \arctan 2\left(\frac{x}{fy}\right) \tag{7.30}$$ where $f \pm 1$ with the sign of ϕ_0 . For the equitorial case: $$\lambda = \arctan 2 \left(\frac{x \sin c}{\rho \cos \phi_0 \cos c} \right) \tag{7.31}$$ In the case of +proj=stere the specification of the latitude origin (+lat_0= ϕ_0) determines the oblique or polar mode of usage. Scaling may be performed by using $k_0=k_0$ in all cases or latitude of true scale (+lat_ts= ϕ_{ts}) for the polar case. Note that the central meridian for the southern polar case runs from the projection origin to the north. The Universal Polar Stereographic is much like the Universal Transverse Mercator system where scaling and false
easting/northings are all predefined and an ellipsoid must be specified. ### Oblique Stereographic using intermediate sphere. Using the spherical stereographic projection: $$x = 2kR_c \cos \chi \sin(\lambda_c) \tag{7.32}$$ $$y = 2kR_c[\cos\chi_0\sin\chi - \sin\chi_0\cos\chi\cos(\lambda_c)]$$ (7.33) where $$k = k_0/[1 + \sin \gamma_0 \sin \gamma + \cos \gamma_0 \cos \gamma \cos(\lambda_c)]$$ (7.34) The difference between stere and sterea is how the conformal latitudes χ and χ_0 and longitude λ_c and radius R_c are determined. For determining the χ , χ_0 and R_c values the function series pj_sgauss and pj_gauss are used for the respective stere and sterea entries (see section 3.3). For the inverse case: $$\rho = (x^2 + y^2)^{1/2} \tag{7.35}$$ $$c = 2\arctan\left(\frac{\rho}{2R_c k)0}\right) \tag{7.36}$$ $$\chi = \left(\cos c \sin \chi_0 + \frac{y \sin c \cos \chi_0}{\rho}\right) \tag{7.37}$$ $$\chi = \left(\cos c \sin \chi_0 + \frac{y \sin c \cos \chi_0}{\rho}\right) \qquad (7.37)$$ $$\lambda = \arctan\left(\frac{x \sin c}{\rho \cos \chi_0 \cos c - y \sin \chi_0 \sin c}\right) \qquad (7.38)$$ Where $\rho = 0$ then $\chi = \chi_1$ and $\lambda_c = 0$. For the geographic coordinates execute the inverse confomal functions pj_sgauss_inv or pj_gauss_inv. ### Oblique Roussilhe Stereographic. Another oblique version of the stereographic projection for the ellipsoid presented by Roussilhe [12]. Given: $$s = \int_{\phi_0}^{\phi} M d\phi \tag{7.39}$$ $$\alpha = \lambda N \cos \phi \tag{7.40}$$ where M and N are the respective ellipsoid meridional radius and radius normal to the meridian: $$M = (1 - e^2)(1 - e^2 \sin^2 \phi)^{-3/2}$$ $$N = (1 - e^2 \sin^2 \phi)^{-1/2}$$ then the Cartesian coordinates are computed by: $$x = \alpha + A_1 \alpha s^2 - A_2 \alpha^3 - A_3 \alpha^3 s + A_4 \alpha s^4 - A_5 \alpha^3 s^2 - A_6 \alpha^5$$ $$y = s + B_1 \alpha^2 + B_2 s^3 + B_3 \alpha^2 s + B_4 \alpha^4 + B_5 \alpha^2 s^2 - B_6 \alpha^4 s + B_7 \alpha^2 s^3 + B_8 s^5$$ $$(7.42)$$ and where: $$\begin{split} t_0 &= \tan \phi_0 \\ A_1 &= \frac{1}{4M_0N_0} \qquad \qquad B_1 = \frac{t_0}{2N_0} \\ A_2 &= \frac{2t_0^2 - 1 - 2e^2 \sin^2 \phi_0}{12M_0N_0} \qquad B_2 = \frac{1}{12M_0N_0} \\ A_3 &= \frac{t_0(1 + 4t_0^2)}{12M_0N_0^2} \qquad \qquad B_3 = \frac{1 + 2t_0^2 - 2e^2 \sin^2 \phi}{4M_0N_0} \\ A_4 &= \frac{1}{24M_0^2N_0^2} \qquad \qquad B_4 = \frac{t_0(2 - t_0^2)}{24M_0N_0^2} \\ A_5 &= \frac{12t_0^4 + 11t_0^2 - 1}{24M_0^2N_0^2} \qquad \qquad B_5 = \frac{t_0(5 + 4t_0^2)}{8M_0N_0^2} \\ A_6 &= \frac{-2t_0^4 + 11t_0^2 - 2}{240M_0^2N_0^2} \qquad \qquad B_6 = \frac{6t_0^4 - 5t_0^2 - 2}{48M_0^2N_0^2} \\ B_7 &= \frac{12t_0^4 + 19t_0^2 + 5}{24M_0^2N_0^2} \\ B_8 &= \frac{1}{120M_0^2N_0^2} \end{split}$$ The distance s is obtained from the meridional distance function pj_mdist (3.2) by initializing s_0 with the meridional distance at ϕ_0 and subtracting it from the meridional distance for each value of ϕ . For the inverse projection first determine: $$\alpha = x - C_1 x y^2 + C_2 x^3 + C_3 x^3 y - C_4 x^5 + C_5 x^3 y^2 + C_6 x y^4 - C_7 x^5 y - C_8 x^3 y^3$$ $$s = y - D_1 x^2 - D_2 Y^3 - D_3 x^x y + D_4 x^4 - D_5 x^2 y^2 + D_6 x^4 y - D_7 x^2 y^3 + D_8 y^5 - D_9 x^6 + D_{10} x^4 y^2 + D_{11} x^2 y^4$$ $$(7.44)$$ where $$C_{1} = \frac{1}{4M_{0}N_{0}} \qquad D_{1} = \frac{t_{0}}{2N_{0}}$$ $$C_{2} = \frac{2t_{0}^{2} - 1 - 2e^{2} \sin^{2} \phi_{0}}{12M_{0}N_{0}} \qquad D_{2} = \frac{1}{12M_{0}N_{0}}$$ $$C_{3} = \frac{t_{0}(1 + t_{0}^{2})}{3M_{0}N_{0}^{2}} \qquad D_{3} = \frac{1 + 2t_{0}^{2} - 2e^{2} \sin^{2} \phi_{0}}{4M_{0}N_{0}}$$ $$C_{4} = \frac{22t_{0}^{4} + 34t_{0}^{2} - 3}{240M_{0}^{2}N_{0}^{2}} \qquad D_{4} = \frac{t_{0}(1 + t_{0}^{2})}{8M_{0}N_{0}^{2}}$$ $$C_{5} = \frac{12t_{0}^{4} + 13t_{0}^{2} + 4}{24M_{0}^{2}N_{0}^{2}} \qquad D_{5} = \frac{t_{0}(1 + 2t_{0}^{2})}{4M_{0}N_{0}^{2}}$$ $$C_{6} = \frac{1}{16M_{0}^{2}N_{0}^{2}} \qquad D_{6} = \frac{6t_{0}^{4} + 6t_{0}^{2} + 1}{16M_{0}^{2}N_{0}^{2}}$$ $$C_{7} = \frac{t_{0}(16t_{0}^{4} + 33t_{0}^{2} + 11)}{48M_{0}^{2}N_{0}^{3}} \qquad D_{7} = \frac{t_{0}^{2}(3 + 4t_{0}^{2})}{8M_{0}^{2}N_{0}^{2}}$$ $$C_{8} = \frac{t_{0}(4t_{0}^{2} + 1)}{36M_{0}^{2}N_{0}^{3}} \qquad D_{8} = \frac{1}{80M_{0}^{2}N_{0}^{2}}$$ $$D_{9} = \frac{t_{0}(-26t_{0}^{4} + 178t_{0}^{2} - 21)}{720M_{0}^{2}N_{0}^{2}}$$ $$D_{10} = \frac{t_{0}(48t_{0}^{4} + 86t_{0}^{+}29)}{96M_{0}^{2}N_{0}^{3}}$$ $$D_{11} = \frac{t_{0}(44t_{0}^{2} + 37)}{96M_{0}^{2}N_{0}^{3}}$$ Determine the latitude from the inverse meridional function pj_inv_mdist for $s+s_0$ and determine longitude from $\lambda = \alpha(1-e^2\sin^2\phi)^{1/2}/\cos\phi$ ### 7.2 Modified ### 7.2.1 Hammer and Eckert-Greifendorff. +proj=hammer [+W=] Fig. ?? $$W = \begin{cases} 0.5 & \text{Hammer (+W when not given)} \\ 0.25 & \text{W=0.25 for Eckert-Greifendorff (fig. ??)} \end{cases}$$ (7.45) $$D = \left(\frac{2}{1 + \cos\phi\cos(W\lambda)}\right)^{\frac{1}{2}} \tag{7.46}$$ $$x = \frac{D}{W}\cos\phi\sin(W\lambda) \tag{7.47}$$ $$y = D\sin\phi \tag{7.48}$$ ### 7.2.2 Aitoff, Winkel Tripel and with Bartholomew option. +proj=aitoff +proj=wintri [lat_1=] The formulas for Aitoff: $$\delta = \arccos\left(\cos\phi\cos\frac{\lambda}{2}\right) \tag{7.49}$$ 7.2. MODIFIED 99 If $\delta = 0$, then x = y = 0 else $$\cos \alpha = \frac{\sin \phi}{\sin \delta} \tag{7.50}$$ $$x = \pm \delta \sin \alpha \tag{7.51}$$ $$y = \delta \cos \alpha \tag{7.52}$$ where x takes the sign of λ . For Winkel Tripel the values for (x_1, y_1) are determined from above and the values (x_2, y_2) are determined from the Equirectangular projection repeated here: $$\phi_1 = \begin{cases} 50.467^{\circ} & \text{Winkel Tripel (+lat_1= not defined)} \\ 40^{\circ} & \text{+lat_1=40 for Bartholomew (fig. 7.2)} \end{cases}$$ (7.53) $$x_2 = \lambda \cos \phi_1 \tag{7.54}$$ $$y_2 = \phi \tag{7.55}$$ Resultant value is: $$x = \frac{x_1 + x_2}{2} \tag{7.56}$$ $$y = \frac{y_1 + y_2}{2} \tag{7.57}$$ ### Wagner VII (Hammer-Wagner) and Wagner VIII. | Name | +proj= | Fig. | Ref. | |-------------|--------|------|------| | Wagner VII | wag7 | ?? | | | Wagner VIII | wag8 | ?? | | For n = 1/3, initialization for Wagner VII: $$m_2 = 1 \tag{7.58}$$ $$m_1 = \sin 65^{\circ} \tag{7.59}$$ $$k = 2\sqrt{\sin 32.5^{\circ}} \tag{7.60}$$ $$C_x = \frac{2k}{\sqrt{nm_1}} \tag{7.61}$$ $$C_y = \frac{2}{k\sqrt{nm_1}}\tag{7.62}$$ and for Wagner VIII: $$m_2 = \frac{\arccos(1.2\cos 60^\circ)}{60^\circ} \tag{7.63}$$ $$m_2 = \frac{\arccos(1.2\cos 60^\circ)}{60^\circ}$$ $$m_1 = \frac{\sin 65^\circ}{\sin(m_2 90^\circ)}$$ (7.63) $$k = \sqrt{\frac{2\sin 32.5^{\circ}}{\sin 30^{\circ}}} \tag{7.65}$$ $$C_x = \frac{2k}{\sqrt{m_1 m_2 n}} \tag{7.66}$$ $$C_y = \frac{2}{k\sqrt{m_1 m_2 n}} (7.67)$$ Figure 7.2: Modified Azimuthals. A-Aitoff, B-Winkel Tripel, C-Hammer, D-Eckert-Greifendorff (+proj=hammer +W=0.25), E-Wagner VII, F-Wagner VIII, G-Wagner IX and G-Bartholomew (+proj=wintri +lat_1=40). Common computations [22, p. 205–207]: $$\sin \psi = m_1 \sin(m_2 \phi) \tag{7.68}$$ $$\cos \delta = \cos \psi \cos \frac{\lambda}{3} \tag{7.69}$$ If $\delta = 0$ then x = y = 0 else $$\cos \alpha = \frac{\sin \psi}{\sin \delta}$$ $$x = \pm C_x \sin \frac{\delta}{2} \sin \alpha$$ $$y = C_y \sin \frac{\delta}{2} \cos \alpha$$ $$(7.70)$$ $$(7.71)$$ $$x = \pm C_x \sin\frac{\delta}{2} \sin\alpha \tag{7.71}$$ $$y = C_y \sin \frac{\delta}{2} \cos \alpha \tag{7.72}$$ 7.2. MODIFIED 101 where x assumes the sign of λ . An alternate, more efficient method [17, p. 233] for the common computations are: $$S = m1 * \sin(m2 * \phi) \tag{7.73}$$ $$C_0 = \sqrt{1 - S^2} \tag{7.74}$$ $$C_1 = \left[\frac{2}{1 + C_0 \cos(\lambda/3)}\right]^{\frac{1}{2}} \tag{7.75}$$ $$x = \frac{C_x}{2}C_0C_1\sin(\lambda/3) \tag{7.76}$$ $$y = \frac{C_y}{2}SC_1 \tag{7.77}$$ ### 7.2.4 Wagner IX (Aitoff-Wagner). +proj=wag9 Fig. ?? $$n = \frac{5}{18} \tag{7.78}$$ $$m = \frac{7}{9} \tag{7.79}$$ $$k = \sqrt{\frac{14}{5}} \tag{7.80}$$ $$\psi = m\phi \tag{7.81}$$ $$\delta = \arccos[\cos(n\lambda)\cos\psi] \tag{7.82}$$ If $\delta = 0$ then x = y = 0 else $$\cos \alpha = \frac{\sin \psi}{\sin \delta} \tag{7.83}$$ $$x = \pm \frac{k}{\sqrt{mn}} \delta \sin \alpha \tag{7.84}$$ $$y = \frac{1}{k\sqrt{mn}}\delta\cos\alpha\tag{7.85}$$ where x takes the sign of λ . ### 7.2.5 Gilbert Two World Perspective. gilbert [lat_1=] Fig. ?? Ref: [3] $$x = \cos \phi' \sin \lambda' \tag{7.86}$$ $$y = \cos \phi_1' \sin \phi' - \sin \phi_1' \cos \phi' \cos \lambda' \tag{7.87}$$ $$D = \sin \phi_1' \sin \phi' + \cos \phi_1' \cos \phi' \cos \lambda' \tag{7.88}$$ where $D \ge 0$ for points to be visible and $$\phi' = \arcsin\tan\left(\frac{\phi}{2}\right) \tag{7.89}$$ $$\lambda' = \frac{\lambda}{2} \tag{7.90}$$ The latitude ϕ_1 is the latitude of perspective azimuth for the oblique case which has a default value of 5°. ## Chapter 8 # Miscellaneous Projections This category is a collection of projections that often defy the process of classification. Some are termed "Globular" as the meridians at $\pm 90^{\circ}$ of the central meridian are circular and usually form the boundaries of a hemispherical plot. Others might be considered Pseudocylindricals and variants of conics but by tradition end up being classified as miscellaneous. Some projections seem like simply cartoons. #### **Spherical Forms** 8.1 #### Apian Globular II (Arago). 8.1.1 Ref. [15][p. 104] +proj=apian2 Early (1524) projection also credited to Arago (1835). Equations based upon description of "equidistant elliptical meridians and equidistant straight parallels." This projection is similar to Apian I within the hemisphere—see comparison figure 8.1 $$y = \phi x = \frac{2\lambda}{\pi} \sqrt{\left(\frac{\pi}{2}\right)^2 - \phi^2} (8.1)$$ #### Apian Globular I, Bacon and Ortelius Oval. 8.1.2 | Name | +proj= | figure | Ref. | |------------------|--------|--------|--------------| | Apian Globular I | apian1 | 8.2 | [17][p. 234] | | Bacon Globular | bacon | 8.2 | [17][p. 234] | | Ortelius Oval | ortel | 8.3 | [17][p. 235] |
$$y = \begin{cases} \phi & \text{Apian and Ortelius} \\ \frac{\pi}{2}\sin\phi & \text{Bacon} \end{cases}$$ (8.2) $$F = \begin{cases} \left(\frac{(\pi/2)^2}{|\lambda|} + \lambda\right)/2 \\ \pi/2 & \text{Ortelius when } |\lambda| > \pi/2 \end{cases}$$ $$x = \begin{cases} 0 & \text{if } \lambda = 0 \\ \pm \left(|\lambda| - F + (F^2 - y^2)^{\frac{1}{2}}\right) & \text{if } \lambda \neq 0 \end{cases}$$ $$(8.3)$$ $$x = \begin{cases} 0 & \text{if } \lambda = 0\\ \pm \left(|\lambda| - F + (F^2 - y^2)^{\frac{1}{2}} \right) & \text{if } \lambda \neq 0 \end{cases}$$ (8.4) where x takes the sign of λ . Figure 8.1: Apian Comparison Global plot of **A**–Apian I and **B**–Apian II., ### 8.1.3 Armadillo. +proj=arma Fig. 8.3 Ref. [17, p. 238] First determine $$\phi_s = -\arctan\left(\frac{\cos(\lambda/2)}{\tan 20^{\circ}}\right) \tag{8.5}$$ then if $\phi \geq \phi_s$ then $$x = (1 + \cos \phi) \sin \frac{\lambda}{2}$$ $$y = (1 + \sin 20^{\circ} - \cos 20^{\circ})/2 + \sin \phi \cos 20^{\circ}$$ $$- (1 + \cos \phi) \sin 20^{\circ} \cos(\lambda/2)$$ (8.6) (8.6) else point invisible. ### 8.1.4 August Epicycloidal. +proj=august Fig. 8.3 Ref. [17, p. 235] $$C_1 = \left(1 - \tan^2 \frac{\phi}{2}\right)^{\frac{1}{2}} \tag{8.8}$$ $$C = 1 + C_1 \cos \frac{\lambda}{2} \tag{8.9}$$ $$x_1 = \frac{C_1}{C} \sin \frac{\lambda}{2} \tag{8.10}$$ $$y_1 = \frac{\tan(\phi/2)}{C} \tag{8.11}$$ $$x = \frac{4}{3}x_1(3 + x_1^2 - 3y_1^2) \tag{8.12}$$ $$y = \frac{4}{3}y_1(3 + 3x_1^2 - y_1^2) \tag{8.13}$$ Figure 8.2: Globular Series ${\bf A}$ –Bacon Globular, ${\bf B}$ –Fournier Globular 1, ${\bf C}$ –Nicolosi Globular and ${\bf D}$ –Apian Globular I. Figure 8.3: General Miscellaneous **A**-August Epicycloidal, **B**-Eisenlohr, **C**-Ortelius Oval and **D**-Armadillo. #### 8.1.5Eisenlohr +proj=eisen Fig. 8.3 Ref. [17, p. 235] $$S_1 = \sin\frac{\lambda}{2} \tag{8.14}$$ $$C_1 = \cos\frac{\lambda}{2} \tag{8.15}$$ $$Q = \cos\frac{\phi}{2} \tag{8.16}$$ $$S_{1} = \sin \frac{\lambda}{2}$$ $$C_{1} = \cos \frac{\lambda}{2}$$ $$Q = \cos \frac{\phi}{2}$$ $$T = \frac{\sin(\phi/2)}{Q + (2\cos\phi)^{\frac{1}{2}}C_{1}}$$ (8.14) (8.15) (8.16) $$C = \left(\frac{2}{1+T^2}\right)^{\frac{1}{2}} \tag{8.18}$$ $$P = \sqrt{\frac{\cos\phi}{2}} \tag{8.19}$$ $$V = \left[\frac{Q + P(C_1 + S_1)}{Q) + P(C_1 - S_1)}\right]^{\frac{1}{2}}$$ (8.20) $$x = (3 + 8^{\frac{1}{2}})(-2\ln V + C(V - 1/V))$$ (8.21) $$y = (3 + 8^{\frac{1}{2}})(-2\arctan T + CT(V + 1/V))$$ (8.22) ### 8.1.6 Fournier Globular I. +proj=four1 Fig. 8.2 Ref. [17, p. 234] If $\lambda=0$ or $|\phi|=\pi/2$ then $$x = 0 (8.23)$$ else if $\phi = 0$ then $$x = \lambda (8.24)$$ else if $|\lambda| = \pi/2$ then $$x = \lambda \cos \phi \qquad \qquad y = \frac{\pi}{2} \sin \phi \qquad (8.25)$$ otherwise $$C = \frac{\pi^2}{4} \tag{8.26}$$ $$P = |\pi \sin \phi| \tag{8.27}$$ $$S = \frac{C - \phi^2}{P - 2|\phi|} \tag{8.28}$$ $$A = \frac{\lambda^2}{C} - 1 \tag{8.29}$$ $$y = \pm \left(\{ S^2 - A(C - PS - \lambda^2) \}^{\frac{1}{2}} - S \right) / A$$ (8.30) $$x = \pm \lambda \sqrt{1 - \frac{y^2}{C}} \tag{8.31}$$ where x and y take the respective signs of λ and ϕ . ### 8.1.7 Guyou and Adams Series | Name | +proj= | Figure | Ref. | |------------------------------|---------------|--------|------------------| | Guyou | guyou | 8.4 | [17, p. 235–236] | | Adams Hemisphere in a Square | adams_hemi | | | | Adams World in a Square I | $adams_wsI$ | | | | Adams World in a Square II | $adams_wsII$ | | | Several projections have common usage of the elliptical integral of the first kind and are collected under this section. For the **Guyou** projection: If $|\phi| = \pi/2$, then $$x = 0 \tag{8.32}$$ $$y = \pm 1.85407$$ taking the sign of ϕ (8.33) else where $|\lambda| \leq \pi/2$ $$\cos a = (\cos \phi \sin \lambda - \sin \phi) / \sqrt{2} \tag{8.34}$$ $$\cos b = (\cos \phi \sin \lambda + \sin \phi) / \sqrt{2} \tag{8.35}$$ $$S_m = \pm 1$$ takes sign of λ (8.36) $$S_n = \pm 1$$ takes sign of ϕ (8.37) For the Adams Hemisphere in a Square projection where $|\lambda| \leq \pi/2$: $$\cos a = \cos \phi \sin \lambda \tag{8.38}$$ $$b = \frac{\pi}{2} - \phi \tag{8.39}$$ $$S_m = \pm 1$$ takes sign of $\sin \phi + a$ (8.40) $$S_n = \pm 1$$ takes sign of $\sin \phi - a$ (8.41) For the Adams World in a Square I poles at centers of sides projection: $$\sin \phi' = \tan \frac{\phi}{2} \tag{8.42}$$ $$\cos a = \left(\cos \phi' \sin \frac{\lambda}{2} - \sin \phi'\right) / \sqrt{2} \tag{8.43}$$ $$\cos b = \left(\cos \phi' \sin \frac{\lambda}{2} + \sin \phi'\right) / \sqrt{2} \tag{8.44}$$ $$S_m = \pm 1$$ takes sign of λ (8.45) $$S_n = \pm 1$$ takes sign of ϕ (8.46) For the Adams World in a Square II poles at opposite vertexes projection: $$\sin \phi' = \tan \frac{\phi}{2} \tag{8.47}$$ $$\cos a = \cos \phi' \sin \frac{\lambda}{2} \tag{8.48}$$ $$\cos b = \sin \phi' \tag{8.49}$$ $$S_m = \pm 1$$ takes sign of $\sin \phi' + a$ (8.50) $$S_n = \pm 1$$ takes sign of $\sin \phi' - a$ (8.51) Finally compute: $$\sin m = \pm (1 + \cos a \cos b - \sin a \sin b)^{\frac{1}{2}}$$ where m takes the sign of S_m (8.52) $$\sin n = \pm (1 - \cos a \cos b - \sin a \sin b)^{\frac{1}{2}}$$ where n takes the sign of S_n (8.53) $$x = F(m, \sqrt{0.5}) \tag{8.54}$$ $$y = F(n, \sqrt{0.5}) \tag{8.55}$$ where $F(\phi, k)$ is the elliptic integral of the first kind. Because the factor k is moderately large and because it is constant and the function itself is well behaved, the use of a Chebyshev approximation series is warranted. $$F(\phi, \sqrt{0.5}) \approx \left[\sum_{i=0}^{N-1} c_i T_i(\phi)\right] - \frac{1}{2}c_0$$ (8.56) where $$T_0(\phi) = 1 \tag{8.57}$$ $$T_1(\phi) = \phi \tag{8.58}$$ $$T_2(\phi) = 2\phi^2 - 1 \tag{8.59}$$ $T_{n+1}(\phi) = 2\phi T_n(\phi) - T_{n-1} \quad n \ge 1$ (8.60) Normalizing the elliptic integral, $F(\phi,k)/\phi$ allows an even Chebyshev series to be determined with significantly fewer terms for a given precision. The follow list of even coefficients (stored in order) provide for an approximating function with a precision better than 1×10^{-7} which should be sufficient for spherical earth applications. $$\begin{array}{lll} c_0 = 2.19174570831038 & c_4 = 5.30394739921063e - 05 \\ c_1 = 0.0914203033408211 & c_5 = 3.12960480765314e - 05 \\ c_2 = -0.00575574836830288 & c_6 = 2.02692115653689e - 07 \\ c_3 = -0.0012804644680613 & c_7 = -8.58691003636495e - 07 \end{array}$$ These are evaluated using Clenshaw's recursion in the following manner: $$x=\phi \frac{2}{\pi}$$ scale argument range to ± 1 $$x=2x^2-1$$ compensate argument for even series $t_1=t_2=0$ For i = M - 1 while i > 0 do $$t = t_1$$ $t_1 = 2xt_1 - t_2 + c_i$ $t_2 = t$ $i = i - 1$; where M is the order of the coefficient array. Finally compute $$F(\phi, \sqrt{0..5}) = \phi \left(xt_1 - t_2 + \frac{1}{2}c_0 \right)$$ #### 8.1.8 Lagrange. +proj=lagrng +W= +lat_1= Fig. 8.5 Ref. [17, p.] The factor M is the ratio of the difference in longitude from the central meridian to the a circular meridian to 90°. Thus for M=1 the hemisphere is in a circle and for M=2 the world is in a circle. Factor ϕ_1 is the central latitude of the projection and forms a straight line parallel. If $|\phi| = \pi/2$ then $$x = 0 \tag{8.61}$$ $$y = \pm 2$$ where y takes the sign of ϕ . (8.62) otherwise $$A_1 = \left(\frac{1 + \sin \phi_1}{1 - \sin \phi_1}\right)^{\frac{1}{2W}} \tag{8.63}$$ $$A = \left(\frac{1 + \sin\phi}{1 - \sin\phi}\right)^{\frac{1}{2W}} \tag{8.64}$$ $$V = A_1 A \tag{8.65}$$ $$C = (V + 1/V)/2 + \cos\frac{\lambda}{W} \tag{8.66}$$ $$x = \frac{2}{C}\sin\frac{\lambda}{W} \tag{8.67}$$ $$y = (V - 1/V)/V (8.68)$$ Figure 8.4: Miscellaneous Square Series A--Guyou,~B--Adams World in a Square I, C--Adams Hemisphere in a Square and D--Adams World in a Square II. For normal Lagrange, W=2 and $\phi_=0$ which are default values when omitted. If W=1 and $\phi_1=0$ then equitorial Stereographic results. #### 8.1.9 Nicolosi Globular. +proj=nicol Fig. 8.2 Ref. [17, p. 234] If $\lambda=0$ or $|\phi|=\pi/2$ then $$x = 0 y = \phi (8.69)$$ else if $\phi = 0$ then $$x = \lambda y = 0 (8.70)$$ else if $|\lambda| = \pi/2$ then $$x = \lambda \cos \phi \qquad \qquad y = \frac{\pi}{2} \sin \phi \tag{8.71}$$ Figure 8.5: Lagrange Series **A**-Lagrange +W=1.43, **B**-+W=1 +lon_0=90W, **C**-default options, **D**-+lat_1=45N. else $$b = \frac{\pi}{2\lambda} = \frac{2\lambda}{\pi} \tag{8.72}$$ $$c = \frac{2\phi}{\pi} \tag{8.73}$$ $$b = \frac{\pi}{2\lambda} = \frac{2\lambda}{\pi}$$ $$c = \frac{2\phi}{\pi}$$ $$d = \frac{1 - c^2}{\sin \phi - c}$$ (8.72) $$(8.73)$$ $$k = \frac{b}{d}$$ $$k_r = 1/k$$ $$(8.75)$$ $$(8.76)$$ $$k_r = 1/k \tag{8.76}$$ $$M = \frac{k^2 \sin \phi + b/2}{1 + kr^2} \tag{8.77}$$ $$N = \frac{k_r^2 \sin \phi + d/2}{1 + k_r^2} \tag{8.78}$$ $$x = \frac{\pi}{2} \left(M \pm \left[M^2 + \frac{\cos^2 \phi}{1 + k^2} \right]^{\frac{1}{2}} \right) \quad \text{where } \pm \text{ takes the sign of } \lambda$$ (8.79) $$y = \frac{\pi}{2} \left(N \pm \left[N^2 - \frac{k_r^2 \sin^2 \phi + d \sin \phi - 1}{1 + k_r^2} \right]^{\frac{1}{2}} \right)$$ (8.80) where \pm takes the opposite sign of ϕ #### 8.1.10 Van der Grinten (I). +proj=vandg Fig. 8.6 Ref. [17, p. 237] $$B = \frac{2}{\pi} |\phi| \qquad C = (1 - B^2)^{\frac{1}{2}}$$ (8.81) If $\phi = 0$ then $$x = \lambda y = 0 (8.82)$$ else if $\lambda = 0$ then $$x = 0 y = \pm \frac{\pi B}{1 + C} (8.83)$$ else if $|\phi| = \pi/2$ then $$x = 0 y = \pm \pi (8.84)$$ where y takes the sign of ϕ in last two cases else $$A = \left| \frac{\pi}{\lambda} - \frac{\lambda}{\pi} \right| \tag{8.85}$$ $$G = \frac{C}{B + C - 1} \tag{8.86}$$ $$P = G\left(\frac{2}{B} - 1\right) \tag{8.87}$$ $$Q = A^2 + B \tag{8.88}$$ $$S = P^2 + A^2 (8.89)$$ $$T = G - P^2 \tag{8.90}$$ $$x = \pm \frac{\pi}{S} \left(AT + \left[A^2 T^2 - S(G^2 - P^2) \right]^{\frac{1}{2}} \right)$$ (8.91) $$y = \pm \frac{\pi}{S} \left(PQ - A[(A^2 + 1)S - Q^2]^{\frac{1}{2}} \right)$$ (8.92) where x and y take the respective signs of λ and phi. #### 8.1.11
Van der Grinten II. +proj=vandg2 Fig. 8.6 Ref. [17, p. 237-238] $$B = \frac{2}{\pi} |\phi| \qquad C = (1 - B^2)^{\frac{1}{2}} \tag{8.93}$$ If $\phi = 0$ then $$x = \lambda y = 0 (8.94)$$ else if $\lambda = 0$ then $$x = 0 y = \pm \frac{\pi B}{1 + C} (8.95)$$ else if $|\phi| = \pi/2$ then $$x = 0 y = \pm \pi (8.96)$$ where y takes the sign of ϕ in last two cases else $$A = \left| \frac{\pi}{\lambda} - \frac{\lambda}{\pi} \right| \tag{8.97}$$ $$x_1 = \frac{C(1+A^2)^{\frac{1}{2}} - AC^2}{1+A^2B^2}$$ (8.98) $$x = \pm \pi x_1 \tag{8.99}$$ $$y = \pm \pi (1 - x_1(2A + x_2))^{\frac{1}{2}}$$ (8.100) where x and y take the respective signs of λ and phi. #### 8.1.12 Van der Grinten III. +proj=vandg3 Fig. 8.6 Ref. [17][p. 238], [13][p. 78] $$B = \frac{2}{\pi} |\phi| \qquad (8.101)$$ If $\phi = 0$ then $$x = \lambda (8.102)$$ else if $\lambda = 0$ then $$x = 0 y = \pm \frac{\pi B}{1 + C} (8.103)$$ else if $|\phi| = \pi/2$ then $$x = 0 y = \pm \pi (8.104)$$ where y takes the sign of ϕ in last two cases else $$A = \left| \frac{\pi}{\lambda} - \frac{\lambda}{\pi} \right| \qquad (8.105)$$ $$x = \pm ((A^2 + 1 - y_1^2)^{\frac{1}{2}} - A y = \pm \pi y_1 (8.106)$$ where x and y take the respective signs of λ and phi. #### 8.1.13 Van der Grinten IV. $$x = \lambda y = 0 (8.107)$$ else if $\lambda = 0$ or $|\phi| = \pi/2$ then $$x = 0 y = \phi (8.108)$$ Figure 8.6: Van der Grinten Series A-Van der Grinten (I), B-Van der Grinten II, C-Van der Grinten III, D-Van der Grinten IV and **E**-Larrivée. else $$B = \frac{2}{\pi} |\phi| \tag{8.109}$$ $$C = \frac{-5 + B(8 - B(2 + B^2))}{2B^2(B - 1)} \tag{8.110}$$ $$R = \frac{2\lambda}{\pi} \tag{8.111}$$ $$B = \frac{2}{\pi} |\phi|$$ $$C = \frac{-5 + B(8 - B(2 + B^2))}{2B^2(B - 1)}$$ $$R = \frac{2\lambda}{\pi}$$ $$D = \pm \left\{ \left(R + \frac{1}{2} \right)^2 - 4 \right\}^{\frac{1}{2}}$$ taking the sign of $(\lambda - \pi/2)$ (8.112) $$F = (B+C)^{2}(B^{2}+C^{2}D^{2}-1)+(1-B^{2})$$ ### 8.1.14 Larrivée. +proj=larr Fig. 8.6 Ref. [15][p. 262] Similar to Van der Grinten I but without circular arcs. $$x = \lambda \left(1 + \sqrt{\cos \phi} \right) / 2$$ $y = \phi / \left(\cos \frac{\phi}{2} \cos \frac{\lambda}{6} \right)$ (8.117) ## Chapter 9 # Oblique Projections All of the spherical forms of the libproj4 projection library can be used as an oblique projection by means of the pj_translate function described on . The user performs the oblique transformation by selecting the oblique projection +proj=ob_tran, specifying the translation factors, o_lat_p= α , and o_lon_p= β , and the projection to be used, +o_proj=proj. In the example of the Fairgrieve projection the latitude and longitude of the pole of the new coordinates, α and β respectively, are to be placed at 45°N and 90°W and use the Mollweide projection. Beccause the central meridian of the translated coordinates will follow the β meridian it is necessary to translate the the translated system so that the Greenwich meridian will pass through the center of the projection by offsetting the central meridian. The final control for this projection is: Figure ?? shows a plot the resultant projection. Two more examples of oblique Mollweide projections are shown in figure ??. #### 9.0.15Oblique Projection Parameters From Two Control Points A convenient method of determining the position of the translated pole is by specifying two points along the central meridian with the equations: $$\beta = \arctan\left(\frac{\cos\phi_1\sin\phi_2\cos\lambda_1 - \sin\phi_1\cos\phi_1\cos\lambda_1}{\sin\phi_1\cos\phi_2\sin\lambda_2 - \cos\phi_1\sin\phi_2\sin\lambda_1}\right)$$ (9.1) $$\beta = \arctan\left(\frac{\cos\phi_1\sin\phi_2\cos\lambda_1 - \sin\phi_1\cos\phi_1\cos\lambda_1}{\sin\phi_1\cos\phi_2\sin\lambda_2 - \cos\phi_1\sin\phi_2\sin\lambda_1}\right)$$ $$\alpha = \arctan\left(\frac{-\cos(\beta - \lambda_1)}{\tan\phi_1}\right)$$ (9.1) ### References - [1] Formulas and constants for the calculation of the Swiss conformal cylindrical projection and for the transformation between coordinate systems. Switzerland, 2001. - [2] Guidance note number 7: Coordinate conversions and transformations including formulas. Technical report, European Petrolium Survey Group, 2004. - [3] John P. Snyder Alan A. DeLucia. An innovative world map projection, 1986. - [4] Paul B. Anderson. Personal communications, 2004. - [5] János Baranyi. The problems of the representation of the globe on a plane with special reference to the preservation of the forms of the continents. In *Hungarian Cartographical Studies*, pages 19–43. Földmérési Intézet, Budapest, 1968. - [6] Frank Canters. Small-scale Map Projection Design. Taylor & Francis, London, 2002. - [7] Martin Hotine. The orthomorphic projection of the spheroid. *Empire Survey Review*, 8(62):300–311, 1946. - [8] D. H. Maling. *Coordinate Systems and Map Projections*. Pergamon Press, New York, second edition, 1992. - [9] Philip M. Voxland. Personal communications, 2004. - [10] Frederick Pearson II. Map Projections: Theory and Applications. CRC Press, Boca Raton, Florida, 1990. - [11] Author H. Robinson. A new map projection: Its development and characteristics. *International Yearbook of Cartography*, 14:145–155, 1974. - [12] Henri Roussihle. Emploi des coordonnées rectangulaires stéréographiques pour le calcul de la triangulation dans un rayon de 560 kilomètres autour de l'origine. Travaux, International Union of Geodesy and Geophysics, May 1922. - [13] John P. Snyder. A comparison of pseudocylindrical map projections. *The American Cartographer*, 4(1):60–81, April 1977. - [14] John P. Snyder. Map projections—a working manual. Prof. Paper 1395, U.S. Geol. Survey, 1987. - [15] John P. Snyder. Flattening of the Earth—Two Thousand Years of Map Projections. Univ. of Chicago Press, Chicago and London, 1993. - [16] John P. Snyder. The hall eucyclic projection. Cartography and Geographic Information Systems, 21(4):213–218, 1994. 120 REFERENCES [17] John P. Snyder and Philip M. Voxland. An album of map projections. Prof. Paper 1453, U.S. Geol. Survey, 1989. - [18] Paul D. Thomas. Conformal projections in geodesy and cartography. Spec. Pub. 251, U.S. Coast and Geodetic Survey, 1952. - [19] W. R. Tobler. The hyperelliptical and other new pseudo cylindrical equal area map projections. *Journal of Geophysical Research*, 78(11):1753–1759, April 1973. - [20] U.S. Geological Survey. L176—batch general map projection transform. NMD User's Manual, U.S. Geol. Survey, 1989. - [21] U.S. Geological Survey. GCTP—general cartographic transformation package. NMD Software Documentation, U.S. Geol. Survey, 1990. - [22] Karlheinz Wagner. Kartographische netzentwürfe. Technical report, Bibliographisches Institut Leipzig, 1949. # Index | Interupted projections, 51 | Braun's Second (Perspective), 33 | |---------------------------------|----------------------------------| | 1 1 0 | Bromley, 58 | | Projection, 36 | Canters, 70 | | Érdi-Krausz, 69 | Cassini, 47 | | Putninš P'_1 , 55 | Central Cylindrical, 34 | | Putninš P'_2 , 58 | Collignon, 62 | | Putniņš P'_3 , 60 | Craster, 60 | | Putninš P'_4 , 60 | Cylindrical Equal-Area, 33 | | Putninš P_5' , 60 | Denoyer, 66 | | Putniņš P'_6 , 62 | Eckert I, 54 | | Putniņš P_1 , 55 | Eckert II, 54 | | Putniņš P_2 , 60 | Eckert III, 55 | | Putniņš P ₃ , 60 | Eckert IV, 56 | | Putniņš P_4 , 60 | Eckert V, 56 | | Putninš P_5 , 60 | Eckert VI, 52 | | Putninš P ₆ , 62 | Eckert-Greifendorff, 98 | | BSAM or Kamenetskiy's Second, | Eisenlohr, 106 | | 36 | Equidistant, 34 | | Adams Hemisphere in a Square, | Equidistant Cylindrical, 36 | | 107 | Equidistant Mollweide, 68 | | Adams Quartic Authalic, 62 | Fahey, 66 | | Adams World in a Square I, 107 | Fairgrieve, 117 | | Adams World in a Square II, 107 | Foucaut, 62 | | Aitoff, 98 | Foucaut Sinusoidal, 57 | | Aitoff-Wagner, 101 | Fournier Globular I, 107 | | Apian Globular I, 103 | Fourtier II., 75 | | Apian Globular II, 103 | Gall Isographic, 36 | | Arago, 103 | Gall's Orthographic, 34 | | Arden-Close, 33 | Gall's Stereographic, 36 | | Armadillo (M), 104 | Gauss-Krüger, 41 | | August Epicycloidal, 104 | Gilbert Two World Perspective, | | Bacon Globular, 103 | 101 | | Baker Dinomic, 75 | Ginsburg VIII, 67 | | Bartholomew, 98 | Goode Homolosine, 68 | | Baryanyi I, 71 | Gradarend and Niermann mini- | | Baryanyi II, 71 | mum linear distortion, 36 | | Baryanyi III, 71 | Grafarend and Niermann, 36 | | Baryanyi IV, 71 | Guyou, 107 | | Baryanyi V, 71 | Hölzel, 58 | | Baryanyi VI, 71 | Hall Eucyclic (C), 90 | | Baryanyi VII, 71 | Hammer, 98 | | Berhrmann's Projection, 34 | Hammer-Wagner, 99 | | Boggs Eumorphic, 64 | Hatano, 58 | | Bonne, 80 | Kavraisky V, 62 | | Braun's, 36 | Kavraisky VI, 54 | 122 INDEX | Kavraisky VII, 55 | Snyder Minimum Error, 70 | |---|------------------------------------| | Kharchenko-Shabanova, 35 | Stereographic, 34, 36 | | Laborde, 48 | Swiss Oblique Mercator, 47 | | Lagrange, 109 | Sylvano, 80 | | Lambert's Cylindrical Equal-Area, | Times Atlas, 75 | | 34 | Tobler G1, 76 | | Larrivée, 115 | Tobler's Alternate #1, 40 | | Limiting case of Craster, 34 | Tobler's Alternate #2, 40 | | Loximuthal, 67 | Tobler's World in a Square, 40 | | M. Balthasart's Projection, 34 | Transverse Mercator, 40 | | Maurer, 70 | Trystan Edwards, 34 | | Maurer SNo. 73 (C), 90 | Urmayev Flat-Polar Sinusoidal Se- | | Mayr (Mayr-Tobler), 75 | ries, 54 | | McBryde P3, 68 | Urmayev II, 40 | | McBryde Q3, 68 | Urmayev III, 40 | | McBryde S2, 68 | Urmayev V Series, 67 | | McBryde S3, 68 | Van der Grinten (I), 112 | | McBryde-Thomas Flat-Polar Parabolic, | Van der Grinten II, 112 | | 64 | Van der Grinten III, 113 | | McBryde-Thomas Flat-Polar Quar- | Van der Grinten IV, 113 | | tic, 64 | Wagner I, 54 | | McBryde-Thomas Flat-Polar Sine | Wagner II, 56 | | (No. 1), 64 | Wagner III, 56 | | McBryde-Thomas Flat-Polar Si- | Wagner IV, 58 | | nusoidal, 52 | Wagner IX, 101 |
| McBryde-Thomas Sine (No.1), 62 | Wagner V, 57 | | Mercator, 37 | Wagner VI, 55 | | Miller's Perspective Compromise, | Wagner VII, 99 | | 38 | Wagner VIII, 99 | | Modified Gall, 75 | Werenskiold I., 60 | | Mollweide, 58 | Werenskiold II, 54 | | Nell, 64 | Werenskiold III, 58 | | Nell-Hammer, 65 | Werner, 80 | | Nicolosi Globular, 110 | Wetch, 34 | | O.M. Miller, 37 | Winkel I, 53 | | O.M. Miller 2., 37 | Winkel II, 54 | | O.M. Miller's Modified Gall, 36 | Winkel Tripel, 98 | | Oblique Mercator, 42 | Projection:Lambert Conformal Conic | | Otelius Oval, 103 | Alternative, 88 | | Oxford Atlas, 75 | , | | Pavlov, 38 | | | Peter's Projection, 34 | | | | | | Plain/Plane Chart, 36 | | | Plate Carrée, 36 | | | Robinson, 66 | | | Ronald Miller Equirectagular, 36 Ronald Miller—minimum conti- | | | | | | nental scale distortion, 36 Ronald Miller—minimum overall | | | scale distortion, 36 | | | Sanson_Flamsteed, 52 | | | Semiconformal, 69 | | | Simple Cylindrical, 36 | | | | | | Sinusoidal, 52, 76 | |