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ABSTRACT An important question in biology is why the
genetic alphabet is made of just two base pairs (G-C and A‘T).
This is particularly interesting because of the recent demon-
stration [Piccirilli, J. A., Krauch, T., Moroney, S. E. &
Benner, S. A. (1990) Nature (London) 343, 33-37] that the
alphabet can in principle be larger. It is possible to explain the
size of the present genetic alphabet as a frozen character state
that was an evolutionary optimum in an RNA world when
nucleic acids functioned both for storing genetic information
and for expressing information as enzymatically active RNA
molecules—i.e., ribozymes. A previous model [Szathméry, E.
(1991) Proc. R. Soc. London Ser. B 245, 91-99] has described
the principle of this approach. The present paper confirms and
extends these results by showing explicitly the ways in which
copying fidelity and metabolic efficiency change with the size of
the genetic alphabet.

The question why the genetic alphabet consists of exactly
two base pairs instead of, say, one or four has become highly
relevant through the design and partial realization of novel,
replicatable base pairs (1). I have attempted to construct a
model to account for the actual state of two base pairs in
terms of evolutionary optimality (2). The model assumed the
existence of an RNA world (3) with ribozymes (RNA en-
zymes) catalyzing all sorts of reactions in intermediate me-
tabolism (4). In such a world nucleic acids have dual func-
tionality: as replicatable information carriers (templates) and
as enzymes. The fitness of such a ribo-organism was broken
down into two components: overall copying fidelity (Q) and
overall reproduction rate (A), following Eigen’s (5) original
formulation for the analogous case of replicating nucleic
acids. The fitness W is simply defined as W = AQ, assuming
an aspecific death rate. Q can be calculated from the per-base
copying fidelity g, which decreases roughly exponentially
with increasing size (N pairs) of the alphabet (keeping the
length of the genome fixed). The reason for this is that as one
adds more letters to the alphabet, they will resemble each
other more and more, and hence the chance of mispairing and
mutagenesis increases. A increases with N because A in-
creases with metabolic efficiency, which increases with the
number of monomer types used in building the enzymes. A
increases slower than exponentially with N. It was found that
W has a maximum that lies at N = 2 for most cases (2).

The study summarized above had two methodical elements
that will be replaced here: (i) actual or estimated data for all
base pairs were entered into numerical calculations, which
precluded being more analytic in presenting the A and Q
values, and (ii) the substrate set was replaced with the totality
of letters in the maximal genetic alphabet (2). In this paper I
re-develop my model in order to arrive at a more analytic
description.
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COPYING FIDELITY

It is assumed, as previously (2), that the equation Q = g is
valid, where » is the number of nucleotides in the genome (5).
The task is to find out how g depends on N. To determine this
relationship, assumptions must be made about the structure
of and binding strength between the letters. It is assumed that
there are 7 hydrogen bonding groups on each letter (for the
alphabet designed in Benner’s laboratory /i = 3), and each
group can be either a donor or an acceptor. As a simplifica-
tion it is assumed that the binding Gibbs free energy increases
linearly with the number of complementary (donor-acceptor)
groups between two letters. Thus a configuration such as

A—D—A

|
D—A—D

would have the highest negative energy, whereas pairs such
as

D—D—D A—A—A

D—D-D A—A—A

would have zero Gibbs free energy in association [it is
understood that large groups (= ‘‘purines’’) and small groups
(= *‘pyrimidines’’) occupy the upper and lower positions,
respectively]. The energetic effect of the steric clash between
two donor groups is not considered here; such effects were
amply treated in the earlier model (2). The closer are the
donor-acceptor configurations of two base pairs in the same
alphabet, the lower is their copying fidelity because of the
increased mutation rate. For this reason, given fixed 7i and N,
one should choose those pairs that would maximize the
distance, calculated as the number of differing hydrogen-
bonding groups, among the letters. Thus, when /i = 2 and N
= 2, one should choose pairs such as

Y

D—D A—A
and not, say

T

D—D D—A

since the distance between the two purines is 2 in the first and
is only 1 in the second case (within-alphabet distances are the
same for the complementary pyrimidines). It is an interesting
question how one should position base pairs for arbitrary
combinations of 7i and N. Note, however, that N = <2f. In
the following I shall not deal with wobble pairing (see ref. 2
for its incorporation).

First we consider the number of possible pairs d distance
from a given pair. It is easy to check that the answer is
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Fic. 1. Configuration of the best possible genetic alphabet with
A =3 and N = 3. Each corner of the cube corresponds to a unique
hydrogen-bonding pattern of ‘‘purines’’. The structure of *‘pyrimi-
dines’’ is complementary.

n
mg= (d) 1]

Let 7i = 3 for the time being. For N = 1 and 2 the choice
of the base pairs is trivial. This is not so for N = 3. To obtain
the most favorable combination we must consider the func-
tions that determine q. For a given base the so-called inser-
tion fidelity ¢” (cf. ref. 6) can be calculated as

AAA

dmx
¢ = /D / { 2, 14XPIG(dnax — )/ (ermax)]} , 2]

where n, is the number of the base pairs in the alphabet d
distance from the given base, G is the Gibbs free energy of
base pairing (shown as positive since a negative value must
be multiplied by —1), R is the gas constant, and T is the
absolute temperature. In the present example we know that
ng = 1 and n; = 1. ¢" is maximized if for the third base pair
d = dnax/2; i.e., it should be as far as possible from the
previous two. Clearly, 3/2 cannot be realized in the present
situation, hence the third pair must be at a distance of 1 and
2 units, respectively, from one and the other pair (Fig. 1).
Table 1 shows how the alphabets with maximum ¢” occupy
the different positions with increasing N. Asymmetries have
artificially been corrected for by taking n; = 1/2 values when
necessary. One can check that the distributions shown are
isotropic in the sense that they are the same viewed from any
occupied point on the respective (hyper) cube.

Having thus determined the fidelity-maximizing alphabets,
we may list the formulae necessary for the calculation of Q.

Table 1. Genetic alphabets maximizing replication

d d

N 0 1 2 3 N 0 1 2 3 4
A=2 A=4

1 1 0 0 1 1 0 0 0 0

2 1 0 1 2 1 0 0 o0 1

3 1 1 1 3 1 0 1 0 1

4 1 2 1 4 1 0 2 0 1

A=3 5 1 0 3 0 1

1 1 0 0 0 6 1 0 4 0 1

2 1 0 0 1 7 1 0 5 0 1

3 1 05 05 1 8 1 0 6 0 1

4 1 1 1 1 9 1 0 6 1 1

5 1 15 15 1 10 1 1 6 1 1

6 1 2 2 1 11 1 15 6 15 1

7 1 25 25 1 12 1 2 6 2 1

8 1 3 3 1 13 1 25 6 25 1

14 1 3 6 3 1

15 1 35 6 35 1

16 1 4 6 4 1
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Borrowing the formulae from ref. 2, the copying fidelity with
proofreading is

7 =2"-q? 3]
and with mismatch repair it becomes
9=29"-q"% [4]

The relevance of these component processes will be dis-
cussed below. Example curves for Q are shown in Fig. 2. It
is apparent from the logarithmic plots that Q decreases more
than exponentially with N. The lack of mismatch repair
considerably decreases Q (case C versus case A). For the
same N (e.g., 3), increase in /i increases Q, since more
hydrogen bonds result in stronger binding and increased

fidelity.

OVERALL METABOLIC EFFICIENCY

The task is to determine the efficiency of enzymes made of
2N monomers in general. We lack direct experimental evi-
dence to address this problem. Rather, the following calibra-
tion procedure is chosen. We know that at least some protein
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FiG. 2. Copying fidelity of genetic alphabets. (A) 7 = 3, with
mismatch repair, G = 5 kcal/mol (1 cal = 4.18 J). (C) 7 = 3, without
mismatch repair, G = 5 kcal/mol. (E) i = 2, with mismatch repair,
G = 3.33 kcal/mol. (G) i = 4, with mismatch repair, G = 6.66
kcal/mol. (B, D, F, and H) logarithmic plots corresponding to A, C,
E, and G, respectively. T = 298 K and » = 10° in all cases. G values
are based on ref. 2.
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enzymes are perfect, in the sense that the rate of the
catalyzed step equals that of diffusion of the substrate to, and
products from, the enzyme (see ref. 7 for a discussion of this
point). However, in certain other cases, post-translationally
modified amino acids seem to play an important role in the
increase of catalytic efficiency (8). We make the assumption
that catalysts made of 32 monomer types are practically
perfect for any intermediate metabolism.

For the sake of simplicity, and following some previous
work on the evolution of enzymatic function (9, 10), we may
consider a metabolic pathway of monomolecular reactions.
First let us calculate the catalytic efficiency of an average
enzyme. To this end we must calculate the probability that a
randomly chosen substrate will be converted by an appro-
priate enzyme. Here the relationship between substrate and
enzyme space becomes relevant.

Enzyme space can be quantitatively characterized as fol-
lows. Imagine that, somewhat similar to the assumption in
ref. 10, the substrates are represented by boxes. I assume that
exactly four faces of this box are to be recognized by an active
site. In accordance with the foregoing, this means that we
find a perfect active site for every substrate among the 32¢ =
10° possible active sites. This also means that we may assume
that the substrates are embedded in a 20-dimensional binary
chemical space (cf. ref. 11). Although not strictly true, it is
assumed that substrates are distributed in this space ran-
domly. Infact, of course, metabolites have to be close to their
transformed products in chemical space.

For calculating the catalytic activity, we determine the
probability that a randomly chosen substrate will have a
corresponding catalyst within distance & in chemical space. I
borrow the method of calculation from the work of Perelson
and Oster (11) on the clonal selection theory of the immune
system. Let the current alphabet size be 2N, because letters
come in pairs. The density of active sites/enzymes in chem-
ical space is thus p = (2N)*/32*. It is assumed that the number
of enzymes within distance from the substrate follows a
Poisson distribution (11). Under the given assumptions chem-
ical space has 2% discrete points, so the maximum distance
on a representing hypercube between two points is 20. There
are
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FiG. 3. Plot of Eq. 6: probability of finding at least one enzyme
in chemical space distance from the substrate. (A) N = 2. (B) N = 4.
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20

r
points that are r distance units from chosen point. Within a
volume having radius &8, the number of points is thus:

&
®= > (20). (5]

r=0 \’

The probability of finding no enzyme within this volume is
(cf. ref. 11)

expl — 2N)*s(8)/324]
and the probability that there is at least one such enzyme is
u(8) =1 — exp[ — (2N)*s(8)/32%]. (6]

The way in which this probability increases with N is shown
in Fig. 3. I shall use this expression in the further calculations,
being aware that it is only an approximation, which is rather
crude at low and high & but which nevertheless reflects the
correct tendency: the probability of finding a catalyst should
increase with the radius of the ball drawn around the sub-
strate.

Now let us calculate the effective energy of binding be-
tween the enzyme and the nonreacting parts of the substrate
(cf. ref. 2), defined as follows:

Smax
Ges = 2 {Gelbmax = 8) [u(d) -
sign(@)u(d — 1)1}/ Spax- 7

This rather unconventional formula for a binding free energy
is meant to express the following. As we move away from the
substrate in chemical space, the binding energy decreases
from G, (perfect binding), but the chance that we find at least
one catalyst increases. Therefore, energy is weighted by this
incremental probability as we move toward the boundary of
the ball centered around the substrate. These weighted
energies are finally summed up to yield the effective binding
energy. An indication of how Gggs changes with N—it in-
creases with diminishing returns—is shown in Fig. 4.
Finally, we calculate the catalytic efficiency. First note
that for an unsaturated linear enzymatic pathway the flux
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Fic. 4. Plot of Eq. 7: effective binding strength between a
randomly chosen substrate and its candidate enzymes. T = 298 K,
A= 3.
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depends on the catalytic efficiencies of the enzymes as
follows (12):

F=c/ 21/e, (8]

where C is an environmental constant and
e; = c;Ei/K; 91

where c; and E; are the catalytic efficiency and concentration
of enzyme i in the chain, respectively, and K; is an equilib-
rium constant. For calculational simplicity, it is assumed that
ci=c, E; = E, and K; = K, and hence the flux becomes

F = CcE/(ngK), [10]

where ng is the number of enzyme species in the pathway. If
we assume that the exponential growth rate constant of the
cell is determined by this flux, we can then apply the formula
in (cf. refs. 2 and 9)

A = F/(ngE) (11]
and after rearrangement we obtain
A = Cc/(n*K). [12]
¢ depends on Ggs exponentially (9). Substituting this from
Eq. 7 and absorbing all parameters treated as constants we
obtain
A = meCrs/RT), [13]

Metabolic efficiency increases less than exponentially with
N (Fig. 5).
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Fi1G. 5. Plot of Eq. 13: overall metabolic efficiency. i =3, T =
298 K, m = 2.4 x 10713 (cf. ref. 2), G. = 20 kcal/mol.
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FITNESS

As previously defined, the formula for fitness is W = AQ, and
various combinations are shown in Fig. 6. Thus it seems that
with the present efficiency of replication (with proofreading
and mismatch repair), N = 3 would be optimal for a genome
made of 10° nucleotides (case A). Excludlng mismatch repair,
however, gives N = 2—i.e., two base pairs, as in our current
genetic alphabet. Decreasing vto 10* makes the optimal value
of N shift to 5 (case C), but without mismatch repair, N = 2
stays optimal. An increase in temperature to T = 348 K (75°C)
shifts the value in case C back to N = 4 (case E). With T =
348 K and v = 10°, N = 3 is still optimal with mismatch repair
(case G). Without it, N = 2 stays optimal.

The effect of temperature is understandable. In formulae 2
and 13 T decreases the efficiency of binding exponentially.

I also show fitness values when the number of hydrogen
bonds per base pair (#) is altered (Fig. 7). With /i = 2, N =
2 is still optimal, whereas /i = 4 shifts N to 9 base pairs.

DISCUSSION

There are two crucial aspects of my previous study (2) that
have been confirmed here: (i) Q decreases and A increases
with N, and there is an optimum of W and (i/) without
mismatch repair, N = 2 is optimal. The important differences
are as follows: (i) Q is clearly shown to decrease with N faster
than exponentially; (ii) catalytic efficiency increases not with
diminishing returns, as claimed in ref. 2, but it does increase

A B
0.15
__06 —
S 2 o
o 0.4 o
[7] [7]
(] [}
£ £ 005
Zo2 Iz
2 4 6 8 2 4 6 8
C Base pairs (N) D Base pairs (N)
0.15
— 2 —
% 15 % 0.1
a 1)
& 1 2
£ £ 005
iL 05 ic
2 4 6 8 8
E Base pairs (N) F Base pairs (N)
0.003
0.014 R
s =
2 oo = 0.002
] (7]
7] []
2 0.006 £ 0.001
Z ic
0.002
2 4 6 8 8
Base pairs (N) Base palrs
G H
0.003
< 0.006 —
2 3 0.002
@ 0.004 @
g £ 0001
Z 0002 zZ
2 4 6 8 T2 4 6 8
Base pairs (N) Base pairs (N)

FiG. 6. Fitness values for various systems with 7 = 3. (A, C, E,
and G) With mismatch repair. (B, D, F, and H) Without mismatch
repair. (Aand B) T=298 K, v = 10°. (Cand D) T = 298 K, v = 10*.
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FiG. 7. Fitness values for systems with i = 2, G, = 13.33
kcal/mol (A) and with 7 = 4, G; = 26.66 kcal/mol (B).

slower than exponentially with N; and (iii) with mismatch
repair, N = 3 seems to be optimal for room and high
temperature as well.

Before evaluating these differences, I must call attention to
some important limitations of the present model. (a) It does
not calculate the efficiency of the copying machinery from
the intrinsic enzymatic efficiencies. (b) In contrast to the
earlier model (2), wobble pairing is not included in the
calculations, which erroneously increases Q. (c¢) Similar to
the earlier model, transversions are excluded from muta-
tions. This again increases Q. (d) Unlike the earlier model,
the present work does not incorporate competitive inhibition
among the different reactions by related substrates. This
overestimates catalytic power. (e) Similar to the earlier
model, there is no energetic or time cost assigned to the
synthesis of more letters.

From the above-listed limitations it must be clear that the
optimal value N = 3 (Fig. 6, case A) for-the genetic alphabet
designed by Piccirilli ez al. (1) is likely to be artefactual. Since
both A and Q are overestimated, W is overestimated as well.
The assumption that is probably the least realistic is to
suppose that ribozymes can copy nucleic acids as efficiently
as present-day protein enzymes, which are capable of proof-
reading as well as mismatch repair. It makes more sense to
suppose that the best ribozymes performed only at about the
efficiency of protein-catalyzed replication without mismatch
repair. A future goal is to modify this model so that it can
account for the dependence of replicase activity on N.

As to the performance of the alphabets with /i = 2 and 4,
a few observations can be made. The former are less fit and
the latter, more fit than alphabets with i = 3. The /i = 4
alphabet may appear unrealistic from a chemical point of
view, but this is not so. A hypothetical base pair of this type
is presented in Fig. 8. It seems that others could be designed.
Why such an alphabet is unlikely to be fitter than one with 7
= 3 can be explained by two considerations: (i) the increased
metabolic load associated with synthesizing such large letters
and (ii) the strong overestimation of the catalytic power of
enzymes made of these letters. By the latter I mean that
monomers in enzymes cannot be very useful if they become
too big; if one has a small bathroom, then it is unwise to buy

Proc. Natl. Acad. Sci. USA 89 (1992)
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FiG. 8. Hypothetical ‘‘base pair’’ from an alphabet with /i = 4.

too-large tiles. This is a reason why proteins are more
efficient enzymes than ribozymes: the constraint of pairing
during replication does not apply to amino acids, hence they
can be rather different from each other and reasonably small
at the same time.

I concluded from my previous analysis (2) that the current
genetic alphabet size N = 2 is likely to be a frozen character
state, since protein enzymes would enable cells to maintain a
genome with more base pairs, but this trait must have become
fixed in the RN A world where it was an evolutionary optimum.
Although it may be possible to imagine takeover scenarios for
a transition to a higher N after the origin of translation, such
a transition would not have been selectively advantageous
since the main catalytic power shifted to proteins.

This theory of optimal genetic alphabets is testable (2):
Piccirilli ez al. (1) have shown that one of the novel base pairs
is replicated in RNA as well as DNA, and elsewhere (13, 14)
I have outlined an experimental system to make novel
ribozymes at will through artificial selection. Ellington and
Szostak (15) have recently reported some interesting prog-
ress in this direction. Copying fidelities and catalytic effi-
ciencies could thus be both measured.

Finally, I am aware of the fact that in our current genetic
alphabet /i = 2 for A. As discussed in ref. 2, this may have
a fitness-increasing effect.

I thank P4l Juhdsz-Nagy and Elemér Lébas for stimulating dis-
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comments on the manuscript.
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