
SWT Vs. Swing Performance Comparison

SWT Vs. Swing Performance Comparison

Document Owner: Igor Križnar

Status: Released

Creation: 2005-10-05 (Klemen Žagar)

Revision: 1.4
Copyright © 2001-2006 by Cosylab d.o.o. All Rights Reserved.

Scope

This document presents the results of a SWT-versus-Swing performance benchmark.

Document History

Revision Date Author Section Modification
1.0 2005-10-05 Klemen Žagar all Created.

1.1 2005-11-24 Klemen Žagar all Added report on drawing primitive
performance.

1.2 2005-11-30 Klemen Žagar all Added report on X Windows traffic.

1.3 2005-12-02 Klemen Žagar all Added report on X Windows traffic
comparison of Java 1.4 and 1.5.

2005-12-02 Igor Križnar all Released
1.4 2006-03-03 Klemen Žagar all Added report on X Windows in native C.

2006-03-03 Igor Križnar all Released

Table of Contents
1.Methodology...2

 1.1 General Approach...2
 1.1 Timing Tests..2
 1.2 Network Traffic Tests...2
 1.3 Environment...3

2.Results..3
 2.1 Quantitive Observations...3
 2.2 SWT Vs. C++..5
 2.3 Qualitative Observations...5

3.Interpretation..6
4.Conclusion...6

1

SWT Vs. Swing Performance Comparison

1. Methodology

 1.1 General Approach
Every test was executed continuously in a loop until a pre-defined amount of time (10
seconds) had passed. This way, uniform precision of measurement was assured
across platforms and test cases, and hard-coding of appropriate loop counts was
avoided. However, a mechanism had to be introduced to take the loop's overhead into
account.

Each 10 second test was executed 10 times to measure standard deviation as well.

 1.1 Timing Tests
Two groups of tests were performed. One group of tests was concerned with
performance of drawing graphics primitivies such as lines and polygons. The tests in
this group were:

● SWT/Swing Rect: the time required to draw a rectangle.

● SWT/Swing Rect Fill: the time required to draw a filled rectangle.

● SWT/Swing Poly: the time required to draw a polygon.

● SWT/Swing Poly Fill: the time required to draw a filled polygon.

● SWT/Swing Circle: the time required to draw a circle.

● SWT/Swing Circle Fill: the time required to draw a filled circle.

● SWT/Swing Line: the time required to draw a line.

The second group contained tests of widget performance. The following tests were
performed:

● SWT/Swing Table (20,40): Time required to set the value of 20x40 cells in a
table.

● SWT/Swing Table Scroll (20,100): Time required to scroll a table with
20x100.

● Swing Text Fields: Time required to set the value of 400 text fields with
Swing. The text fields are arranged in a 20x20 grid with dimensions of
1024x768 pixels. In this test, function JTextField.setText() is being invoked.

● Swing Text Field (Synch): Same as Swing Text Field, except that
JTextField.setText() is performed synchronously in Swing's thread using
SwingUtilities.invokeAndWait(). This ensures that all requests actually
result in a redraw.

● SWT Text Field: Same as Swing Text Field, but using SWT. SWT's GUI event
loop dispatches events immediately after calling all Text.setText() methods.

 1.2 Network Traffic Tests
In this suite of tests, an SSH tunnel was established between the SSH client and SSH
daemon process on a Linux machine (environment A). On the SSH daemon side, the
benchmark was run, which resulted in X Windows traffic being transmitted over an
SSH tunnel to the SSH client (X Windows server). The number of packets and bytes

2

SWT Vs. Swing Performance Comparison

of this traffic was measured for Rect, Poly Fill, Table and Text Field tests, as
described in the previous chapter.

 1.3 Environment
The benchmarks were tested in the following environments:

ID CPU RAM Graphics Operating System Java X Windows
Server

A: reference
environment

Intel
Centrino
1.6GHz

1GB ATI Mobility
Radeon 9700

Linux Fedora Core 2
Kernel 2.6.10
libc 2.3.3
gtk2 2.4.14

Sun Java
1.5.0_01

Local

B: Java 1.4 Same as A Sun Java
1.4.2_06-b03

Local

C: Windows Same as A Windows XP Sun Java
1.4.2_08

N/A

D: Windows, II Intel
Pentium
2.4GHz

1GB ATI Radeon
9200

Windows XP SP 1 Sun Java
1.4.2_04

Local

E: VMware Same as A Windows XP SP2 in
VMware 4.5.2

Sun Java
1.5.0_03

N/A

2. Results
The following table lists the time taken by an iteration of a particular test.

 2.1 Quantitive Observations
Test A: Java 1.5,

Linux
B: Java 1.4,

Linux
C: Java 1.4,
Windows

D: Java 1.4,
Windows, II

E: VMware

Drawing primitive tests (times in microseconds)

SWT Rect 9.9±0.02 11.0±0.07 11.3±0.07 9.0±0.18 89.4±1.27

Swing Rect 8.4±0.1 8.4±0.4 11.9±0.4 8.9±0.6 67.8±0.4

SWT Rect Fill 57.8±0.5 60.6±0.8 35.3±14.5 103.0±3.6 71.5±14.2

Swing Rect Fill 49.6±0.1 55.2±5.3 43.4±0.8 103.0±10.0 36.2±8.8

SWT Poly 13.8±0.03 15.1±0.03 251.0±66.97 20.0±0.1 133.8±54

Swing Poly 13.4±0.03 13.5±0.03 6.6±0.34 19.9±0.1 141.1±37

SWT Poly Fill 102.6±1.0 104.8±0.3 98.3±0.2 82.5±3.3 1071.2±350

Swing Poly Fill 95.7±0.2 94.6±1.1 45.8±3.1 82.1±7.9 887.0±445

SWT Circle 53.2±0.1 54.7±0.7 160.7±0.1 49.0±3.6 148.5±1.8

Swing Circle 51.3±0.3 51.6±0.4 56.1±4.8 45.8±5.0 130.6±0.5

SWT Circle Fill 58.7±0.1 61.4±0.1 158.0±0.3 101.0±2.3 953.1±6.6

Swing Circle Fill 49.9±0.4 50.6±0.3 128.4±0.3 100.0±0.8 931.7±7.6

SWT Line 5.9±0.03 6.5±0.02 34.9±0.13 5.5±0.3 657.9±320

Swing Line 5.1±0.05 5.7±0.01 10.2±0.03 6.8±0.03 808.7±7.3

Widget tests (times in milliseconds)

SWT Table (20,40) 578±5.6 584±60.9 98±0.4 30±1.0 576±4.9

Swing Table (20,40) 30±8 141±43 9.4±0.9 6±1.0 29±4.2

Swing Table - synch 127.1±2.0 100.8±0.6 101.3±0.5 56.0±3.0 88.9±8.0

3

, 03/09/06
<!--tr>
						<th>B: remote X Windows</th>
						<td colspan="5">Same as A</td>
						<td>Via 54Mbit wireless</td>
					</tr-->

SWT Vs. Swing Performance Comparison

Test A: Java 1.5,
Linux

B: Java 1.4,
Linux

C: Java 1.4,
Windows

D: Java 1.4,
Windows, II

E: VMware

(20,40)

SWT Table Scroll
(20,100)

12.2±0.2 12.1±0.05 10.0±0.04 2.0±0.0 15.5±0.6

Swing Table Scroll
(20,100)

4.3±0.1 33.1±0.1 31.6±2.4 75.0±6.0 9.2±0.3

SWT Text Fields
(20,20)

276±0.6 319±44.7 68±0.1 33±3.0 341±1.8

Swing Text Fields
(20,20)

84.2±4.7 78.0±53.0 37.8±1.6 35.0±21.0 131.0±18.0

Swing Text Fields -
synch(20,20)

133±0.5 166±3.6 120±0.6 66±1.0 302±6.7

Table 1: Performance of tests in various environments. Note that the measurement refers to
the time required to perform one iteration of the test.

Network bandwidth utilization of the X Windows protocol tunneled over SSH is
shown in the table below. The tests were performed in environment A (Java 1.5). SSH
daemon and SSH client were residing on the same computer and were
communicating via the loopback network interface.

Test To daemon
(packets)

To daemon
(bytes)

From daemon
(packets)

From daemon
(bytes)

SWT Rect 2.97±0.25* 0.18±0.02 4.93±0.42* 40.34±3.42

Swing Rect 2.07±0.10* 0.13±0.01 4.16±0.18* 40.80±2.02

SWT Poly Fill 5.01±0.09* 0.30±0.00 8.13±0.06* 56.65±0.00

Swing Poly Fill 3.65±0.10* 0.22±0.01 5.82±0.13* 54.14±1.36

SWT Table (20,40) 9.71±0.08 577.45±5.50 14.53±0.05 110,135.16±3.59

Swing Table (20,40) 1.21±0.09 73.23±4.80 1.78±0.08 14,929.09±519.86

Swing Table - synch
(20,40)

10.04±0.28 705.29±23.70 16.76±0.24 133,368.47±1,522.04

SWT Text Fields
(20,20)

9.73±0.04 1,066.94±2.01 10.05±0.04 95,445.19±5.37

Swing Text Fields
(20,20)

3.56±0.29 195.80±16.13 3.69±0.30 15,247.65±1,146.43

Swing Text Fields -
synch(20,20)

7.90±0.10 546.09±5.51 10.94±0.14 82,578.85±292.69

Table 2: Network traffic generated by X Windows while drawing over an SSH tunnel.

* Packet counts for Rect and Poly Fill cases are per 1000 drawn items.

The same tests were performed in environment B (Java 1.4):

Test To daemon
(packets)

To daemon
(bytes)

From
daemon

(packets)

From daemon
(bytes)

SWT Rect 2.97±0.25 0.18±0.02 4.93±0.42 40.34±3.42

Swing Rect 1.92±0.13 0.12±0.01 3.89±0.25 38.41±2.40

SWT Poly Fill 4.60±0.07 0.27±0.00 7.86±0.05 56.63±0.00

Swing Poly Fill 3.35±0.08 0.20±0.00 5.39±0.07 50.26±0.38

SWT Table
(20,40)

9.65±0.85 573.43±50.46 14.50±1.27 110,133.27±9,716.19

4

SWT Vs. Swing Performance Comparison

Test To daemon
(packets)

To daemon
(bytes)

From
daemon

(packets)

From daemon
(bytes)

Swing Table
(20,40)

1.87±0.36 113.61±22.51 3.07±0.64 24,058.36±5,282.78

Swing Table -
synch (20,40)

10.36±0.13 706.26±7.42 17.28±0.25 132,109.61±1,298.19

SWT Text Fields
(20,20)

9.73±0.05 1,067.35±2.68 10.03±0.04 95,445.78±4.46

Swing Text Fields
(20,20)

9.51±1.14 1,239.54±150.89 9.44±1.14 1,091.87±132.51

Swing Text Fields
- synch(20,20)

404.33±29.59 50,333.12±3,782.46 393.19±29.20 135,379.37±9,741.58

Ratio of resource consumption of Java 1.4 and Java 1.5 is as follows:

Test To daemon
(packets)

To daemon
(bytes)

From daemon
(packets)

From daemon
(bytes)

SWT Rect 1 1 1 1

Swing Rect 0.93 0.93 0.93 0.94

SWT Poly Fill 0.92 0.93 0.97 1

Swing Poly Fill 0.92 0.92 0.93 0.93

SWT Table (20,40) 0.99 0.99 1 1

Swing Table (20,40) 1.55 1.55 1.73 1.61

Swing Table - synch (20,40) 1.03 1 1.03 0.99

SWT Text Fields (20,20) 1 1 1 1

Swing Text Fields (20,20) 2.67 6.33 2.56 0.07

Swing Text Fields -
synch(20,20)

51.21 92.17 35.93 1.64

Table 3: Network resource consumption (packets/bytes) ratio of Java 1.4 and Java 1.5.
Greater number means that Java 1.5 is more efficient by the given factor.

 2.2 SWT Vs. C++
On Linux, a test has also been performed in C++ using the X library directly.
Performance for drawing of rectangles was compared. For the particular test case,
Java SWT test took 44.5 microseconds per rectangle, whereas C++ took 41.8
microseconds (6% faster).

 2.3 Qualitative Observations
Apart from the quantitative measurements presented above, the following
observations were made:

1. Swing Text Field redrawing is not deterministic. For example, the order in
which the fields were initially populated and subsequently updated varied
significantly. Thus, sometimes the fields in the middle of the 20x40 grid were
populated before those at the top-left corner of the grid, though their setText
methods were invoked later.

2. Swing Text Field may skip updates. If several setText invocations are made in
a short succession, only the latest one may take effect.

5

SWT Vs. Swing Performance Comparison

3. Interpretation
By observing the figures in the above tables, the following inferences may be made:

● Swing avoids performing unnecessary redrawing. This is noticeable by
comparing results of tests Swing Text Field and Swing Text Field (sync), where
in the latter case Swing forced a redraw upon every setText invocation.

● On Linux, Swing widgets outperform SWT's by a significant factor (e.g.,
compare Swing Table and SWT Table tests).

● Standard deviation of Swing's performance is higher than standard deviation
of SWT's. Standard deviation decreases significantly if redrawing is performed
in the Swing's thread. This is likely due to non-determinism involved in
communication between Swing's and application's thread.

● In general, Java 1.5 is faster than Java 1.4.

● For rendering of text fields, Java 1.5 offers a significant improvement of
performance when using X Windows over network.

● In general, Swing generates less network traffic with X Windows over SSH
than SWT.

● Code written in C/C++ using the X library performs somewhat faster than
code written in Java using SWT, with the speed-up being from 5% to 10%.

4. Conclusion
It is hard to give a rule-of-thumb where SWT would outperform Swing, or vice versa.
In some environments (e.g., Windows), SWT is a winner. In others (Linux, VMware
hosting Windows), Swing and its redraw optimization outperform SWT significantly.
Differences in performance are significant: factors of 2 and more are common, in
either direction.

It is questionable how often Swing's capability of suppressing successive redraws is
effective. It is very likely that in practice this is not a frequent occurence, as repeated
update requests in a short period of time may be uncommon. In this case, results of
the Swing Text Field (sync) test should be considered with greater credibility than
those of the Swing Text Field test, as they approximate the resource usage more
closely.

Initial expectation before performing this benchmark was to find SWT outperform
Swing. This expectation stemmed from greater responsiveness of SWT-based Java
applications (e.g., Eclipse IDE) compared to Swing-based applications. However, this
expectation could not be quantitatively confirmed. It is possible that perceived
responsiveness is a consequence of smaller time required to respond to user
interaction, which involves not only drawing, but also detecting and responding to
the user's action. Also, determinism (smaller standard deviation) could result in
greater perceived responsiveness.

6

	1.Methodology
	 1.1 General Approach
	 1.1 Timing Tests
	 1.2 Network Traffic Tests
	 1.3 Environment

	2.Results
	 2.1 Quantitive Observations
	 2.2 SWT Vs. C++
	 2.3 Qualitative Observations

	3.Interpretation
	4.Conclusion

