10. A. Lascoux, M. P. Schützenberger, Polynômes de Schubert, Comptes Rendus 294 (1982) 447.
11. J. Propp, Enumerations of Matchings: Problems and Progress, New Perspectives in Geometric Combinatorics, MSRI Publications, Vol. 37, 1999.
12. R.P. Stanley, Enumerative Combinatorics, vol. 2, Cambridge Univ. Press, Cambridge, 1999.
13. R. Tošić, S.J. Cyvin, Enumeration of Kekulé structures in benzenoid hydrocarbons: "flounders" J. Math. Chemistry 3 (1989) 393-401.

On Candido's Identity

CLAUDIALSINA
Universitat Politècnica de Catalunya 08028 Barcelona, Spain claudio.alsina@upc.edu

Lewis \& Clark College Portland, OR 97219, USA nelsen@Iclark.edu

Giacomo Candido [1] (1871-1941) proved the equality

$$
\left[F_{n}^{2}+F_{n+1}^{2}+F_{n+2}^{2}\right]^{2}=2\left[F_{n}^{4}+F_{n+1}^{4}+F_{n+2}^{4}\right],
$$

where F_{n} denotes the nth Fibonacci number, by observing that for all reals x, y one has the curious identity

$$
\begin{equation*}
\left[x^{2}+y^{2}+(x+y)^{2}\right]^{2}=2\left[x^{4}+y^{4}+(x+y)^{4}\right] . \tag{1}
\end{equation*}
$$

Candido's identity (1) can be easily shown to be true not only in $\mathbb{R}^{+}:=[0, \infty)$ but also in any commutative ring and admits a clear visual description as presented recently in [3]. This identity raises the question: is (1) a characteristic property of the polynomial function $y=x^{2}$ in \mathbb{R}^{+}? In order to answer this we reformulate (1) as follows. Let f be a function from \mathbb{R}^{+}into \mathbb{R}^{+}such that

$$
\begin{equation*}
f(f(x)+f(y)+f(x+y))=2[f(f(x))+f(f(y))+f(f(x+y))] . \tag{2}
\end{equation*}
$$

In general (2) admits trivial solutions like $f \equiv 0$ as well as many bizarre, highly discontinuous solutions. For example, define f to be any function from \mathbb{R}^{+}to \mathbb{R}^{+}with the property that $f(x)=0$ whenever x is rational and $f(x)$ is rational (but arbitrary!) whenever x is irrational. It is an exercise (try it) to show that every possible combination of rational or irrational values for the inputs x and y reduces (2) to the identity $0=0$. But if we require f to be a continuous surjection on \mathbb{R}^{+}with $f(0)=0$, then we shall show that f can differ from the squaring function only by a multiplicative constant.

Lemma. For any two positive real numbers a and b with $0<a<b$, there are integers m and n such that $a<2^{m} 3^{n}<b$.

Proof. We consider three cases.
Case 1. If $1 \leq a<b$ then $0 \leq \log _{2}(a)<\log _{2}(b)$ and it follows that $\log _{2}(a) / 3^{n}<$ $\log _{2}(b) / 3^{n}<1$ for a sufficiently large positive integer n. Since $2^{p} \neq 3^{q}$ for all integers p, q such that $p, q \neq 0$, we deduce $p \log 2 \neq q \log 3$, i.e., $\log _{2}(3)=\log 3 / \log 2$ is clearly irrational (see, e.g., [2]). So it follows from the equidistribution theorem [4,

Theorem 6.2 , p. 72] that the sequence $\log _{2}(3), 2 \log _{2}(3), 3 \log _{2}(3), \ldots$ is uniformly distributed modulo 1, i.e., there is some positive integer m such that

$$
\log _{2}(a) / 3^{n}<\log _{2}\left(3^{m}\right)-\left\lfloor\log _{2}\left(3^{m}\right)\right\rfloor<\log _{2}(b) / 3^{n}
$$

where $\lfloor x\rfloor$ denotes the greatest integer $k \leq x$. Let $r=\log _{2}\left(3^{m}\right)$ and let $s=r-\lfloor r\rfloor$. Then since $2^{r}=3^{m}$, it follows that $2^{s}=3^{m} / 2^{\lfloor r\rfloor}$. With this notation

$$
\log _{2}(a)<3^{n} s<\log _{2}(b)
$$

i.e., $a<2^{\left(3^{n} s\right)}<b$, whence $a<\left(3^{m} / 2^{\lfloor r\rfloor}\right)^{3^{n}}<b$. This shows that there is an integral power of 2 times an integral power of 3 between a and b.

Case 2. If $a<1<b$ we can use $n=m=0$.
Case 3. If $0<a<b \leq 1$ we will have $1 \leq 1 / b<1 / a$ so by case 1 there exist integers m, n such that $1 / b<2^{m} 3^{n}<1 / a$ and therefore $a<2^{-m} 3^{-n}<b$.

Now we prove the following:
THEOREM. A continuous surjective function f from \mathbb{R}^{+}to \mathbb{R}^{+}such that $f(0)=0$ satisfies Candido's equation (2) if and only if

$$
\begin{equation*}
f(x)=k x^{2} \tag{3}
\end{equation*}
$$

where $k>0$ is an arbitrary constant.
Proof. From Candido's equality (1), it follows that (3) satisfies (2). Conversely, assume that f is a solution of (2) satisfying the above conditions. Since $f(0)=0$ the substitution $y=0$ into (2) yields that for all $x \geq 0$: $f(2 f(x))=4 f(f(x))$. Since f is surjective, $f(x)$ ranges throughout \mathbb{R}^{+}as x ranges throughout \mathbb{R}^{+}, so that if we let $z=f(x)$, we have $f(2 z)=4 f(z)$ for all z in \mathbb{R}^{+}. It follows by induction

$$
\begin{equation*}
f\left(2^{n} z\right)=\left(2^{n}\right)^{2} f(z) \tag{4}
\end{equation*}
$$

for all integers $n \geq 0$.
Since $f(z)=\bar{f}\left(2^{n}\left(z / 2^{n}\right)\right)=\left(2^{n}\right)^{2} f\left(z / 2^{n}\right)$ we get

$$
\begin{equation*}
f\left(2^{-n} z\right)=\left(2^{-n}\right)^{2} f(z) \tag{5}
\end{equation*}
$$

for all integers $n \geq 1$. Thus from (4) and (5) we can conclude

$$
\begin{equation*}
f\left(2^{n} z\right)=\left(2^{n}\right)^{2} f(z) \tag{6}
\end{equation*}
$$

for all integers n. Next, set $y=x$ in (2) to obtain

$$
f(2 f(x)+f(2 x))=4 f(f(x))+2 f(f(2 x))
$$

and by virtue of (6), using $f(2 x)=4 f(x)$, we get:

$$
4 f(3 f(x))=f(6 f(x))=4 f(f(x))+2 \cdot 4^{2} \cdot f(f(x))=36 f(f(x))
$$

i.e., with $f(x)=z \geq 0$ arbitrary, $f(3 z)=3^{2} f(z)$ and by induction $f\left(3^{m} z\right)=$ $\left(3^{m}\right)^{2} f(z)$, whenever $m \geq 0$. As above, $f(z)=f\left(3^{m}\left(z / 3^{m}\right)\right)=\left(3^{m}\right)^{2} f\left(z / 3^{m}\right)$ so $f\left(3^{-m} z\right)=\left(3^{-m}\right)^{2} f(z)$ and therefore

$$
\begin{equation*}
f\left(3^{m} z\right)=\left(3^{m}\right)^{2} f(z) \tag{7}
\end{equation*}
$$

for all integers m. By means of (6) and (7), we obtain that for all integers m, n :

$$
\begin{equation*}
f\left(2^{n} 3^{m}\right)=\left(2^{n} 3^{m}\right)^{2} f(1) \tag{8}
\end{equation*}
$$

By our previous lemma any real numbers in $[0, \infty)$ may be approximated by a sequence in the set $\left\{2^{n} 3^{m} \mid n, m\right.$ integers $\}$ so from (8) and the continuity of f we can conclude that for all x in $\mathbb{R}^{+}, f(x)=k x^{2}$, with $k=f(1)>0$ an arbitrary constant.

Acknowledgment. The authors thank the referees for their helpful remarks and suggestions which improved the final presentation of this paper.

REFERENCES

1. G. Candido, A Relationship Between the Fourth Powers of the Terms of the Fibonacci Series. Scripta Mathematica 17:3-4 (1951) 230.
2. S. Lang, Introduction to Transcedental Numbers, Addison-Wesley, Reading, 1966.
3. R. B. Nelsen, Proof Without Words: Candido's Identity, this Magazine, 78 No. 2 (2005) 131.
4. I. Niven, Irrational Numbers, Carus. Math. Mono. 11, MAA, Wiley, New York, 1956.

Monotonic Convergence to e via the Arithmetic-Geometric Mean

JÓZSEF SÁNDOR

Department of Mathematics and Computer Sciences Babeș-Bolyai University Str. Kogălniceanu Nr. 1
400084 Cluj-Napoca, Romania jjsandor@hotmail.com

Recently, Hansheng Yang and Heng Yang [3], by using only the arithmetic-geometric inequality, have proved the monotonicity of the sequences $\left(x_{n}\right),\left(y_{n}\right)$, related to the number e :

$$
x_{n}=\left(1+\frac{1}{n}\right)^{n}, \quad y_{n}=\left(1+\frac{1}{n}\right)^{n+1} \quad(n=1,2, \ldots)
$$

Such a method probably is an old one and has been applied e.g. in [1], or [2].
We want to show that the above monotonicities can be proved much easier than in [3].

Recall that the arithmetic-geometric inequality says that for $a_{1}, \ldots, a_{k}>0$, and

$$
\begin{aligned}
& G_{k}=G_{k}\left(a_{1}, \ldots, a_{k}\right) \\
&=\sqrt[k]{a_{1} \ldots a_{k}} \\
& A_{k}=A_{k}\left(a_{1}, \ldots, a_{k}\right)=\frac{a_{1}+\cdots+a_{k}}{k}
\end{aligned}
$$

we have

$$
\begin{equation*}
G_{k} \leq A_{k} \tag{1}
\end{equation*}
$$

with equality only when all a_{i} are equal.

