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Giacomo Candido [1] (1871–1941) proved the equality

[F2
n + F2

n+1 + F2
n+2]2 = 2[F4

n + F4
n+1 + F4

n+2],
where Fn denotes the nth Fibonacci number, by observing that for all reals x, y one
has the curious identity

[x2 + y2 + (x + y)2]2 = 2[x4 + y4 + (x + y)4]. (1)

Candido’s identity (1) can be easily shown to be true not only in R
+ := [0, ∞)

but also in any commutative ring and admits a clear visual description as presented
recently in [3]. This identity raises the question: is (1) a characteristic property of
the polynomial function y = x2 in R

+? In order to answer this we reformulate (1) as
follows. Let f be a function from R

+ into R
+ such that

f ( f (x) + f (y) + f (x + y)) = 2 [ f ( f (x)) + f ( f (y)) + f ( f (x + y))] . (2)

In general (2) admits trivial solutions like f ≡ 0 as well as many bizarre, highly
discontinuous solutions. For example, define f to be any function from R

+ to R
+ with

the property that f (x) = 0 whenever x is rational and f (x) is rational (but arbitrary!)
whenever x is irrational. It is an exercise (try it) to show that every possible combina-
tion of rational or irrational values for the inputs x and y reduces (2) to the identity
0 = 0. But if we require f to be a continuous surjection on R

+ with f (0) = 0, then
we shall show that f can differ from the squaring function only by a multiplicative
constant.

LEMMA. For any two positive real numbers a and b with 0 < a < b, there are
integers m and n such that a < 2m3n < b.

Proof. We consider three cases.

Case 1. If 1 ≤ a < b then 0 ≤ log2(a) < log2(b) and it follows that log2(a)/3n <

log2(b)/3n < 1 for a sufficiently large positive integer n. Since 2p 	= 3q for all integers
p, q such that p, q 	= 0, we deduce p log 2 	= q log 3, i.e., log2(3) = log 3/ log 2 is
clearly irrational (see, e.g., [2]). So it follows from the equidistribution theorem [4,
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Theorem 6.2, p. 72] that the sequence log2(3), 2 log2(3), 3 log2(3), . . . is uniformly
distributed modulo 1, i.e., there is some positive integer m such that

log2(a)/3n < log2(3
m) − �log2(3

m)� < log2(b)/3n,

where �x� denotes the greatest integer k ≤ x . Let r = log2(3
m) and let s = r − �r�.

Then since 2r = 3m , it follows that 2s = 3m/2�r�. With this notation

log2(a) < 3ns < log2(b)

i.e., a < 2(3ns) < b, whence a < (3m/2�r�)3n
< b. This shows that there is an integral

power of 2 times an integral power of 3 between a and b.

Case 2. If a < 1 < b we can use n = m = 0.

Case 3. If 0 < a < b ≤ 1 we will have 1 ≤ 1/b < 1/a so by case 1 there exist
integers m, n such that 1/b < 2m3n < 1/a and therefore a < 2−m3−n < b.

Now we prove the following:

THEOREM. A continuous surjective function f from R
+ to R

+ such that f (0) = 0
satisfies Candido’s equation (2) if and only if

f (x) = kx2, (3)

where k > 0 is an arbitrary constant.

Proof. From Candido’s equality (1), it follows that (3) satisfies (2). Conversely,
assume that f is a solution of (2) satisfying the above conditions. Since f (0) = 0 the
substitution y = 0 into (2) yields that for all x ≥ 0: f (2 f (x)) = 4 f ( f (x)). Since f
is surjective, f (x) ranges throughout R

+ as x ranges throughout R
+, so that if we let

z = f (x), we have f (2z) = 4 f (z) for all z in R
+. It follows by induction

f (2nz) = (2n)2 f (z), (4)

for all integers n ≥ 0.
Since f (z) = f (2n(z/2n)) = (2n)2 f (z/2n) we get

f (2−nz) = (2−n)2 f (z) (5)

for all integers n ≥ 1. Thus from (4) and (5) we can conclude

f (2nz) = (2n)2 f (z), (6)

for all integers n. Next, set y = x in (2) to obtain

f (2 f (x) + f (2x)) = 4 f ( f (x)) + 2 f ( f (2x)),

and by virtue of (6), using f (2x) = 4 f (x), we get:

4 f (3 f (x)) = f (6 f (x)) = 4 f ( f (x)) + 2 · 42 · f ( f (x)) = 36 f ( f (x)),

i.e., with f (x) = z ≥ 0 arbitrary, f (3z) = 32 f (z) and by induction f (3mz) =
(3m)2 f (z), whenever m ≥ 0. As above, f (z) = f (3m(z/3m)) = (3m)2 f (z/3m) so
f (3−mz) = (3−m)2 f (z) and therefore

f (3mz) = (3m)2 f (z), (7)
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for all integers m. By means of (6) and (7), we obtain that for all integers m, n:

f (2n3m) = (2n3m)2 f (1). (8)

By our previous lemma any real numbers in [0, ∞) may be approximated by a
sequence in the set {2n3m |n, m integers } so from (8) and the continuity of f we can
conclude that for all x in R

+, f (x) = kx2, with k = f (1) > 0 an arbitrary constant.
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Recently, Hansheng Yang and Heng Yang [3], by using only the arithmetic-geometric
inequality, have proved the monotonicity of the sequences (xn), (yn), related to the
number e:

xn =
(

1 + 1

n

)n

, yn =
(

1 + 1

n

)n+1

(n = 1, 2, . . . )

Such a method probably is an old one and has been applied e.g. in [1], or [2].
We want to show that the above monotonicities can be proved much easier than in

[3].
Recall that the arithmetic-geometric inequality says that for a1, . . . , ak > 0, and

Gk = Gk(a1, . . . , ak) = k
√

a1 . . . ak,

Ak = Ak(a1, . . . , ak) = a1 + · · · + ak

k
,

we have

Gk ≤ Ak, (1)

with equality only when all ai are equal.
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