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1. Introduction
The sharing of data in distributed systems is already common and will become pervasive as these systems grow in
scale and importance.  Each user in a distributed system is potentially a creator as well as a consumer of data.  A
user may wish to make his actions contingent upon information from a remote site, or may wish to update remote
information. Sometimes the physical movement of a user may require his data to be accessible elsewhere. In both
scenarios, ease of data sharing considerably enhances the value of a distributed system to its community of users.
The challenge is to provide this functionality in a secure, reliable, efficient and usable manner that is independent of
the size and complexity of the distributed system.

This paper is a survey of the current state of the art in the design of distributed file systems, the most widely used
class of mechanisms for sharing data.  It consists of four major parts:  a brief survey of background material, case
studies of a number of contemporary file systems, an identification of the key design techniques in use today, and an
examination of research issues that are likely to challenge us in the next decade.

2. Background
We begin by examining the basic abstraction realized by file systems, and proceed to develop a taxonomy of issues
in their design.  Section 2.2 then traces the origin and development of distributed file systems until the middle of the
current decade, when the systems described in Section 3 came into use.  A sizeable body of empirical data on file
usage properties is available to us today.  Section 2.3 summarizes these observations and shows how they have
influenced the design of distributed file systems.

2.1. Basic Issues
Permanent storage is a fundamental abstraction in computing.  It consists of a named set of objects that come into
existence by explicit creation, are immune to temporary failures of the system, and persist until explicitly destroyed.
The naming structure, the characteristics of the objects, and the set of operations associated with them characterize a
specific refinement of the basic abstraction.  A file system is one such refinement.

From the perspective of file system design, computing models can be classified into four levels.  The set of design
issues at any level subsumes those at lower levels.  Consequently, the implementation of a file system for a higher
level will have to be more sophisticated than one that is adequate for a lower level.

At the lowest level, exemplified by IBM PC-DOS [25] and Apple Macintosh [4], one user at a single site performs
computations via a single process.  A file system for this model must address four key issues. These include the
naming structure of the file system, the application programming interface, the mapping of the file system
abstraction on to physical storage media, and the integrity of the file system across power, hardware, media and
software failures.

The next level, exemplified by OS/2 [33], involves a single user computing with multiple processes at one site.
Concurrency control is now an important consideration at the programming interface and in the implementation of
the file system.  The survey by Bernstein and Goodman [6] treats this issue in depth.

The classic timesharing model, where multiple users share data and resources, constitutes the third level of the
taxonomy. Mechanisms to specifiy and enforce security now become important.  Unix [62] is the archetype of a
timesharing file system.

Distributed file systems constitute the highest level of the taxonomy.  Here multiple users who are physically
dispersed in a network of autonomous computers share in the use of a common file system.  A useful way to view
such a system is to think of it as a distributed implementation of the timesharing file system abstraction.  The
challenge is in realizing this abstraction in an efficient, secure and robust manner.  In addition, the issues of file
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location and availability assume significance.

The simplest approach to file location is to embed location information in names.  Examples of this approach can be
found in the Newcastle Connection [9], Cedar [74], and Vax/VMS [15]. But the static binding of name to location
makes it inconvenient to move files between sites.  It also requires users to remember machine names, a difficult feat
in a large distributed environment.  A better approach is to use location transparency, where the name of a file is
devoid of location information.  An explicit file location mechanism dynamically maps file names to storage sites.

Availability is of special significance because the usage site of data can be different from its storage site.  Hence
failure modes are substantially more complex in a distributed environment. Replication, the basic technique used to
achieve high availability, introduces complications of its own.  Since multiple copies of a file are present, changes
have to be propagated to all the replicas.  Such propagation has to be done in a consistent and efficient manner.

2.2. Evolution
User-initiated file transfer was the earliest form of remote file access.  Although inconvenient and limited in
functionality, it served as an important mechanism for sharing data in the early days of distributed computing.  IFS
on the Alto personal computers [86] and the Datanet file repository on the Arpanet [40] exemplify this approach.

A major step in the evolution of distributed file systems was the recognition that access to remote file could be made
to resemble access to local files.  This property, called network transparency, implies that any operation that can be
performed on a local file may also be performed on a remote file.  The extent to which an actual implementation
meets this ideal is an important measure of quality.  The Newcastle Connection and Cocanet [64] are two early
examples of systems that provided network transparency.  In both cases the name of the remote site was a prefix of a
remote file name.

The decade from 1975 to 1985 saw a profusion of experimental file systems. Svobodova examines many of these in
her comparative survey [82]. Systems such as Felix [19], XDFS [43], Alpine [8], Swallow [81] and
Amoeba [45, 46] explored the issues of atomic transactions and concurrency control on remote files.  The
Cambridge file system [7] and the CMU-CFS file system [1] examined how the naming structure of a distributed file
system could be separated from its function as a permanent storage repository. The latter also addressed access
control, caching, and transparent file migration on to archival media.  Cedar [74] was the first file system to
practically demonstrate the viability of caching entire files.  Many of its design decisions were motivated by its
intended application as a base for program development.

Locus [56, 88] was a landmark system in two important ways.  First, it identified location transparency as an
important design criterion.  Second it proposed replication, along with a mechanism for detecting inconsistency, to
achieve high availability.  Locus also provided support for atomic transactions on files and generalized the notion of
transparent remote access to all aspects of the operating system. Weighted voting, an alternative way of using
replication for availability, was demonstrated in Violet [21, 22].

The rapid decline of CPU and memory costs motivated research on workstations without local disks or other
permanent storage media. In such a system, a disk server exports a low-level interface that emulates local disk
operations. Diskless operation has been successfully demonstrated in systems such as V [13] and RVD [26].
Lazowska et al [29] present an in-depth analysis of the performance of diskless workstations.  Since diskless
operation impacts autonomy, scalability, availability and security, it has to be viewed as a fundamental design
constraint. It remains to be seen whether these considerations, together with continuing improvements in disk
technology, will eventually outweigh the cost benefits of diskless operation.

Distributed file systems are in widespread use today. Section 3 describes the most prominent of these systems.
Each major vendor now supports a distributed file system, and users often view it as an indispensable component.
But the process of evolution is far from complete.  As elaborated in Section 5, the next decade is likely to see
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significant improvements in the functionality, usability and performance of distributed file systems.

2.3. Empirical Observations
A substantial amount of empirical investigation in the classic scientific mold has been done on file systems.  The
results of this work have been used to guide high-level design as well as to determine values of system parameters.
For example, data on file sizes has been used in the efficient mapping of files to disk storage blocks.  Information on
the frequency of different file operations and the degree of read- and write-sharing of files has influenced the design
of caching algorithms.  Type-specific file reference information has been useful in file placement and in the design
of replication mechanisms.

Empirical work on file systems involves many practical difficulties.  The instrumentation usually requires
modifications to the operating system.  In addition, it has to impact system performance minimally.  The total
volume of data generated is usually large, and needs to be stored and processed efficiently.

In addition to the difficulty of collecting data, there are two basic concerns about its interpretation. Generality is one
of these concerns.  How specific are the observations to the system being observed?  Data of widespread
applicability is obviously of most value. Independent investigations have been made of a variety of academic and
research environments.  The systems examined include IBM MVS [60, 79, 76], DEC PDP-10 [66, 67], and
Unix [50, 17, 18, 39]. Although these studies differ in their details, there is substantial overlap in the set of issues
they investigate.  Further, their results do not exhibit any serious contradictions.  We thus have confidence in our
understanding of file system characteristics in academic and research environments.  Unfortunately there is little
publicly available information from other kinds of environments.

The second concern relates to the interdependency of design and empirical observations.  Are the observed
properties an artifact of existing system design or are they intrinsic? Little is known about the influence of system
design on file properties, although the existence of such influence is undeniable.  For example, in a design that uses
whole-file transfer, there is substantial disincentive to the creation of very large files.  In the long run this may affect
the observed file size distribution.  It is therefore important to revalidate our understanding of file properties as new
systems are built and existing systems mature.

Studies of file systems fall into two broad categories.  Early studies [60, 79, 76, 66] were based on static analysis,
using one or more snapshots of a file system.  The data from these studies is unweighted.  Later studies
[67, 50, 17, 18, 39] are based on dynamic analysis, using continuous monitoring of a file system. These data are
weighted by frequency of file usage.

Although these studies have all been done on timesharing file systems their results are assumed to hold for
distributed file systems.  This is based on the premise that user behavior and programming environment
characteristics are the primary factors influencing file properties.  A further assumption is that neither of these
factors changes significantly in moving to a distributed environment. No studies have yet been done to validate
these assumptions.

The most consistent observation in all the studies is the skewing of file sizes toward the low end.  In other words,
most files are small, typically in the neighborhood of 10 kilobytes.  Another common observation is that read
operations on files are much more frequent than write operations.  Random accessing of a file is rare. A typical
application program sequentially reads an entire file into its address space and then performs nonsequential
processing on the in-memory data.  A related observation is that a file is usually read in its entirety once it has been
opened.

Averaged over all the files in a system, data appears to be highly mutable.  The functional lifetime of a file, defined
as the time interval between the most recent read and the most recent write, is skewed toward the low end.  In other
words, data in files tends to be overwritten often.  Although the mean functional lifetime is small, the tail of the
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distribution is long, indicating the existence of files with long-lived data.

Most files are read and written by one user.  When users share a file, it is usually the case that only one of them
modifies it.  Fine granularity read-write sharing of files is rare.  It is important to emphasize that these are
observations derived from research or academic environments.  An environment with large collaborative projects or
one that makes extensive use of databases may show substantially greater write-sharing of data.

File references show substantial temporal locality of reference.  If a file is referenced there is a high probability it
will be referenced again in the near future.  Over short periods of time the set of referenced files is a very small
subset of all files.

The characteristics described above apply to the file population as a whole.  If one were to focus on files of a
specific type their properties may differ significantly. For example, system programs tend to be stable and rarely
modified. Consequently the average functional lifetime of system programs is much larger than the average over all
files. Temporary files on the other hand show substantially shorter lifetimes.  More fine-grained classification of
files is also possible, as demonstrated by some of the investigations mentioned earlier [66, 17, 18].

3. Case Studies
In this section we examine three distributed file systems that are widely used today, focusing on their design goals,
their naming and location mechanisms, their use of replication and caching, and the support they provide for security
and system management.  Due to constraints of space we only provide sufficient detail to highlight the differences
and similarities of their designs.  In addition, we touch upon the noteworthy features of three other contemporary file
systems in Section 3.4.

3.1. Sun Network File System

3.1.1. Design Considerations
Since its introduction in 1985, the Sun Microsystems Network File System (NFS) has been widely used in industry
and academia.  In addition to its technical innovations it has played a significant educational role in exposing a large
number of users to the benefits of a distributed file system.  Other vendors now support NFS and a significant
fraction of the user community perceives it to be a de facto standard.

Portability and heterogeneity are two considerations that have played a dominant role in the design of NFS.
Although the original file system model was based on Unix, NFS has been ported to to non-Unix operating systems
such as PC-DOS.  To facilitate portability, Sun makes a careful distinction between the NFS protocol, and a specific
implementation of an NFS server or client.  The NFS protocol defines an RPC interface that allows a server to
export local files for remote access.  The protocol does not specify how the server should implement this interface,
nor does it mandate how the interface should be used by a client.

Design details such as caching, replication, naming, and consistency guarantees may vary considerably in different
NFS implementations.  In order to focus our discussion, we restrict our attention to the implementation of NFS
provided by Sun for its workstations that run the SunOS flavor of Unix.  Unless otherwise specified, the term
‘‘NFS’’ will refer to this implementation in the rest of this paper.  The term ‘‘NFS protocol’’ will continue to refer
to the generic interface specification.

SunOS defines a level of indirection in the kernel that allows file system operations to be intercepted and
transparently routed to a variety of local and remote file systems.  This interface, often referred to as the vnode
interface after the primary data structure it exports, has been incorporated into many other versions of Unix.
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With a view to simplifying crash recovery on servers, the NFS protocol is designed to be stateless. Consequently,
servers are not required to maintain contextual information about their clients.  Each RPC request from a client
contains all the information needed to satisfy the request.  To some degree functionality and Unix compatibility have
been sacrificed to meet this goal. Locking, for instance, is not supported by the NFS protocol, since locks would
constitute state information on a server.  SunOS does, however, provide a separate lock server to perform this
function.

Sun workstations are often configured without a local disk.  The ability to operate such workstations without
significant performance degradation is another goal of NFS.  Early versions of Sun workstations used a separate
remote-disk network protocol to support diskless operation.  This protocol is no longer necessary since the kernel
now transforms all its device operations into file operations.

A high-level overview of NFS is presented by Walsh et al [89]. Details of its design and implementation are given
by Sandberg et al [65]. Kleiman [27] describes the vnode interface, while Rosen et al [63] comment on the
portability of NFS.

3.1.2. Naming and Location
The NFS paradigm treats workstations as peers, with no fundamental distinction between clients and servers.  A
workstation may be a server, exporting some of its files.  It may also be a client, accessing files on other
workstations. But it is common practice for installations to be configured so that a small number of nodes run as
dedicated servers, while the others run as clients.

NFS clients are usually configured so that each sees a Unix file name space with a private root.  Using an extension
of the Unix mount mechanism, subtrees exported by NFS servers are individually bound to nodes of the root file
system. This binding usually occurs when Unix is initialized, and remains in effect until explicitly modified.  Since
each workstation is free to configure its own name space there is no guarantee that all workstations at an installation
have a common view of shared files.  But collaborating groups of users usually configure their workstations to have
the same name space.  Location transparency is thus obtained by convention, rather than being a basic architectural
feature of NFS.

Since name-to-site bindings are static, NFS does not require a dynamic file location mechanism. Each client
maintains a table mapping remote subtrees to servers.  The addition of new servers or the movement of files between
servers renders the table obsolete. There is no mechanism built into NFS to propagate information about such
changes.

3.1.3. Caching and Replication
NFS clients cache individual pages of remote files and directories in their main memory.  They also cache the results
of pathname to vnode translations.  Local disks, even if present, are not used for caching.

When a client caches any block of a file, it also caches a timestamp indicating when the file was last modified on the
server. To validate cached blocks of a file, the client compares its cached timestamp with the timestamp on the
server. If the server timestamp is more recent, the client invalidates all cached blocks of the file and refetches them
on demand. A validation check is always performed when a file is opened, and when the server is contacted to
satisfy a cache miss.  After a check, cached blocks are assumed valid for a finite interval of time, specified by the
client when a remote file system is mounted.  The first reference to any block of the file after this interval forces a
validation check.

If a cached page is modified, it is marked as dirty and scheduled to be flushed to the server.  The actual flushing is
performed by an asynchronous kernel activity and will occur after some unspecified delay.  However, the kernel
does provide a guarantee that all dirty pages of a file will be flushed to the server before a close operation on the file
completes.
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Directories are cached for reading in a manner similar to files. Modifications to directories, however, are performed
directly on the server.  When a file is opened, a cache validation check is also performed on its parent directory.
Files and directories can have different revalidation intervals, typical values being 3 seconds for files and 30 seconds
for directories.

NFS performs network data transfers in large block sizes, typically 8 Kbytes, to improve performance.  Read-ahead
is employed to improve sequential access performance.  Files corresponding to executable binaries are fetched in
their entirety if they are smaller than a certain threshold.

As originally specified, NFS did not support data replication.  More recent versions of NFS support replication via a
mechanism called Automounter [20, 11]. Automounter allows remote mount points to be specified using a set of
servers rather than a single server.  The first time a client traverses such a mount point a request is issued to each
server, and the earliest to respond is chosen as the remote mount site.  All further requests at the client that cross the
mount point are directed to this server.  Propagation of modifications to replicas has to be done manually.  This
replication mechanism is intended primarily for frequently-read and rarely-written files such as system binaries.

3.1.4. Security
NFS uses the underlying Unix file protection mechanism on servers for access checks.  Each RPC request from a
client conveys the identity of the user on whose behalf the request is being made.  The server temporarily assumes
this identity, and file accesses that occur while servicing the request are checked exactly as if the user had logged in
directly to the server.  The standard Unix protection mechanism using user, group and world mode bits is used to
specify protection policies on individual files and directories.

In the early versions of NFS, mutual trust was assumed between all participating machines.  The identity of a user
was determined by a client machine and accepted without further validation by a server. The level of security of an
NFS site was effectively that of the least secure system in the environment.  To reduce vulnerability, requests made
on behalf of root (the Unix superuser) on a workstation were treated by the server as if they had come from a
non-existent user, nobody. Root thus received the lowest level of privileges for remote files.

More recent versions of NFS can be configured to provide a higher level of security. DES-based mutual
authentication is used to validate the client and the server on each RPC request.  Since file data in RPC packets is
not encrypted, NFS is still vulnerable to unauthorized release and modification of information if the network is not
physically secure.

The common DES key needed for mutual authentication is obtained from information stored in a publicly readable
database. Stored in this database for each user and server is a pair of keys suitable for public key encryption. One
key of the pair is stored in the clear, while the other is stored encrypted with the login password of the user.  Any
two entities registered in the database can deduce a unique DES key for mutual authentication.  Taylor [83, 84]
describes the details of this mechanism.

3.1.5. System Management
Sun provides two mechanisms to assist system managers.  One of these, the Yellow Pages (YP), is a mechanism for
maintaining key-value pairs.  The keys and values are application-specific and are not interpreted by YP.  A number
of Unix databases such as those mapping usernames to passwords, hostnames to network addresses, and network
services to Internet port numbers are stored in YP.  YP provides read-only replication, with one master and many
slaves. Lookups may be performed at any replica.  Updates are performed at the master, which is responsible for
propagating the changes to the slaves.  YP provides a shared repository for system information that changes
relatively infrequently and that does not require simultaneous updates at all replication sites.  YP is usually in use at
NFS installations, although this is not mandatory.

The Automounter, mentioned in Section 3.1.3 in the context of read-only replication, is another mechanism for
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simplifying system management. It allows a client to lazy-evaluate NFS mount points, thus avoiding the need to
mount all remote files of interest when the client is initialized.  Automounter can be used in conjunction with YP to
substantially simplify the administrative overheads of server reconfiguration.

3.2. Apollo Domain File System

3.2.1. Design Considerations
The DOMAIN system, built by Apollo Computers Inc., is a distributed workstation environment whose
development began in the early 1980s.  The goal of this system was to provide a usable and efficient computing base
for a close-knit team of collaborating individuals.  Athough scale was not a dominant design consideration, large
Apollo installations now exist.  The largest of these is located at the Apollo corporate headquarters and encompasses
over 3500 nodes.

Apollo workstations range in hardware capability from small, diskless units to large configurations with disks and
other peripherals.  The underlying network technology is a proprietary 12 Mbit token ring [31]. Installations may
choose to treat some of their nodes as dedicated servers that run only system software, and other nodes as clients
performing user computations.  Such a dichotomy is only a matter of convention.  The DOMAIN software treats all
nodes as peers.

DOMAIN provides support for the distribution of typed files via an Object Storage System (OSS). A system-wide
Single Level Store (SLS) that provides a mapped virtual-memory interface to objects is built on top of the OSS.  The
DOMAIN distributed file system is layered on the SLS and presents a Unix-like file interface to application
programs. A facility called the Open Systems Toolkit [59] uses the file typing mechanism of the OSS to create an
extensible I/O system.  Users can write non-kernel code to interpret I/O operations.  When a file is opened its type is
determined and the code implementing I/O operations on that type of object is dynamically loaded by the system.

Levine [34] presents the design and rationale of the DOMAIN file system.  Its goals include location transparency,
data consistency, a system-enforced uniform naming scheme, and a uniform mechanism for access control.  Full
functionality, good performance and ease of administration are other stated goals of DOMAIN.  In addition to the
survey by Levine are other papers on the file system [32, 30], the overall architecture [31], an object-oriented
development tool for distributed applications [16], and the user registry [3, 54].

3.2.2. Naming and Location
Every object in the system is uniquely named by a 64-bit identifier called its UID. Each Apollo workstation is given
a unique node identifier at the time of its manufacture.  This identifier forms one component of the UID of every
object created at that workstation.  The time at which the object was created forms another component.  Together
these two components guarantee uniqueness of UIDs.  Location-specific information in UIDs does not violate the
goal of location transparency since its sole function is to guarantee uniqueness.

At any instant of time an object has a home node associated with it.  The OSS maps objects to their homes by using
a hint server. As its name implies, the hint server performs the mapping using a number of heuristics.  It is updated
in normal system operation by many diverse components of the DOMAIN software as they discover the location of
objects. A heuristic that is frequently successful is to assume that objects created at the same node are likely to be
located together.

A distributed naming server that maps string names to UIDs is built on top of the OSS.  This server provides a
hierarchical, Unix-like, location transparent name space for all files and directories in the system.  Directories in
DOMAIN are merely objects that map name components to UIDs.  The network-wide root directory of the name
space is implemented as a replicated distributed database with a server instance at the site of each replica.  The
naming facility is a good source of hints for the hint manager, since objects are often co-located with their parent
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directory.

3.2.3. Caching and Replication
The DOMAIN system transparently caches data and attributes of objects at the usage node.  Mapped virtual-memory
accesses via the SLS interface and file accesses via the file system interface are both translated into object references
at the OSS level.  The latter manages a cache of individual pages of objects using a write-back scheme with periodic
flushing of data to the home of the objects.

A timestamp is associated with each object indicating the time at its home node when it was last modified.  Every
cached page of the object contains this timestamp.  The consistency of locally cached data pages is verified by
comparing their timestamps with the timestamp of the object at the home node.  Invalid pages are merely discarded.
In the course of references to the object, missing pages are obtained by demand paging across the network to the
home node.  Fetch-ahead (currently 8KB) is used to improve sequential access performance.

Cache management in DOMAIN is integrated with its concurrency control mechanisms. Each node runs a lock
manager that synchronizes accesses to all objects which have their home at that node.  Two modes of locking are
supported. One mode allows multiple distributed readers or a single writer to access the object.  The other mode
allows access to multiple readers and writers co-located at a single node.  Lock managers do not queue requests. If a
lock for an object cannot be granted immediately, the requesting node must periodically retry its request.

Cache validation is performed when an object is locked. When a write-lock on an object is released, an implicit
purify operation is performed.  This operation atomically flushes updated pages of an object to its home node.
Application software is responsible for ensuring that objects are locked before being mapped into virtual memory or
opened for file access.  It is also responsible for releasing locks when appropriate.

DOMAIN does not support read-only or read-write replication of data.  An object can have only one home at any
instant of time.  But replicated services such as a replicated user registry and a replicated naming service are
supported by DOMAIN.

3.2.4. Security
Security in DOMAIN is predicated on the physical integrity of Apollo workstations and on the trustworthiness of
the kernels on them.  Since the network is also assumed to be secure, communications on it are sent in the clear.
The network component of the kernel at each node uses a special field in the header of every packet to indicate
whether the originator of the packet was a user-level program, or the kernel itself.  This prevents user-level
programs from masquerading as trusted system software.

A distributed user registry stores each user’s login password in encrypted form, as in Unix. When a user logs in on a
node, the local kernel encrypts the password typed by the user, fetches his login entry from the registry, and
validates the user by comparing the two encrypted passwords.  Each instance of a logged-in user is associated with a
unique identifier, called a PPON, that identifies the user, the project and organization he belongs to, and the node at
which this login instance occurred.  The PPON is used on all access checks on behalf of this logged-in instance of
the user.  Nodes cache recently-used registry information to enhance availability.

The user registry, called RGY, is a replicated database with one master site and multiple read-only slaves for
availability. Each replica contains the entries for all users in the system.  Updates are made at the master site which
then propagates them asynchronously to the slave sites.  Direct authentication to the master, using a Needham-
Schroeder authentication handshake, is required before an update can be performed.

Protection policies are specified by access lists on objects.  An access list entry maps a PPON to a set of rights.
Components of PPONs can be wildcarded.  If multiple entries are applicable in a given access check, the most
specific matching entry overrides the others.  Checking of access has been done at the home node of objects in some
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releases of DOMAIN, and at the usage node in other releases.  These are logically equivalent, since the kernels trust
each other.

3.2.5. System Management
Concern for ease of administration has been an important influence on the design of the DOMAIN user registry
described in the previous section.  Its design allows multiple mutually suspicious groups to use a single registry for
system management information.  Each group can have a distinct system administrator who is the only person who
can manipulate entries pertaining to the group.  Decentralized administration and specification of usage policies is
effectively supported by this mechanism.  The registry also supports heterogeneity, initially in the form of a client
interface for Sun workstations.

An interactive tool, edrgy, provides a structured interface to the registry.  It possesses substantial semantic
knowledge of the contents of the registry and guides administrators.  Edrgy detects and notifies administrators of
potentially serious side effects of their actions.

3.3. Andrew File System

3.3.1. Design Considerations
Andrew is a distributed workstation environment that has been under development at Carnegie Mellon University
since 1983.  It combines the rich user interface characteristic of personal computing with the data sharing simplicity
of timesharing.  The primary data-sharing mechanism is a distributed file system spanning all the workstations.
Using a set of trusted servers, collectively called Vice, the Andrew file system presents a homogeneous, location-
transparent file name space to workstations. Clients and servers both run the 4.3 BSD version of Unix.  It is a
relatively heavyweight operation to configure a machine as an Andrew server.  This is in contrast to systems such as
Sun NFS, where it is trivial for any machine to export a subset of its local file system.

Scalability is the dominant design consideration in Andrew.  Many design decisions in Andrew are influenced by its
anticipated final size of 5000 to 10000 nodes, Careful design is necessary to provide good performance at large scale
and to facilitate system administration.  Scale also renders security a serious concern, since it has to be enforced
rather than left to the good will of the user community.

The goals and directions of the Andrew project have been described by Morris et al [44]. The file system has been
discussed extensively in papers focusing on architecture [70], performance [24], security [68], and the influence of
scale [69].  The Andrew file system has undergone one complete revision, and a second revision is under way [77].

3.3.2. Naming and Location
The file name space on an Andrew workstation is partitioned into a shared and a local name space.  The shared
name space is location transparent and is identical on all workstations.  The local name space is unique to each
workstation and is relatively small.  It only contains temporary files or files needed for workstation initialization.
Users see a consistent image of their data when they move from one workstation to another, since their files are in
the shared name space.

Both name spaces are hierarchically structured, as in Unix.  The shared name space is partitioned into disjoint
subtrees, and each such subtree is assigned to a single server, called its custodian. This assignment is relatively
static, although reassignment for operational reasons is possible.  Internally, Andrew uses 96-bit file identifiers to
uniquely identify files.  These identifiers are not visible to application programs.

Each server contains a copy of a fully replicated location database that maps files to custodians.  This database is
relatively small because custodianship is on subtrees, rather than on individual files.  Temporary inaccuracies in the
database are harmless, since forwarding information is left behind when data is moved from one server to another.
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3.3.3. Caching and Replication
Files in the shared name space are cached on demand on the local disks of workstations.  A cache manager, called
Venus, runs on each workstation.  When a file is opened, Venus checks the cache for the presence of a valid copy. If
such a copy exists, the open request is treated as a local file open.  Otherwise an up-to-date copy is fetched from the
custodian. Read and write operations on an open file are directed to the cached copy.  No network traffic is
generated by such requests.  If a cached file is modified, it is copied back to the custodian when the file closed.

Cache consistency is maintained by a mechanism called callback. When a file is cached from a server, the latter
makes a note of this fact and promises to inform the client if the file is updated by someone else.  Callbacks may be
broken at will by the client or the server.  The use of callback, rather than checking with the custodian on each open,
substantially reduces client-server interactions.  The latter mechanism was used in the first version of Andrew.
Andrew caches large chunks of files, to reduce client-server interactions and to exploit bulk data transfer protocols.
Earlier versions of Andrew cached entire files.

A mechanism orthogonal to caching is read-only replication of data that is frequently read but rarely modified.  This
is done to enhance availability and to evenly distribute server load.  Subtrees that contain such data may have
read-only replicas at multiple servers.  But there is only one read-write replica and all updates are directed to it.
Propagation of changes to the read-only replicas is done by an explicit operational procedure.

Concurrency control is provided in Andrew by emulation of the Unix flock system call.  Lock and unlock operations
on a file are performed directly on its custodian.  If a client does not release a lock within 30 minutes, it is timed out
by the server.

3.3.4. Security
The design of Andrew pays serious attention to security, while ensuring that the mechanisms for enforcing it do not
inhibit legitimate use of the system [68]. Security is predicated on the integrity of a small number of Vice servers.
These servers are physically secure, are accessible only to trusted operators, and run only trusted system software.
Neither the network, nor workstations are trusted by Vice.  Authentication and secure transmission mechanisms
based on end-to-end encryption are used to provide secure access to servers from workstations.

It is still the responsibility of a user to ensure that he is not being compromised by malicious software on his
workstation. To protect himself against Trojan horse attacks, a concerned user has to maintain the physical integrity
of his workstation and to deny remote access to it via the network.

The protection domain in Andrew is composed of users, corresponding to human users, and groups, which are sets
of users and other groups.  Membership in a group is inherited, and a user accumulates the privileges of all the
groups he belongs to directly and indirectly.  Inheritance of membership simplifies the maintenance and
administration of the protection domain.  Membership in a special group called ‘‘System:Administrators’’ endows
administrative privileges, including unrestricted access to any file in the system.

Andrew uses an access list mechanism for protection.  The total rights specified for a user are the union of all the
rights collectively specified for him and for all the groups of which he is a direct or indirect member.  An access list
can specify negative rights. An entry in a negative rights list indicates denial of the specified rights, with denial
overriding possession in case of conflict.  Negative rights are intended primarily a means of rapidly and selectively
revoking access to critical files and directories.

For conceptual simplicity, Vice associates access lists with directories rather than files.  The access list applies to all
files in the directory, thus giving them uniform protection status. In addition, the three owner bits of the Unix file
mode are used indicate readability, writability or executability.  In Andrew, these bits indicate what can be done to
the file rather than who can do it.
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For reasons of compatibility, Andrew will replace its original authentication system with the Kerberos authentication
system of Project Athena [78]. The two resemble each other closely in architecture, although they differ
substantially in the details.  Both use a two-step authentication scheme.  When a user logs in to a workstation, his
password is used to establish a secure communication channel to an authentication server. A pair of authentication
tokens (in the case of Andrew), or an authentication ticket (in the case of Kerberos) are obtained from the
authentication server and saved for future use.  These are used, as needed, to establish secure RPC connections on
behalf of the user to individual file servers. The authentication server has to run on a trusted machine in both
systems. For robustness, there are multiple instances of this server.  Only one server, the master, accepts updates.
The others are slaves and respond only to queries.  Changes are propagated to slaves by the master.

3.3.5. System Management
Operability is a major concern in Andrew on account of its scale.  The system has to be easy for a small staff to run
and administer.  Regular operational procedures have to be performed in a manner that cause minimal disruption of
service to users.

The operational mechanisms of Andrew are built around a data structuring primitive called a volume [75]. A
volume is a collection of files forming a partial subtree of the Vice name space and having the same custodian.
Volumes are glued together at mount points to form the complete name space.

There is usually one volume per user, as well as a number of volumes containing system software.  Volume sizes are
usually small enough to allow many volumes per disk partition on a server.  Disk storage quotas are applied on a
per-volume basis.  Operations such as moving a volume from one server to another can be performed while the
volume is still online.  A read-only replica of a volume can be created by a clone operation. Such replicas can be
used to improve availability and performance.  Read-only volumes can also be used to implement an orderly release
process for system software.

Volumes also form the basis of the backup and restoration mechanism.  To backup a volume a frozen snapshot of its
files is created by cloning.  An asynchronous mechanism then transfers this clone to a staging machine from where it
is dumped to tape.  To handle the common case of accidental deletion by users, the cloned backup volume of each
user’s files is made available as a read-only subtree in Vice.

Andrew has been extended to allow decentralized operation.  A cooperating group of cells adhering to a
standardized set of protocols and naming conventions [92] can jointly provide the image of a single file name space.
Cross-cell authentication and translation of user identities in different administrative domains are key issues that
have been addressed in this mechanism.

3.4. Other Contemporary Systems
Each of the three systems described in this section is important either because it is widely used or because it
occupies a unique position in the space of distributed file system designs.  In the interests of brevity, we only present
condensed descriptions of the most distinctive aspects of these systems.

3.4.1. IBM AIX Distributed Services
As its name imples, AIX Distributed Services (DS) is a collection of distributed system services developed by IBM
for its workstations running the AIX Operating System. AIX is a derivative of the System V version of Unix.  The
primary component of DS is a distributed file system whose design goals include strict emulation of Unix semantics,
ability to efficiently support databases, and ease of administering a wide range of DS installation configurations.

A DS client can access remote files via an extension of the Unix mount mechanism.  DS allows individual files and
directories to be mounted, in contrast to distributed file systems that allow mounts only at the granularity of an entire
subtree. A server does not have to explicitly export or advertise the files it wishes to share.  Rather, all files are
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assumed to be remotely accessible, subject to access checks.  Most file system operations behave identically on local
and remote files. Two significant exceptions are the inability to access remote devices, and the inability to map
remote files into the address space of a process.  The latter restriction will be removed in a future release of DS.

DS uses client main memory as a write-through cache of individual pages of files.  Clients notify servers of each
open of a file for reading or writing.  The behavior of the caching mechanism depends on whether it is in read-only
mode (one or more clients reading and no clients writing), async mode (one client reading and writing), or full-sync
mode (multiple clients writing).  In read-only mode caching is enabled at all clients.  In async mode caching is
enabled only at the writer, with all other sites directing their read requests to the server. Client caching is disabled in
full sync mode.  Cache consistency is maintained by a mechanism reminiscent of the Andrew callback mechanism.
Since a server is aware of all remote opens of its files, it can keep track of all clients that have opened a file since the
last time it was modified.  Before accepting the next open for modification, it notifies this list of clients and they
invalidate all pages of the file that are in their caches.

DS uses virtual circuit communication based on the SNA LU6.2 protocol.  Future versions of DS will also be able to
run on the TCP/IP protocol.  Node to node DES mutual authentication is provided as part of the LU6.2
implementation. Users and groups have 32-bit network-wide ids. DS translates these network ids into machine-
specific Unix-compatible 16-bit ids.  The Kerberos authentication mechanism will be supported as an option in the
future.

Sauer et al [72] and Levitt [35] describe the design of DS.  Sauer [71] presents a detailed description of the
fine-granularity mount mechanism.  Sauer et al [73] discuss the rationale for maintaining client state on servers for
some aspects of DS while avoiding state for other aspects.

3.4.2. AT&T Remote File Sharing
Remote File Sharing (RFS) is a distributed file system developed by AT&T for its System V version of Unix, and is
derived from an earlier implementation for Unix Edition 8 [90]. The most distinctive feature of RFS is its precise
emulation of local Unix semantics for remote files.  An operation on a remote file is indistinguishable from the
corresponding operation on a local file.  This aspect of RFS extends to areas such as concurrency control, write-
sharing semantics and the ability to access and control remote devices.

RFS uses the client-server model with virtual circuit communication based on Unix System V Streams [49] to
provide easy portability across a variety of transport protocols.  A server advertises each subtree it wishes to export,
using a network-wide symbolic name for the root of the subtree.  Clients explicitly import remote subtrees using
symbolic names.  A name server performs the translation of symbolic names to server addresses.

Accuracy of Unix system call emulation is achieved by executing all remote file system calls on the server.  A client
merely intercepts and forwards these calls to the server.  The exact execution environment of the client is recreated
on the server for the duration of a call, using information passed by the client in its request.

The initial version of RFS used no caching.  It has since been extended to provide caching in client main memory,
retaining the exact emulation of Unix semantics.  Caching is used only for simple files, not for directories or
devices. The cache is write-through, with consistency being checked on opens.  With a single writer and multiple
readers, caching is disabled at the readers.  Caching is reenabled when the writer closes the file, or when the time
interval since the last modification by the writer exceeds a predefined threshold.  All caching in the system is
disabled when there are multiple writers.

RFS clients and servers trust each other.  Protection on files and directories is specified exactly as in Unix.  A
mechanism to map user and group identities allows files to be shared across administrative domains.  RFS also
provides a mechanism to restrict the privileges of remote users at a coarse granularity.
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The rationale, architecture and implementation of RFS are described by Rifkin et al [61]. Bach et al [5] describe
how RFS was extended to incorporate caching.  Chartock [12] shows how RFS was made to coexist with Sun NFS,
using the vnode interface.  A comparison of Sun NFS and AT&T RFS is presented by Hatch et al [23].

3.4.3. Sprite Network File System
Sprite is an operating system for networked uniprocessor and multiprocessor workstations, designed at the
University of California at Berkeley.  The goals of Sprite include efficient use of large main memories, support for
multiprocessor workstations, efficient network communication, and diskless operation.  Besides a distributed file
system, Sprite provides other distributed system facilities such as process migration.

Most workstations in a Sprite network are diskless.  Although the design of Sprite does not make a rigid distinction
between clients and servers, a few machines with disks are usually dedicated as file servers.  These servers jointly
present a location-transparent Unix file system interface to clients.

Clients do not have to explicitly import files from individual servers.  Each server can respond to location queries,
using remote links embedded in the file system at each server.  Remote links are effectively pointers to files at other
servers. Each client maintains a local prefix table, which maps pathname prefixes to servers.  Substantial
performance improvement is achieved by using the cached information in the prefix table for locating files.

Sprite is intended for use by a collection of collaborating users who are either incapable of subverting the kernels on
workstations, or who trust each other.  Consequently Sprite kernels trust each other, and communication between
them is neither authenticated nor encrypted.

Exact emulation of Unix file system semantics is an important goal of Sprite. Whenever a client opens or closes a
file for reading or writing, it notifies the server that stores the file.  A Sprite client usually caches pages of a file,
validating these pages each time the file is opened.  Caching is disabled when multiple clients have a file open, and
one or more of these clients have it open for writing.  Once caching is disabled, it is reenabled only after all clients
concurrently using the file have closed it.  This strategy enables Sprite to provide consistency at the granularity of
individual read and write operations.

Sprite provides location-transparent remote access to devices as well as files.  To provide good performance under a
wide variety of workloads, physical memory on a Sprite workstation is dynamically partitioned between the virtual
memory subsystem and the file cache.  Sprite uses ordinary file in the shared name space for paging .  This
simplifies process migration, since the backing files are visible at all other Sprite workstations in the environment.

Ousterhout et al [51] provide an overview of Sprite.  Welch and Ousterhout [91] describe the prefix mechanism used
for file location.  A detailed performance analysis of caching in Sprite is presented by Nelson et al [48].

4. Mechanisms and Techniques
The purpose of this section is to highlight and discuss certain mechanisms that have been found to be of significant
value in the design of distributed file systems.  These mechanisms are of general applicability, except for mount
points, which are Unix-specific. But even mount points are widely used since the majority of distributed file
systems at the present time are based on Unix.  The dominance of the Unix file system model is indeed remarkable.

4.1. Mount Points
The mount mechanism in Unix enables the glueing together of file name spaces to provide applications with a
single, seamless, hierarchically structured, name space.  On startup, the Unix file name space consists of a single
root file system. Individual mount commands may then be issued to bind the root of an external file system to an
internal or leaf node of the local name space. A mount on an internal node hides the original subtree beneath that
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node. To simplify the implementation, Unix imposes certain restrictions such as the inability to place hard links
across mount points.

Mount was originally conceived as a mechanism to allow self-contained file systems on removable storage media to
be added to or removed without reinitializing Unix.  When performing a name lookup, the kernel uses an internal
data structure called the mount table to direct its search to the appropriate storage device. A single lookup may span
many devices if multiple mounts are in effect.  In a distributed file system, the mount mechanism provides a natural
hook on which to hang a remote subtree.  There are two fundamentally different ways to use the mechanism, with
numerous variants of each.

The simpler approach is used by systems such as NFS, where each client individually mounts subtrees from servers.
There is no centralized management of mount information.  Servers are unaware of where the subtrees exported by
them have been mounted.  Although this approach is easier to implement, it has the disadvantage that the shared
name space is not guaranteed to be identical at all clients.  Further, movement of files from one server to another
requires each client to unmount and remount the affected subtree.  In practice, systems that use this approach have
usually had to provide auxiliary mechanisms (such as the Yellow Pages and Automounter in NFS) to automate and
centralize mounts.

The alternative approach is to embed mount information in the data stored in the file servers.  Andrew, for example,
uses mount points embedded in volumes.  Sprite uses remote links for a similar purpose.  Using this approach, it is
trivial to ensure that all clients see precisely the same shared file name space.  Further, operational tasks such as
moving files from one server to another only involve updating the mount information on the servers.

4.2. Caching at Clients
The caching of data at clients is undoubtedly the architectural feature that contributes most to performance in a
distributed file system. Every distributed file system in serious use today uses some form of caching.  Even
AT&T’s RFS, which initially avoided caching in the interests of strict Unix emulation, now uses it.

Caching exploits locality of reference.  There is a high probability that file data will be reused soon after its first use.
By obtaining a local copy of the data a client can avoid many further interactions with the server.  Meta data, such as
directories, protection and file status information, and file location information also exhibit locality of reference and
are thus good candidates for caching.

A key issue in caching is the size of the cached units of data.  Most distributed file systems cache individual pages of
files. Early versions of Andrew cached entire files. Although this simplifies cache managment and offers simpler
failure semantics it does suffer from the inability to access files that are larger than the client’s cache.  More recent
versions of Andrew cache large portions (typically 64KB) of files.  The unit of caching is closely related to the use
of bulk transfer protocols, as discussed in Section 4.4.

In most systems clients maintain the cache in their main memory.  Andrew is an exception in that it caches on its
local disk, with a further level of caching in main memory.  Besides providing larger cache sizes, disk caching
preserves cache contents across system reboots.

The validation of cache contents can be done in two fundamentally different ways.  One approach, used by most
systems, is for the client to contact the server for validation.  The alternative approach, used in Andrew and DS, is to
have the server notify clients when cached data is about to be rendered stale.  Although more complex to implement,
the latter approach can produce substantial reductions in client-server traffic.

Existing systems use a wide spectrum of approaches in propagating modifications from client to server. In async
mode, DS propagates changes to the server only when the file is explicitly flushed.  Andrew propagates changes
when a file is closed after writing. Sprite delays propagation until dirty cache pages have to be reclaimed or for a
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maximum of 30 seconds. Deferred propagation improves performance since data is often overwritten, but increases
the possibility of server data being stale due a client crash.

References within a file also exhibit spatial locality.  If a page of a file is read, there is substantial likelihood that
succeeding pages will also be read.  This property is exploited in many systems by using read-ahead of file data.
The client can overlap the processing of one page with the fetching of the next page or set of pages from the server.

4.3. Hints
In the context of distributed systems, a hint [28] is a piece of information that can substantially improve performance
if correct but has no semantically negative consequence if erroneous.  For maximum performance benefit a hint
should nearly always be correct.  Terry [85] discusses the use of hints in detail and provides many examples of how
they may be used in distributed systems.

By caching hints one can obtain substantial performance benefits without incurring the cost of maintaining cache
consistency. Only information that is self-validating upon use is amenable to this strategy.  One cannot, for
instance, treat file data as a hint because the use of a cached copy of the data will not reveal whether it is current or
stale.

Hints are most often used for file location information in distributed file systems.  Sprite, for instance, caches
mappings of pathname prefixes to servers.  Similarly, Andrew caches individual entries from the volume location
database. In these systems a client will use cached location information until a server rejects a request because it no
longer stores the file referred to in the request. The client then obtains the new location of the file, and caches this
information as a fresh hint.  A more elaborate location scheme, incorporating a hint manager, is used by Apollo
Domain.

4.4. Transferring Data in Bulk
Network communication overheads typically account for a major portion of the latency in a distributed file system.
Although the transit time of small amounts of data across a local area network is insignificant, the delays caused by
protocol processing can be substantial.  Transferring data in bulk reduces this overhead at both the source and sink
of the data.  At the source, multiple packets are formatted and transmitted with one context switch.  At the sink, an
acknowledgement is avoided for each packet.  Some bulk transfer protocols also make better use of the disks at the
source and sink.  Multiple blocks of data may often be obtained at the source with a single seek. Similarly, packets
can be buffered and written en masse to the disk at the sink.  In effect, the use of bulk transfer amortizes fixed
protocol overheads over many consecutive pages of a file.

Bulk transfer protocols depend on spatial locality of reference within files for effectiveness.  There is a very high
probability that succeeding pages of a file will soon be referenced at the client if an earlier page is referenced.  As
mentioned in Section 2.3 there is substantial empirical evidence to indicate that files are read in their entirety once
they are opened.

The degree to which bulk transfer is exploited varies from system to system. Andrew, for instance, is critically
dependent on it for good performance.  Early versions of the system transferred entire files, and the current version
transfers files in 64KB chunks.  Systems such as NFS and Sprite exploit bulk transfer by using very large packet
sizes, typically 8KB. The latter systems depend on the link level protocol to fragment and reassemble smaller
packets at the media access level.  Bulk transfer protocols will increase in importance as distributed file systems
spread across networks of wider geographic area and thus have greater inherent latency.
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4.5. Encryption
Encryption is an indispensable building block for enforcing security in a distributed system. Voydock and Kent [87]
classify threats to security as actions that cause unauthorized release of information, unauthorized modification of
information, or unauthorized denial of resources. Encryption is primarily of value in preventing unauthorized
release and modification of information.  Because it is a national standard, DES [42] is the most commonly used
form of private-key encryption.

The seminal work of Needham and Schroeder [47] on the use of encryption for authentication is the basis of all
current security mechanisms in distributed file systems.  At the heart of these mechanisms is a handshake protocol in
which each party challenges the other to prove its identity.  Possesion of a secret encryption key, known only to a
legitimate client and server, is assumed to be prima facie evidence of authenticity.  Thus two communicating entities
that are mutually suspicious at the beginning end up confident of each other’s identity, without ever transmitting
their shared secret key in the clear.

This basic scheme is used in two distinct ways in current systems.  The difference lies in the way user passwords are
stored and used on servers.  In the scheme used by Kerberos and Andrew, an authentication server that is physically
secure maintains a list of user passwords in the clear.  In contrast, the public key scheme used by Sun NFS maintains
a publicly readable database of authentication keys that are encrypted with user passwords.  The latter approach has
the attractive characteristic that physical security of the authentication server is unnecessary.

Encryption is usually implemented end-to-end, at the RPC level.  DS, in contrast, uses node-to-node encryption.  In
some systems, such as Andrew, encryption can be used to protect the data and headers of all packets exchanged after
authentication. Other systems, such as Sun NFS, do not provide this capability.

A difficult nontechnical problem is justifying the cost of encryption hardware to management and users.  Unlike
extra memory, processor speed, or graphics capability, encryption devices do not provide tangible benefits to users.
The importance of security is often perceived only after it is too late.  At present, encryption hardware is viewed as
an expensive frill.  Hopefully, the emerging awareness that encryption is indispensable for security will make rapid,
cheap encryption a universally available capability.

5. Current Issues
Distributed file systems continue to be the subject of considerable activity and innovation in industry and academia.
Work is being done in the areas of availability, further scaling, support for heterogeneity, and database access. We
briefly consider each of these issues in the following sections.

5.1. Availability
As reliance on distributed file systems increases, the problem of availability becomes acute.  Today a single server
crash or network partition can seriously inconvenience many users in a large distributed file system.  There is a
growing need for distributed file systems that are highly resilient to failures.

Availability is the focus of the Coda file system, currently being built at Carnegie Mellon University.  Coda’s goal is
to provide the highest degree of availability in the face of all realistic failures, without significant loss of usability,
performance or security.  Two orthogonal mechanisms, replication and disconnected operation, are used to achieve
this goal.  Many key architectural features of Coda, such as the use of caching with callback, whole-file transfer,
RPC-based authentication and encryption, and aggregation of data into volumes are inherited from Andrew.

Consistency, availability and performance tend to be mutually contradictory goals in a distributed system.  Coda’s
strategy is to provide the highest availability at the best performance.  It considers inconsistency tolerable if it is
rare, occurs only under conditions of failure, is always detected, and is allowed to propagate as little as possible.
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The relative infrequency of simultaneous write-sharing of files by multiple users makes this a viable strategy.

High availability is also a key concern of the Echo file system being built at the System Research Center of Digital
Equipment Corporation.  This design also uses replication, but its strategy differs substantially from that of Coda.
At any time exactly one of the servers with a replica of a file is its primary site. Clients interact only with the
primary site, which assumes the responsibility of propagating changes to the other replication sites.  In case of
partition, file updates are allowed only in the partition containing a majority of the replication sites.  When the
primary site is down, a new primary site is elected.

Other recent experimental efforts in this area include RNFS at Cornell University [41] and Gemini at the University
of California at San Diego [14, 52, 53].

5.2. Scalability
Certain problems induced by scale have been exposed by the extensive use of large distributed file systems.  One
problem is the need for decentralization. The ability to delegate administrative responsibility along lines that parallel
institutional boundaries is critical for smooth and efficient operation.  The ideal model of decentralization is one in
which users perceive the system as monolithic even when their accesses span many administrative domains.  In
practice, of course, most accesses from a client are likely to be directed to a server in the same administrative
domain. As mentioned in Section 3 the Apollo and Andrew file systems have been extended to support
decentralized administration.

Another aspect of scaling is the extension of the distributed file system paradigm over wide geographic areas.
Virtually all distributed file systems today are designed with local area networks in mind. It is an open question
whether such designs can be extended over networks with longer latencies and greater chances of network
congestion. An effort is currently under way to extend Andrew to operate over a wide-area network.  With its
emphasis on caching and minimization of client-server interactions, the design of Andrew seems quite appropriate
for such extension.

A basic question that arises at very large scale is whether a single hierarchically-organized name space is indeed the
most appropriate model for sharing data.  This paradigm, originally invented for timesharing systems of tens or
hundreds of users, has been successfully extended to distributed file systems of a thousand or so nodes.  Will it be
the best model when there are two orders of magnitude or more nodes?  Pathnames become longer and it becomes
increasingly difficult to search for files whose name is not precisely known.  The Quicksilver file system [10],
currently under development at the IBM Almaden Research Center, addresses this issue.  Its approach is to provide
mechanisms for a user to customize his name space.  Since the customization is location-transparent the user retains
his context when he moves to any other node in the system.  A similar approach has been proposed in the Plan 9
system at Bell Labs [57].

Network topology is becoming an increasingly important aspect of distributed systems.  Large networks often have
complex topologies, caused by a variety of factors.  Electrical considerations limit the lengths of individual network
segments and the density of machines on them.  Maintenance and fault isolation are simplified if a network is
decomposable. Administrative functions such as the assignment of unique host addresses can be decentralized if a
network can be partitioned. Although distributed file systems mask underlying network complexity, performance
inhomogeneities cannot be hidden.  Routers, which introduce load-dependent transmission delays, are a common
source of performance inhomogeneity.  Uneven loading of subnets is another cause.  The interaction between
network topology and distributed system performance is still poorly understood.  A preliminary investigation of
these issues has been reported in the context of Andrew [37].
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5.3. Heterogeneity
As a distributed system evolves it tends to grow more diverse.  A variety of factors contribute to increased
heterogeneity. First, a distributed system becomes an increasingly valuable resource as it grows in size and stores
larger amounts of shared data.  There is then considerable incentive and pressure to allow users outside the scope of
the system to participate in the use of its resources.  A second source of heterogeneity is the improvement in
performance and decrease in cost of hardware over time.  This makes it likely that the most effective hardware
configurations will change over the period of growth of the system.  Functional specialization is a third reason for
heterogeneity. Certain combinations of hardware and software may be more appropriate than others for specific
applications.

The distributed file system community has gained some experience with heterogeneity.  Pinkerton et al describe an
experimental file system at Washington [55] that focuses on heterogeneity. TOPS [80] is a product offered by Sun
Microsystems that allows personal computers running the PC-DOS and Macintosh operating systems to share files.
PC-NFS, also from Sun, allows PC-DOS applications to access files on an NFS server.  A surrogate server
mechanism in Andrew, called PCServer [58], enables PC-DOS applications to access files in Vice.

Coping with heterogeneity is inherently difficult because of the presence of multiple computational environments,
each with its own notions of file naming and functionality.  Since few general principles are applicable, the
idiosyncrasies of each new system have to be accomodated by ad hoc mechanisms.  Unfortunately heterogeneity
cannot be ignored since it is likely to be more widespread in the future.

5.4. Database Access
As mentioned in the introductory section of this paper, a file system is a refinement of the permanent storage
abstraction. A database is an alternative refinement and differs from a file system in two important ways. One
difference is the storage model presented to application programs and users.  A file system views the data in a file as
an uninterpreted byte sequence.  In contrast, a database encapsulates substantial information about the types and
logical relationships of data items stored in it.  It can ensure that constraints on values are satisfied and can enforce
protection policies at fine granularity.  The second fundamental distinction is in the area of naming.  A file system
provides access to a file by name whereas a database allows associative access. Data items can be accessed and
modified in a database based on user-specified predicates.

Neither the difference in storage model nor in naming makes it a priori more difficult to build distributed databases
than file systems.  However the circumstances that lead to the use of a database are often precisely those that make
distribution of data difficult.  The use of databases is most common in applications where data has to be
concurrently shared for reading and writing by a large number of users.  These applications usually demand strict
consistency of data as well as atomicity of groups of operations.  Although the total quantity of data in the database
may be large, the granularity of access and update is usually quite fine.  It is this combination of application
characteristics that makes the implementation of distributed databases substantially harder than the implementation
of distributed file systems.

Distributing a database is particularly difficult at large scale. In its most general form the problem seems hopelessly
difficult. A database is conceptually a focal point for enforcing concurrency control and atomicity properties. If the
control structures to enforce these properties are physically distributed, the resulting network protocols have to be
substantially more complex. The feasibility of fully distributing data and control at small scale has been
demonstrated by systems such as R* [36]. But extension to larger distributed systems is not trivial.

A less ambitious approach attempts to provide distributed access to data on a single large database server.  Although
the data itself is located at a single site, transparent access to this data is possible from many sites.  In this model the
database requirements of a large distributed system are met by a small number of powerful database servers each
exporting a standardized network interface.  An example of such a system, Scylla, has been demonstrated at
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Carnegie Mellon University by integrating an off-the-shelf relational database system, Informix, with an RPC
package. Similar approaches have recently been announced by Microsoft [2], Oracle [38] and other vendors.

6. Conclusion
Since the earliest days of distributed computing, file systems have been the most important and widely-used form of
shared permanent storage.  The continuing interest in distributed file systems bears testimony to the robustness of
this model of data sharing.  We now understand how to implement distributed file systems that span a few hundred
to a few thousand nodes.  But scaling beyond that will be a formidable challenge.  As elaborated in the preceding
section, availability, heterogeneity and support for databases will also be key issues. Security will continue to be a
serious concern and may, in fact, turn out to be the bane of large distributed systems.  Regardless of the specific
technical direction taken by distributed file systems in the next decade, there is little doubt that it will be an area of
considerable ferment in industry and academia.
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