
7TH WORKSHOP ON QUANTITATIVE APPROACHES IN OBJECT-ORIENTED SOFTWARE ENGINEERING (QAOOSE'2003)
 1

Evolution of Cyclomatic Complexity in Object
Oriented Software
Rajesh Vasa and Jean-Guy Schneider

Abstract— It is a generally accepted fact that software systems are constructed and gradually refined over a period of time. During
this time, code is written and modified until stable releases of the system emerge. Many researchers have studied systems over a
longer period of time in order to understand how they change and evolve. Despite these efforts, we still lack a precise understanding
how various properties of software change over time, in particular in the area of object-oriented systems. Such an understanding is
of great importance if we want to come up with techniques to provide feedback on the evolution of quality and predictions about
further evolution of software systems. Historically, collection of sufficient data to build useful models was not practical as source
code and build histories were not freely available. It is our opinion that by focusing our attention towards Open source software
OSS) repositories, we have a better hope of building predictive models to help developers and managers. In this paper, we will
report on an exploratory study analyzing object oriented OSS projects and present our findings based on this analysis.

Index Terms— Quantitative OO and design heuristics, OOD and quality characteristics assessment, Quantitative tracking of OO
development activities.

—————————— u ——————————

1 INTRODUCTION

oftware development is a highly iterative, dynamic proc-
ess that requires constant feedback to gauge progress and
make necessary adjustments to reach the required goal

efficiently. Often software is built by many authors and it
needs to be robust, flexible and must support the intrinsic
need for distributed applications. These systems will need to
be adaptive to new contexts and must evolve naturally
throughout their lifespan.

Evolution is inherent in the nature of any real-world soft-
ware system [5]. However, a survey of empirical research in
software maintenance has found that less than two percent
(2%) of empirical studies in software engineering focused on
maintenance and much less on how software evolves over a
period of time [4]. Research and studies into how software
evolves is of great importance as it may assist us in building
predictive models that can warn developers of impending
danger or highlight decisions that may be unwise.

Past and recent studies into how software evolves has
been mostly focused on large non-object oriented software
systems such as Linux and/or Apache [4][5][7][8]. Over the
last few years, some researchers in this field have started to
focus their attention on how object oriented software systems
evolve [9][10][11]. Despite the availability of a good amount
of high quality software, very few researchers [1][7][13] have
investigated Open source software (OSS). OSS is character-
ized by certain legal and pragmatic arrangements that ensure
that the source code is generally available at no cost [1]. An-
other unique aspect in OSS projects is the development
methodology used; active members make contributions
without any direct financial incentive, often they are not in

the same geographical location, and all communication is
achieved using a combination of email, discussion boards
and chat rooms. Studying Open source software provides a
very unique perspective on software development as in this
model most contributions to the project are voluntary. One
can rationally argue that it must be well engineered to attract
and maintain a sufficient number of contributors. Effectively,
for a project to achieve fast growth and sustain the interest of
active developers, it must be well structured and must ex-
hibit a number of positive quality attributes.

To ensure that any software system does not deteriorate
as it is evolves, we feel it is necessary to provide some feed-
back to the development team on a regular basis about how
the software system is changing and evolving. We started
our research with the aim of developing a predictive model
that can monitor the code repository and provide general
warnings to the development team. In this work, we present
our findings and an initial hypothesis for a predictive model
that has been built based on our observations of method evo-
lution in object oriented code. The data for our study was
collected from five different software systems, all developed
using the Java programming language [16]. A short sum-
mary of the software systems we used in this case study is
provided in Table 1 (refer to Table 6 for website URLs).

This paper is organized as follows: in Section 2, we dis-
cuss related work in the area of predictive models. In Section
3, we present the data that was collected for our study. Sec-
tion 4 presents our observations and outlines the analysis
that we performed on the data collected. In Section 5 we pre-
sent our initial hypothesis. We conclude this paper in Section
6 with a summary of the main observations and outline fu-
ture research directions.

2 RELATED WORK

Software evolution as a research area started off with early

————————————————
• Rajesh Vasa is with the Swinburne University of Technology, Hawthorn,

VIC, Australia. E-mail: rvasa@swin.edu.au.
• Jean-Guy Schneider is with the Swinburne University of Technology,

Hawthorn, VIC, Australia. E-mail: jschneider@swin.edu.au.

S

2 7TH WORKSHOP ON QUANTITATIVE APPROACHES IN OBJECT-ORIENTED SOFTWARE ENGINEERING (QAOOSE'2003)

work by Lehman [2]. Over the last 27 years he worked with
many other researchers to propose and refine eight laws of
software evolution [6][8] all of which are directly related to
evolution of E-Type systems; that is, software systems that
solve a problem or implement an application in the real-
world, as in business systems. Kemerer and Slaughter [5]
reviewed existing literature on software evolution and have
designed an approach for longitudinal research that
enlarges the scope of empirical data available on software
evolution. They claim that "[software] evolution patterns
could be examined across multiple levels of analysis (sys-
tem and module), over longer periods of time, and could be
linked to a number of organisational and software engi-
neering factors" [5]. Godfrey and Tu [7] undertook a case
study on evolution in OSS systems, focusing mainly on the
Linux operating system. In their research they analysed the
exponential growth of the Linux operating system and have
concluded that it was made possible by the loose coupling
and the component architecture supported by the operating
system. Mockus et al. [1] studied the evolution of Mozilla
and Apache, both OSS systems. They conclude that OSS
projects benefit greatly from having a large team of testers,
early-adopters and developers that can help isolate and
replicate a defect quickly. They also argue that the design
structure of those systems have a direct impact on the de-
velopment speed; a highly modular, component based ar-
chitecture allows fast evolution whereas a highly inter-
dependent architecture generally requires a longer period
of time between released versions.

3 DATA COLLECTION
Our research data was collected using JavaNCSS [14] a
flexible source measurement tool for the Java language to
collect raw metrics. In particular, we extracted method Cyc-
lomatic complexity as defined originally by McCabe [12] as
well as the non-comment source lines of code(NC-SLOC).
JavaNCSS calculates Cyclomatic complexity by assigning
every method a value of 1 initially, it then increments by
one when the following Java keywords/statements are en-
countered: if, for, while, case, catch. It also increments by one
when methods return abortively using the following key-
words: return and throw. An ordinary return at the end of
the method will however not be counted. These metrics
were calculated and stored across all of the available ver-
sions for a particular software system. Our definition of a
“version” is a stable software build that has been released
by the development team, including both the binaries as
well as the source code. This approach of assigning version

numbers is similar to the strategy used by other researchers
that have studied evolutionary trends [2]. We have as-
signed version numbers starting from 1 based on the re-
lease date. We have used this approach as our analysis
view point would be similar to that of the development
team that would assign the version numbers. Further, ver-
sions often signify that a set of milestones has been
achieved and some of the defects found in earlier versions
have been corrected. Although it is common for the devel-
opment team to make use of major as well as minor version
numbers we choose not to make that differentiation for the
purpose of this initial case study. All software used in our
case study was obtained directly from the development
websites of the related project.

4 OBSERVATIONS AND ANALYSIS
We started our observations of the software systems by

analysing the Non-Comment Source Lines of Code (NC-
SLOC) as well as the total number of methods in each ver-
sion. This data is shown in Table 2. The number of methods
is shown in italics and enclosed in brackets next to the NC-
SLOC measure. Our original goal was to study 10 released
versions of all software systems, however due to time and
resource limitations we were not able to obtain equal num-
ber of versions for all software systems. This initial data set
was used to determine if there was some change in the
software system being analysed. To ensure that changes in
data do not cancel out each other, which can happen if
equal number of lines are added and removed, we used the
total number of method count in conjunction with NC-
SLOC to ensure that there were some changes between ver-
sions.

In most cases we found the change in NC-SLOC to be
between 7% and 100% when we compare the first version
to the last version analysed in our data set for each system.
The range of change was similar to this when the total
number methods was counted in each version. An interest-
ing observation was that the number of methods changed
much more drastically over the period of evolution in all of
the systems compared to NC-SLOC. This supports observa-
tions made by other researchers [15] where similar distribu-
tion patterns were noticed. Although the size fluctuated
and dropped some times, over a longer period all software
systems have exhibited some growth in volume. This ob-
servation can be seen to support Lehman's first law of soft-
ware evolution [6][8] which states that “an E-type program
that is used must be continually adapted else it becomes
progressively less satisfactory.” This observation also sup-

TABLE 1
SOFTWARE DESCRIPTION AND THE NUMBER OF VERSIONS ANALYSED

Name of Soft-
ware

Description Versions
Analysed

Total number of
methods

Observation period

JDictionary English dictionary 7 568 6 months
JEdit Text editor 10 4211 7 months
JasperReports Report generation tool 8 1633 7 months
Tomcat Web server and JSP container 9 5032 23 months
Hibernate Object-relational persistence service 10 2629 2 months

VASA ET AL.: EVOLUTION OF CYCLOMATIC COMPLEXITY IN OBJECT ORIENTED SOFTWARE 3

ports similar data from Godfrey et al. [7] on their work
measuring evolution of Open source software systems, in
particular the Linux operating system.

After the initial observations based on volumetric meas-
ures, we moved to collecting Cyclomatic complexity for
each non-blank method. To enable analysis of the data we
broke the range of cyclomatic complexity information into
five different categories. The data by category is shown in
Tables 3 and 4, respectively. Cyclomatic complexity of one
(1) was allocated a category of its own as in almost all pro-
jects that we analysed a large proportion of the methods fall
into this category. The range was generally between 50% -
80% of the methods in any given project. In our study we
counted the number of methods for each value of Cyclo-
matic complexity and then converted that into a percentage
(%) value. All Cyclomatic complexity data in this report has
been converted using this approach to allow us to compare
the different projects in the study. This was necessary as the
range of methods was quite vast between the various pro-
jects, smaller systems only have around 400 methods while
larger projects contained around 5000 methods. The per-
centage values by category are shown in Tables 3 and 4. We
have also presented in these tables the average for each
category as well as the standard deviation. Only data from
two projects have been shown in this report, the rest of the
projects show a similar distribution pattern. As can be seen
from the data here, the most interesting fact was the small
value for the standard deviation in all categories. This data
supports Lehman's Fifth law of software evolution [8],
"Conservation of Familiarity", where Lehman argues that
the content of successive versions is statistically invariant.
Although the law was based on other measures, most of
which were volumetric, it is interesting to note that com-
plexity measures also support this particular statement.

However, additional statistical tests are needed to further
validate this fact.

5 HYPOTHESIS
Based on the observations collected in our experiment, we
identified a recurring, quantitatively measurable evolution-
ary pattern that holds for all of the software systems that
we studied. Our hypothesis can be summarised as follows:

1) In the worst case, the absolute difference between

Cyclomatic complexities of successive versions seems
to change around 4% for any given category.

2) The number of methods with a Cyclomatic complex-
ity of 1 will be the highest as a percentage value for
any given version. This value will be greater than
50%.

3) In absolute terms, the percentage of methods with a
Cyclomatic complexity of 1 will generally change no
more than 2.5% between successive versions. We
have however noticed in our data set that in some in-
stances the value will go over this range, but the
chance of that happening was no more than 20% over
the period of time we observed the software systems.

4) In absolute terms, the percentage of methods with a
Cyclomatic complexity between 2 and 4 (inclusive)
will generally change no more than 1.5% between
successive versions.

5) In absolute terms, the percentage of methods with a
Cyclomatic complexity between 5 and 7 (inclusive)
will generally change no more than 0.75% between
successive versions.

TABLE 2
LINES OF CODE AS MEASURED BY JAVANCSS

Non-comment Source Lines of Code (and Method Count) Versions
Hibernate JDictionary JEdit Jasper Reports Tomcat

1 12915 (2142) 3810 (346) 43226 (3917) 5719 (780) 23898 (3439)
2 13807 (2236) 4034 (368) 43856 (3968) 5808 (797) 29170 (4719)
3 13954 (2259) 4464 (444) 44400 (4031) 5993 (845) 25468 (3927)
4 14120 (2290) 5070 (508) 44502 (4034) 7970 (1245) 25572 (3820)
5 14595 (2318) 5070 (509) 44911 (4080) 9156 (1393) 25586 (3821)
6 15871 (2549) 5206 (519) 45245 (4112) 10991 (1585) 26467 (3906)
7 16153 (2595) 6049 (568) 45350 (4122) 11159 (1608) 26504 (3920)
8 16180 (2608) 45355 (4122) 11712 (1633) 35037 (4891)
9 16255 (2631) 46164 (4213) 36588 (5032)
10 16330 (2629) 46272 (4211)

TABLE 3
CYCLOMATIC COMPLEXITY DISTRIBUTION FOR TOMCAT OVER 9 VERSIONS

Percentage of methods (%) in each version Cyclomatic
Complexity 1 2 3 4 5 6 7 8 9

Average St.
Dev.

1 71.6 73.3 72.1 71.3 71.2 71.0 70.9 68.2 68.4 70.9 1.7
2,3,4 17.0 17.3 17.7 17.7 17.7 17.6 17.6 19.0 19.1 17.8 0.7
5,6,7 6.3 5.2 5.5 5.8 5.8 6.0 6.1 6.4 6.6 6.0 0.4
8,9,10 2.4 2.1 2.3 2.3 2.3 2.4 2.4 3.1 2.9 2.5 0.3
>10 2.6 2.2 2.4 2.9 2.9 3.0 3.0 3.3 3.1 2.8 0.4

4 7TH WORKSHOP ON QUANTITATIVE APPROACHES IN OBJECT-ORIENTED SOFTWARE ENGINEERING (QAOOSE'2003)

6) In absolute terms, the percentage of methods with a
Cyclomatic complexity between 8 and 10 (inclusive)
will generally change no more than 0.5% between
successive versions.

7) In absolute terms, the percentage of methods with a
Cyclomatic complexity over 10 will generally change
no more than 0.4% between successive versions.

8) The range of variation as described in points 2 – 7 will
hold 90% of the time over the observed duration of
the software system.

The above stated hypotheses were all built based on the
data we have collected and by computing a set of ranges
that best fit the data we collected. We have not used any
formal mathematical techniques to construct our hypothe-
sis, as this was only an initial hypothesis based on our ob-
servations of the data. The ranges that we have mentioned
above fit our data set, but we observed that there is a 10%
possibility that these ranges will not hold. This is the reason
why we added the last hypothesis. However, we would
like to contend that when the absolute difference in Cyclo-
matic complexity between two successive versions for any
given category exceeds the range identified in our hypothe-
sis, there must have been a substantial change between the
two versions compared. This information can be used to
detect a violation of Lehman’s fifth law of software evolu-
tion. If the variation is greater than the range that we ob-
served, it can be assumed that a disciplined development
team will correct this anomaly within the next one or two
versions. Not doing so would start to create a software sys-
tem that is growing faster than the development team can
keep up with. This also keeps in line with the expectation
identified by Lehman et. al. in their eight law of software
evolution [8].

In Figure 1, we have charted the Cyclomatic complexity
distribution for one software system to support our hy-
pothesis. The chart shows the range of cyclomatic complex-
ity between 2 and 15. We have removed 1 as it is very large
and would have made the graph difficult to understand.
One of the key features of this graph is the negligible varia-
tion (between 1% and 2%) shown between successive ver-
sions of the same system. The graphs for all of the other
systems are nearly identical and would have made the
graph difficult to understand.

6 CONCLUSION
We started our research with the aim of developing an

initial predictive model that can provide a warning to
the development team when the software system starts
to evolve abnormally. In this report, we have presented
our observations of how methods evolve in object ori-
ented systems, in particular focusing on the distribution
of Cyclomatic complexity. We have put forward an ini-
tial set of hypotheses that indicate the normal variation
between two successive versions of a software system,
supporting Lehman's first and fifth law of software evo-
lution. The first law expects to see a continuing change
over time, the fifth law of software evolution states that
there is a conservation of familiarity, i.e. the content of
successive releases is statistically invariant. Though this
was not an initial aim of our research, we hope that our
initial results will facilitate automating the task of detect-
ing violations of some of the known laws of software
evolution. An interesting finding of our case study was
that some of Lehman's laws are applicable to current
generation object oriented software systems that were
developed using OSS development methodologies. This
was not expected as most of the laws were built based
on observations of how large mainframe era software
systems evolved. These software systems were built us-
ing a different set of methodologies and used non-object
oriented languages and development technologies.

Future work will concentrate on revising our hy-
potheses and define a statistically sound predictive
model. In our current study we used only 5 projects, but
we would like to validate our improved hypothesis
against a larger data set. Furthermore, it would be inter-
esting to find out whether our work could be extended
to see how classes, packages, components, and layers
evolve within software systems. Once sufficient data is
collected at various levels, we will be able to verify if
Lehman's laws of software evolution hold for systems
developed using object oriented programming lan-
guages other than Java. To improve the quality of our
research effort as well as similar work undertaken by
others, tool support will be necessary. In particular, the
tools should be able to collect the required information
directly from the code repositories used by the respec-
tive development teams. There is also much scope in this

TABLE 4
CYCLOMATIC COMPLEXITY DISTRIBUTION FOR JASPER REPORTS OVER 8 VERSIONS

Percentage of methods (%) in each version Cyclomatic
Complexity 1 2 3 4 5 6 7 8

Average St.
Dev.

1 75.0 75.3 75.6 79.7 79.4 79.7 79.5 79.0 77.9 2.2
2,3,4 15.5 15.4 15.4 13.9 13.8 12.8 12.8 12.7 14.0 1.2
5,6,7 5.6 4.9 4.9 3.3 3.3 3.7 3.9 3.9 4.2 0.8
8,9,10 2.2 2.8 2.5 1.8 1.9 1.8 1.9 2.1 2.1 0.4
>10 1.7 1.8 1.9 1.5 1.9 2.2 2.2 2.6 2.0 0.3

VASA ET AL.: EVOLUTION OF CYCLOMATIC COMPLEXITY IN OBJECT ORIENTED SOFTWARE 5

field to discover evolution patterns that can be used as
the basis for other predictive models.

ACKNOWLEDGMENTS
The authors wish to thank Rajesh Kotha and Sai Panyam
for their assistance in the data collection phase of this re-
search project and Fernando Brito e Abreu for his detailed
comments on an earlier draft.

REFERENCES
[1] A. Mockus, R. T. Fielding and J. D. Herbsleb. “Two Case Studies

of Open Source Software Development: Apache and Mozilla.“
ACM Transactions on Software Engineering and Methodology,
11(3):1-38, July 2002.

[2] M. M. Lehman, “Programs, Life Cycles, and Laws of Software
Evolution,” Proc. Special Issue Software Eng., IEEE, 68(9):1060-
1076, 1980.

[3] N. F. Schneidewind, “The State of Software Maintenance,” IEEE
Trans. Software Eng., 13(3): 303-310, Mar. 1987.

[4] C. F. Kemerer, “Empirical Research on Software Complexity and
Software Maintenance,” Annals of Software Eng., 1(1):1-22, 1995.

[5] C. F. Kemerer and S. Slaughter, “An Empirical Approach to
Studying Software Evolution,” IEEE Trans. Software Eng.,
25(4):493-509, 1999

[6] L. A. Belady and M. M Lehman, “A Model of Large Program
Development,” IBM Systems Journal, 15(1): 225-252, 1976.

[7] Michael W. Godfrey and Qiang Tu, “Evolution in Open Source
Software: A Case Study,” Proceedings of the 2000 International
Conference on Software Maintenance, San Jose, California, Octo-
ber 2000.

[8] M. M. Lehman, J. F. Ramil, P. D. Wernick, D. E. Perry and W. M.
Turski. “Metrics and laws of software evolution – the nineties
view.” In Proceedings of the Fourth International Software Met-
rics Symposium (Metrics ‘97), 1997.

[9] S. Demeyer, S. Ducasse and M. Lanza. “A hybrid reverse engi-
neering approach combining metrics and program visualization."
In Proceedings of the 6th Working Conference on Reverse Engi-
neering (WCRE'99), pp. 175--186, 1999.

[10] T. Tamai T. and Nakatani. “An Empirical Study of Object Evolu-
tion Processes,” Proceedings International Workshop on Princi-
ples of Software Evolution (IWPSE'98), Kyoto, April 1998, pp. 33-
37

[11] T. Tamai T. and Nakatani. “Analysis of Software Evolution Proc-
esses Using Statistical Distribution Models,” International Work-
shop on Principles of Software Evolution (IWPSE'02), Orlando,
Florida, ACM, 2002, pp.120-123

[12] T. J. McCabe. “A complexity measure.” IEEE Trans. On Software
Eng., SE-2(4):308-320, December 1976.

[13] G. Succi, J. Paulson & A. Eberlein. “Preliminary Results from an
Empirical Study on the Growth of Open Source and Commercial
Software Products.” Proceedings of the Third International Work-
shop on Economics-Driven Software Engineering Research (ED-
SER3), International Conference on Software Engineering 2001,
Toronto, Ontario, Canada, May 12 - 19, 2001.

[14] http://www.kclee.com/clemens/java/javancss/
[15] H. Gall, M. Jazayeri, R. R. Klösch and G. Trausmuth. “Software

Evolution Observations Based on Product Release History.” Pro-
ceddings of the International Conference on Software Mainte-
nance (ICSM) 1997.

[16] J. Gosling, B. Joy, G. Steele and G. Bracha, "The Java Language
Specification." Addison-Wesley, second edition, 2000.

Cyclomatic Complexity Distribution

0.00

1.00

2.00

3.00

4.00

5.00

6.00

7.00

8.00

9.00

2 3 4 5 6 7 8 9 10 11 12 13 14 15

Cyclomatic Complexity

%
 o

f m
et

ho
ds

Figure 1. Cyclomatic complexity distribution for Tomcat (x-axis shows the complexity distribution between 2 and 15). Each line captures the dis-
tribution for a different version.

TABLE 5
URL'S TO DOWNLOAD THE SOFTWARE WE USED IN OUR ANALYSIS

Product name URL
Hibernate http://hibernate.bluemars.net/
JDictionary http://jdictionary.sourceforge.net/
Jasper
Reports

http://jasperreports.sourceforge.net/

Tomcat http://jakarta.apache.org/tomcat/
JEdit http://jedit.sourceforge.net/

